Understanding Polymer and Hybrid Capacitors Advanced Capacitors Based on Conductive Polymers Maximize Performance and Reliability

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Polymer and Hybrid Capacitors Advanced Capacitors Based on Conductive Polymers Maximize Performance and Reliability WHITE PAPER Understanding Polymer and Hybrid Capacitors Advanced capacitors based on conductive polymers maximize performance and reliability The various polymer and hybrid capacitors have distinct sweet spots in terms of their ideal voltages, frequency characteristics, environmental conditions and other application requirements. In this paper, we’ll show you how to identify the best uses for each type of advanced capacitor. We’ll also highlight specific applications in which a polymer or hybrid capacitor will outperform traditional electrolytic or even ceramic capacitors. POLYMER CAPACITOR VARIETIES Polymer capacitors come in four main varieties, including the hybrid. Each type has different electrolytic and electrode Hybrid capacitor technology combines the performance benefits of materials, packaging and application targets: electrolytic and polymer capacitors. • Layered polymer aluminum capacitors use conductive Capacitors may seem simple enough, but specifying them has polymer as the electrolyte and have an aluminum cathode actually grown more complex in recent years. The reason why (see Figure 1). Depending on the specific model, these comes down to freedom of choice. The universe of capacitors capacitors cover a voltage range from 2-25V and offer has expanded greatly over the past few years, in large part capacitances between 2.2-560µF. The distinguishing because of capacitor designs that take advantage of advances electrical characteristic of these polymer capacitors is in conductive polymers. their extremely low equivalent series resistance (ESR). For example, some of our SP-Cap™ polymer capacitors have These advanced capacitors sometimes use conductive polymers ESR values as low as 3mΩ, which is among the lowest in to form the entire electrolyte. Or the conductive polymers can be used in conjunction with a liquid electrolyte in a design known as a hybrid capacitor. Either way, these polymer-based capacitors Molding Silver Paste offer a performance edge over conventional electrolytic and Resin ceramic capacitors when it comes to: Terminal • Electrical characteristics. • Stability. Al2O3 • Longevity. Silver Paste Carbon Aluminum Foil • Reliability. Terminal Polymer • Safety. Figure 1 • Life cycle cost. Panasonic Two Riverfront Plaza, 7th Floor, Newark, NJ 07102-5490 www.panasonic.com/industrial Aluminum Case the industry. Packaged in a molded resin as compact surface mount devices, these layered polymer capacitors have a low profile. As a result of the electrical and form Back Plate factor characteristics, they have applications in a variety of handheld electronic devices or other applications that require a low-profile capacitor that will not interfere with a nearby heat sink. Rubber Seal Terminal • Wound polymer aluminum capacitors are also based on conductive polymers and aluminum, but they have a wound Aluminum foil structure (see Figure 2). The wound polymer capacitors Foil cover a wider range of voltages and capacitance values Aluminum Spacer than other types of polymer capacitors. Voltages extend Foil Al O from 2.5 to 100V, while capacitances run from 3.3 to 2700µF. 2 3 Electrolyte Impregnated in Spacer Like the layered polymer capacitors, the wound style Polymer has extremely low ESR values. Some of our OS-CON™ Figure 2 capacitors, for instance, have ESR values below 5mΩ. The wound style can also be surface mounted, Molding though they are not Resin Terminal quite as compact as the layered capacitors. Terminal Silver paste Ta2O5 Sintered Tantalum Carbon • Polymer tantalum capacitors employ a conductive Polymer polymer as the electrolyte and have a tantalum cathode (see Figure 3). They span voltages from 1.8 to 35V and Figure 3 capacitances from 2.7 to 680µF. They, too, have low ESR values. They, too, have low ESR, with some of our POSCAP™ capacitors exhibiting ESR values as low as 5mΩ. Packaged in a molded resin case, the tantalum polymer capacitors are among the most compact on the market. Our POSCAP M size, for example, measures just 2.0 by 1.25 mm. Though compact, a wide range of sizes is available for this capacitor type. Panasonic Two