Saas-Fee Advanced Courses

Total Page:16

File Type:pdf, Size:1020Kb

Saas-Fee Advanced Courses Saas-Fee Advanced Courses Volume 39 For further volumes: http://www.springer.com/series/4284 Paul Charbonneau Solar and Stellar Dynamos Saas-Fee Advanced Courses 39 Swiss Society for Astrophysics and Astronomy Edited by O. Steiner 123 Paul Charbonneau Département de Physique Université de Montréal Montréal Canada This Series is edited on behalf of the Swiss Society for Astrophysics and Astronomy: Société Suisse d’Astrophysique et d’Astronomie Observatoire de Genève, ch. des Maillettes 51, CH- 1290 Sauverny, Switzerland Cover picture: Snapshot of a global, three-dimensional, numerical simulation of solar magneto- convection. The color scale codes the radial magnetic field at the outer surface of the domain: red-yellow for positive magnetic polarity and blue-cyan for negative. At the given time instant of the magnetic cycle, polarity reversal of the polar cap magnetic field is just taking place. Even though the surface magnetic field is spatiotemporally intermittent, a well-defined axisymmetric component develops with a full magnetic cycle lasting about 78 years in this specific simulation. (From the web-page of the solar physics research group at Montreal University http://www.astro.umontreal.ca/*paulchar/grps/) ISSN 1861-7980 ISSN 1861-8227 (electronic) ISBN 978-3-642-32092-7 ISBN 978-3-642-32093-4 (eBook) DOI 10.1007/978-3-642-32093-4 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2012944388 Ó Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Magnetic fields are seen to interweave the fabric of the universe wherever tele- scopes are directed to. They are observed and measured in such diverse astro- physical objects and scale-sizes as galaxies, interstellar clouds, stars, planets, and compact objects, including the Sun and the Earth. While primordial magnetic fields may have been pre-existent in the early universe, it is believed that most cosmic magnetic fields that we observe nowadays have been, and still are, con- tinuously created by an electromagnetic inductive process known as the dynamo effect. Various types of astrophysical dynamos form the cosmic power plants for the production of magnetic fields. They are a central theme of virtually all kinds of astrophysical research and of planetary physics and geophysics. Here, they are the central topic this book is devoted to. This monograph is a thorough introduction to astrophysical dynamos, leading up to present-day research questions. It is directed at physics students at the intermediate to advanced level with basic knowledge of hydro- and electrody- namics, for self-study or for study in classes. Also, the advanced astrophysicists may learn to appreciate it as an introduction to, or a reference book on, the foundations of astrophysical dynamos. After familiarizing the reader with the concept and meaning of the magnetohydrodynamic equations, it starts with basic examples of kinematic flows and discusses conditions for the onset of dynamo action. The main part of the book is devoted to the solar dynamo, which is the best studied stellar dynamo with the most precise and longest lasting observational record. Different types of stellar dynamos across the H-R diagram and a brief outlook on compact objects, galaxies, and beyond, complete the book. Each chapter is complemented with an annotated bibliography leading the reader to background information including historical matters, as well as to the more advanced literature and present-day research articles. The book is accompanied by a course Web page, which can be found under http://obswww.unige.ch/SSAA/ sf39/dynamos. It contains animations of several figures of Chaps. 2 and 3, to which references are made in the text. Other than ad hoc introduced equations and definitions, all equations can be derived step by step (and should be rederived by the reader for a healthy exercise), often by using the appendices, which contain all v vi Preface the necessary identities and theorems from vector calculus, and operators and fluid equations in the cylindrical and spherical coordinate systems. The present book is an extended and updated version of the lectures delivered under the same title by Paul Charbonneau during the 39th ‘‘Saas-Fee Advanced Course’’, which took place in Les Diablerets (Switzerland) from March 23–28, 2009. The course title was ‘‘Magnetic Fields of Stars: From the Sun to Compact Objects’’ and included additional lectures by Sami K. Solanki (Magnetic fields in the atmospheres of the Sun and stars) and Christopher Thompson (Stellar Magnetofluids). Sixty students from 16 countries attended the course and could benefit from the excellent lectures delivered by these top experts. The Eurotel in Les Diablerets provided much appreciated hospitality. Snow, sunshine, and not least skiing and curling were also appropriately enjoyed by the course participants. The organizers of the course, M. Liebendörfer and F.-K. Thielemann (University of Basel), S. Berdyugina and O. Steiner (Kiepenheuer-Institut, Freiburg i.Br.), and R. Hirschi (Keele University) thank the three speakers for high-standard lectures, Paul Charbonneau for preparing the present lecture notes, and the course students for their active participation and enthusiasm. They also gratefully acknowledge finan- cial assistance provided by the Swiss Society for Astrophysics and Astronomy. Freiburg i. Br., May 2012 Oskar