Riverfront Plaza, 7th Floor, Newark, NJ 07102-5490 www.panasonic.com/industrial Aluminum Case • Polymer hybrid aluminum capacitors. As their name suggests, these capacitors use a combination of a liquid and conductive polymer to serve as the electrolyte (see Figure Back Plate 4) and aluminum as the cathode. Think of this technical approach as the best of both worlds: The polymer offers high conductivity—and a correspondingly low ESR. The liquid portion of the electrolyte, meanwhile, can withstand high Rubber Seal Terminal voltages and provide higher capacitance ratings due to its large effective surface area. The hybrid capacitors offer a voltage range from 25 to 80V and capacitances between 10 Aluminum and 330µF. At 20 to 120mΩ, ESR values for hybrids are higher Foil than other types of polymer capacitors, but still very low Aluminum Spacer considering the higher power applications they address (see Foil sidebar). Al2O3 Hybrid Electrolyte Impregnated in Spacer POLYMER CAPACITOR ADVANTAGES Polymer + Electrolyte Liquid Despite differences in their materials and construction, the four Figure 4 types of polymer capacitors share a collection of desirable electrical properties: • Great frequency characteristics. Thanks to their ultra low ESR values, polymer capacitors have a low impedance near their resonance point (see Figure 5). And lower impedance Figure 5 reduces AC ripple in power circuits. Our testing has ESR lowers impedance near the resonance point, reducing AC ripple. IMPEDANCE CHARACTERISTICS Impedance Capacitance: ½πfC Inductance: 2 fL, where L = ESL π Resistance: ESR Impedance (Z) Impedance (Z) Frequency Frequency Z Large: Z Small: Ripple Ripple Z Large: Z Small: Panasonic Two Riverfront Plaza, 7th Floor, Newark, NJ 07102-5490 www.panasonic.com/industrial DC Bias 10 STABLE CAPACITANCEDC Bias Reliable Capacitors For IT 100 DC Bias 10 -10 Infrastructure 0 -2-10 -10 Information technology infrastructures have a little-known ) -3-20 (% -20 C weak link: The capacitors in their power supplies. ) -4-30 / (% ) dC C -30 -5-40 / Conventional electrolytic capacitors tend to fail prematurely (% C dC -40 when their liquid electrolyte dries up‚ which happens in / -6-50 dC -50 response to elevated temperatures and long on times. -7-60 -60 -8-70 Conventional tantalum capacitors are one possible solution -8-70 to these premature failures. However, tantalums require -90 01234567 -9-80 voltage derating to avoid a very undesirable failure mode— DC Bias (V) 01234567 -90 DC Bias (V) namely, the potential for fires. 01234567 DC Bias (V) More advanced polymer-based capacitors have emerged Temperature Range 2200 as a way to improve lifecycle and reliability of IT equipment Temperature Range 2200 such as servers, switches, routers and modems. Temperature Range ) 2200 (% C 1100 ) Polymer wound capacitors such as OS-CON do not have a C/ (% C 1100 ) C/ liquid electrolyte and therefore can have extremely long life. (% C 1100 C/ 0 POSCAP polymer-tantalum capacitors contain no oxygen --5555--3535 --115555 2525 4545 6655 8855 11005 0 in their formulation. So they are not prone to combustion --5555--3535 --115555 2525 4545 6655 8855 11005 0 Temp. ( ) upon failure. SP-Caps also have a similar benign failure --5555--3535 --115555 --110 2525 4545 6655 8855 11005 mode. --110 Temp. ( ) --110 Temp. ( ) All three families of advanced capacitor also offer the --220 features required for information infrastructure: --220 --220 -3300 • Compact size. -3300 • Low ESR MLCC -3300 • High Ripple Current MLCCMultilayer ceramic capacitor (6.3V47µF/3216/X5R) • Long Life. PolymerMLCCMultilayer ceramic capacitor capacitor (6.3V47µF/3216/X5R) PolymerPOSCAP,Multilayer ceramicSP-Cap capacitor capacitoror OS-CON (6.3V47µF/3216/X5R) (6.3V47µF) PolymerPOSCAP, SP-Cap capacitor Figureor OS-CON 6 (6.3V47µF) POSCAP, SP-Cap or OS-CON (6.3V47µF) revealed as much as a fivefold reduction in peak-to-peak deliver subpar performance in the field. Hybrid capacitors voltage changes when comparing polymer capacitors to add another dimension to capacitance stability. They keep conventional low-ESR tantalum capacitors. a stable capacitance in the face of common operating conditions—high frequencies and low temperatures—that • Stable capacitance. With ceramic capacitors, capacitance reduce the capacitance of conventional liquid electrolytic drifts in response to temperature changes and DC bias. capacitors. Polymer capacitors have no such problem and remain (see Figure 7). stable over time (see Figure 6). This stability is particularly important in industrial and automotive applications, which • Enhanced safety. Conventional electrolytic capacitors tend to experience fluctuations in operating temperatures. can suffer from safety issues that could cause them to We’ve seen cases where elevated temperatures caused short circuit and fail. The problem arises when electrical an effective capacitance loss of 90% or more for ceramic or mechanical stresses create defects or discontinuities in capacitors, meaning that the conventional capacitors the oxide film that forms the capacitor’s dielectric. Polymer Panasonic Two Riverfront Plaza, 7th Floor, Newark, NJ 07102-5490 www.panasonic.com/industrial HYBRID CAPACITOR capacitors have a self-healing capability that eliminates Capacitance vs. Frequency this failure mode. The repair takes place in response to the CapacitancePERFORMANCE vs. Frequency 1000.0000 joule heating that occurs when a dielectric
Recommended publications
  • Syfer Capacitor Basics
    Syfer Technology Limited, Old Stoke Road, Arminghall, Norwich, Norfolk, NR14 8SQ, United Kingdom Tel: +44 (0) 1603 723300 Tel. (Sales): 01603 723310 Fax: +44 (0) 1603 723301 Email: [email protected] Web: www.knowlescapacitors.com Syfer Capacitor Basics What is a Capacitor ..................................................................................2 Electrode .............................................................................................2 Dielectric .............................................................................................2 Construction ........................................................................................2 MLCC Uses ..............................................................................................3 Limitations and Factors for Consideration ....................................................3 Dielectric Types .......................................................................................4 X7R.....................................................................................................4 X5R.....................................................................................................5 X8R.....................................................................................................5 2C1 (BZ) and 2X1 (BX) .........................................................................5 C0G ....................................................................................................5 High Q .................................................................................................5
    [Show full text]
  • Ltc3225/Ltc3225-1
    LTC3225/LTC3225-1 150mA Supercapacitor Charger FEATURES DESCRIPTION n Low Noise Constant Frequency Charging of Two The LTC®3225/LTC3225-1 are programmable supercapaci- Series Supercapacitors tor chargers designed to charge two supercapacitors in n Automatic Cell Balancing Prevents Capacitor series to a selectable fi xed output voltage (4.8V/5.3V for Overvoltage During Charging the LTC3225 and 4V/4.5V for the LTC3225-1) from input n Programmable Charge Current (Up to 150mA) supplies as low as 2.8V to 5.5V. Automatic cell balancing n Selectable 2.4V or 2.65V Regulation per Cell prevents overvoltage damage to either supercapacitor. No (LTC3225) balancing resistors are required. n Selectable 2V or 2.25V Regulation per Cell Low input noise, low quiescent current and low external (LTC3225-1) parts count (one fl ying capacitor, one bypass capacitor at n Automatic Recharge V and one programming resistor) make the LTC3225/ n I = 20μA in Standby Mode IN VIN LTC3225-1 ideally suited for small battery-powered n I < 1μA When Input Supply is Removed COUT applications. n No Inductors n Tiny Application Circuit (2mm × 3mm DFN Package, Charge current level is programmed with an external All Components <1mm High) resistor. When the input supply is removed, the LTC3225/ LTC3225-1 automatically enter a low current state, drawing APPLICATIONS less than 1μA from the supercapacitors. The LTC3225/LTC3225-1 are available in a 10-lead 2mm n Current Limited Applications with High Peak Power × 3mm DFN package. Loads (LED Flash, PCMCIA Tx Bursts, HDD Bursts, L, LT, LTC and LTM are registered trademarks and ThinSOT is a trademark of Linear GPRS/GSM Transmitter) Technology Corporation.
    [Show full text]
  • Introduction What Is a Polymer Capacitor?
    ECAS series (polymer-type aluminum electrolytic capacitor) No. C2T2CPS-063 Introduction If you take a look at the main board of an electronic device such as a personal computer, you’re likely to see some of the six types of capacitors shown below (Fig. 1). Common types of capacitors include tantalum electrolytic capacitors (MnO2 type and polymer type), aluminum electrolytic capacitors (electrolyte can type, polymer can type, and chip type), and MLCC. Figure 1. Main Types of Capacitors What Is a Polymer Capacitor? There are many other types of capacitors, such as film capacitors and niobium capacitors, but here we will describe polymer capacitors, a type of capacitor produced by Murata among others. In both tantalum electrolytic capacitors and aluminum electrolytic capacitors, a polymer capacitor is a type of electrolytic capacitor in which a conductive polymer is used as the cathode. In a polymer-type aluminum electrolytic capacitor, the anode is made of aluminum foil and the cathode is made of a conductive polymer. In a polymer-type tantalum electrolytic capacitor, the anode is made of the metal tantalum and the cathode is made of a conductive polymer. Figure 2 shows an example of this structure. Figure 2. Example of Structure of Conductive Polymer Aluminum Capacitor In conventional electrolytic capacitors, an electrolyte (electrolytic solution) or manganese dioxide (MnO2) was used as the cathode. Using a conductive polymer instead provides many advantages, making it possible to achieve a lower equivalent series resistance (ESR), more stable thermal characteristics, improved safety, and longer service life. As can be seen in Fig. 1, polymer capacitors have lower ESR than conventional electrolytic Copyright © muRata Manufacturing Co., Ltd.
    [Show full text]
  • Synthesis of Nano-Ceramics for Supercapacitors
    University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2014 Synthesis of nano-ceramics for supercapacitors Azrin Akhter Chowdhury University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Chowdhury, Azrin Akhter, Synthesis of nano-ceramics for supercapacitors, Doctor of Philosophy thesis, Engineering Materials Institute, University of Wollongong, 2014. https://ro.uow.edu.au/theses/4314 Research Online is the open access institutional repository for the University of Wollongong.
    [Show full text]
  • Review of Technologies and Materials Used in High-Voltage Film Capacitors
    polymers Review Review of Technologies and Materials Used in High-Voltage Film Capacitors Olatoundji Georges Gnonhoue 1,*, Amanda Velazquez-Salazar 1 , Éric David 1 and Ioana Preda 2 1 Department of Mechanical Engineering, École de technologie supérieure, Montreal, QC H3C 1K3, Canada; [email protected] (A.V.-S.); [email protected] (É.D.) 2 Energy Institute—HEIA Fribourg, University of Applied Sciences of Western Switzerland, 3960 Sierre, Switzerland; [email protected] * Correspondence: [email protected] Abstract: High-voltage capacitors are key components for circuit breakers and monitoring and protection devices, and are important elements used to improve the efficiency and reliability of the grid. Different technologies are used in high-voltage capacitor manufacturing process, and at all stages of this process polymeric films must be used, along with an encapsulating material, which can be either liquid, solid or gaseous. These materials play major roles in the lifespan and reliability of components. In this paper, we present a review of the different technologies used to manufacture high-voltage capacitors, as well as the different materials used in fabricating high-voltage film capacitors, with a view to establishing a bibliographic database that will allow a comparison of the different technologies Keywords: high-voltage capacitors; resin; dielectric film Citation: Gnonhoue, O.G.; Velazquez-Salazar, A.; David, É.; Preda, I. Review of Technologies and 1. Introduction Materials Used in High-Voltage Film High-voltage films capacitors are important components for networks and various Capacitors. Polymers 2021, 13, 766. electrical devices. They are used to transport and distribute high-voltage electrical energy https://doi.org/10.3390/ either for voltage distribution, coupling or capacitive voltage dividers; in electrical sub- polym13050766 stations, circuit breakers, monitoring and protection devices; as well as to improve grid efficiency and reliability.
    [Show full text]
  • Suggestion of the Supercapacitor(EDLC) Application to the Electrical Characteristic Tester
    Supercapacitor (EDLC) Application Note No. C2M1CXS-163A(E) Suggestion of the Supercapacitor(EDLC) Application to the Electrical Characteristic Tester 1. Summary Supercapacitor, also known as EDLC or supercap, has higher-capacity than ceramic capacitor or electrolytic capacitor. And supercapacitor is an energy storage device having longer life than a battery. In addition, Murata’s supercapacitor can handle the output power up to 50W by realizing super low ESR approximately 40mΩ (DMF series example) At the measurement environment that a high peak electric current runs through the load instantly, our supercapacitor can assist such peak current. By this effect, it is possible to downsize Fig.3 : Measurement Block Diagram with Supercapacitor and reduce power capacity of DC power supply. Besides it contributes to reduce measuring equipment cost and save the Fig.4 and Fig.5 shows each part waveform. electric power of the facilities. Top(Yellow):Load current, Middle(Green):Power line voltage, Bottom(Purple):DC power supply current. 2. Benefits Fig.4: DC power supply only. ①Downsize the DC power supply Fig.5: Supercap is added to DC power supply. Even if the power supply capacity cannot support a peak current, The effect of supercap can be confirmed because the fluctuation it does not matter because supercap can assist it. ②Supercapacitor as a power source of the input voltage is smaller and the peak current of power Because supercap can be charged quickly, it is possible to use supply decreases. supercap as power source at the time of measurement. ③Reduce the cost and Save power of measurement equipment. ④Can be mounted on limited area because of its thinner and smaller shape.
    [Show full text]
  • Surface Mount Ceramic Capacitor Products
    Surface Mount Ceramic Capacitor Products 082621-1 IMPORTANT INFORMATION/DISCLAIMER All product specifications, statements, information and data (collectively, the “Information”) in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements of suitability for certain applications are based on AVX’s knowledge of typical operating conditions for such applications, but are not intended to constitute and AVX specifically disclaims any warranty concerning suitability for a specific customer application or use. ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by AVX with reference to the use of AVX’s products is given without regard, and AVX assumes no obligation or liability for the advice given or results obtained. Although AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.
    [Show full text]
  • Polymer Film Capacitors Provide Needed Performance
    Polymer Film Capacitors Provide Needed Performance Rick A. Price Paktron Capacitors 1205 McConville Road Lynchburg, VA 24502 Phone: 434-239-6941 Fax: 434-239-4730 Web site: http://www.panconcorp.com Abstract – Mechanical flexibility, immunity to sized components has generally removed some of the aging and stable operating characteristics are the safety margin in the designs or caused increased hallmarks of polymer film capacitors used in parasitic losses. In what seems like the ultimate power applications. validation of the superior performance characteristics of polymer film capacitors, various capacitor type There is probably not a single electronic design (tantalum, aluminum electrolytic and ceramic) engineer who has not come up with a new circuit manufacturers have now begun adding polymer design only to have it fail during bench testing elements to their products in order to enhance because it appeared that either there was a design electrical and mechanical performance. Rather than error or a faulty component had been used. In the using these polymer “hybrids”, those requiring the majority of cases it is neither; with the failure highest performance, most stable capacitors occurring because of a key component’s commercially available should choose polymer film unacceptable parasitic losses due to its reaction to capacitors for their critical applications. temperature, voltage and/or frequency variations. There is nothing more frustrating than spending Critical electronic systems used in markets such as the time troubleshooting a “defective” circuit only Military, Flight or Telecommunications require the to find the cause being a 4.7µF capacitor that has use of components with inherent reliability. No an actual effective working value of only 0.33µF.
    [Show full text]
  • GRM0335C1E330JA01 (0201, C0G:EIA, 33Pf, DC25V) : Packaging Code Reference Sheet
    Chip Monolithic Ceramic Capacitor for General GRM0335C1E330JA01_ (0201, C0G:EIA, 33pF, DC25V) _: packaging code Reference Sheet 1.Scope This product specification is applied to Chip Monolithic Ceramic Capacitor used for General Electronic equipment. 2.MURATA Part NO. System (Ex.) GRM 03 3 5C 1E 330 J A01 D (1)L/W (2)T (3)Temperature (4)Rated (5)Nominal (6)Capacitance (7)Murata’s (8)Packaging Dimensions Dimensions Characteristics Voltage Capacitance Tolerance Control Code Code 3. Type & Dimensions (Unit:mm) (1)-1 L (1)-2 W (2) T e g 0.6±0.03 0.3±0.03 0.3±0.03 0.1 to 0.2 0.2 min. 4.Rated value (3) Temperature Characteristics (4) (6) Specifications and Test (Public STD Code):C0G(EIA) (5) Nominal Methods Rated Capacitance Temp. coeff Temp. Range Capacitance (Operating Voltage Tolerance or Cap. Change (Ref.Temp.) Temp. Range) 25 to 125 °C 0±30 ppm/°C DC 25 V 33 pF ±5 % -55 to 125 °C (25 °C) 5.Package mark (8) Packaging Packaging Unit 180mm Reel D f 15000 pcs./Reel PAPER W8P2 180mm Reel W f 30000 pcs./Reel PAPER W8P1 330mm Reel J f 50000 pcs./Reel PAPER W8P2 Product specifications in this catalog are as of Mar.5,2016,and are subject to change or obsolescence without notice. Please consult the approval sheet before ordering. Please read rating and !Cautions first. GRM0335C1E330JA01-01 1 ■ Specifications and Test Methods Test Method No Item Specification (Ref. Standard:JIS C 5101, IEC60384) 1 Rated Voltage Shown in Rated value. The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor.
    [Show full text]
  • How to Select a Capacitor for Power Supplies
    CAPACITOR FUNDAMENTALS 301 HOW TO SELECT A CAPACITOR FOR POWER SUPPLIES 1 Capacitor Committee Upcoming Events PSMA Capacitor Committee Website, Old Fundamentals Webinars, Training Presentations and much more – https://www.psma.com/technical-forums/capacitor Capacitor Workshop “How to choose and define capacitor usage for various applications, wideband trends, and new technologies” The day before APEC, Saturday March 14 from 7:00AM to 6:00PM Capacitor Industry Session as part of APEC “Capacitors That Stand Up to the Mission Profiles of the Future – eMobility, Broadband” Tuesday March 17, 8:30AM to Noon in New Orleans Capacitor Roadmap Webinar – Timing TBD – Latest in Research and Technology Additional info here. Short Introduction of Today‘s Presenter Eduardo Drehmer Director of Marketing FILM Capacitors Background: • Over 20 years experience with knowledge on +1 732 319 1831 Manufacturing, Quality and Application of Electronic Components. [email protected] • Responsible for Technical Marketing for Film Capacitors www.tdk.com 2018-09-25 StM Short Introduction of Today‘s Presenter Edward Lobo was born in Acushnet, MA in 1943 and graduated from the University of Massachusetts in Amherst in 1967 with a BS in Chemistry. Ed worked for Magnetek, Aerovox and CDE where he is currently Chief Engineer for New Product Development. Ed Lobo Ed has served for over 52 years in Chief Engineer, New Product capacitor product development. He holds [email protected] 14 US patents involving capacitors. 4 ABSTRACT This presentation will guide individuals selecting components for their Electronic Power Supplies. Capacitors come in a wide variety of technologies, and each offers specific benefits that should be considered when designing a Power Supply circuit.
    [Show full text]
  • Solid Polymer Aluminum SMT Capacitors Tape Specifications Reel Specifications
    Application Guide, Solid Polymer Aluminum SMT Capacitors Tape Specifications Reel Specifications SPA ESRD ESRE ESRH SPA Type t2 = H + 0.3 mm ±0.2 mm W D– P A B EF P 1 P t ±0.3 + 0.1/–0.0 Ø ±0.2 2 ±0.2 ±0.2 1 A ±0.2 B Min. C ±0.5 D ±0.8 E ±0.5 W ±1.0 t 12.0 1.8 5.5 1.5 4.0 8.0 2.0 7.7 4.6 0.4 333.0 50.0 13.0 21.0 2.0 14.0 3.0 Tol.: ± mm unless otherwise specified Design Kits Design kits containing various ratings are available through the CDE web site. Typical Temperature Characteristics Capacitance Change at 120 Hz Dissipation Factor at 120 Hz 20 10 10µF/6.3V 10µF/6.3V 8 10 6 % ) 0 C ( DF ( % ) ǻ 4 -10 2 -20 0 -60 -20 20 60 100 -60 -20 20 60 100 Temperature (°C) Temperature (°C) CDE Cornell Dubilier • 1605 E. Rodney French Blvd. • New Bedford, MA 02744 • Phone: (508)996-8561 • Fax: (508)996-3830 • www.cde.com Application Guide, Solid Polymer Aluminum SMT Capacitors Typical Impedance and Equivalent Series Resistance ESRD (3.1 mm Ht.) 100.000 ESRD680M08R 68 uF/8 V Impedance/E.S.R. 10.000 ESRD121M04R 120 uF/4 V Impedance/E.S.R. 1.000 ESRD181M02R Ohms 180 uF/2 V Impedance/E.S.R. 0.100 0.010 0.001 0.1 1 10 100 1000 10000 100000 Frequency (kHz) ESRE 100.000 ESRE101M08R 100 uF/8 Vdc 10.000 Impedance/E.S.R.
    [Show full text]
  • The Important Points of Multi-Layer Ceramic Capacitor Used in Buck Converter Circuit
    © 2017 ROHM Co., Ltd. No. 60AP001E Rev.001 2017.4 Application Note Switching Regulator Series The Important Points of Multi-layer Ceramic Capacitor Used in Buck Converter circuit Multi-layer Ceramic Capacitor (MLCC) with large-capacitance can be used as smoothing-capacitor in power supply circuits. Compared to other capacitor types such as an electrolytic capacitor, MLCC differs in frequency characteristics, temperature characteristics, and DC voltage characteristics. Using unmatched MLCC may not obtain required target characteristics for power supply circuit and may cause abnormal operation. This application note explains the important points while using MLCC. Figure1 shows frequency characteristics of all major types of Types of Multi-layer ceramic capacitor (MLCC) capacitors. Ripple voltage of output is expected to become smaller by using MLCC in a power circuit. However in earlier MLCC can be broadly classified into two types; for temperature power-IC designs, usage of MLCC with ultra-low ESR was not compensation and for high-dielectric constant. MLCC for considered. Therefore, phase of feedback circuit rotates too temperature compensation uses Titanium oxide (TiO2) and much at high-frequency area, causing power circuit to operate Calcium zirconate (CaZrO3) as material for its paraelectric. unstably and may cause oscillation in worst case. When MLCC Therefore, it cannot suit for capacitor with large-capacitance as has to be used at any cost, connecting a low-ohmic resistor more relative permittivity is small, about 20 to 300. Moreover, since than 10mΩ in series is recommended, and may deteriorate the relative permittivity changes linearly with temperature, the frequency characteristics. temperature coefficient can be restricted between +100 to - 4700ppm/°C by adjusting composition of the dielectric material.
    [Show full text]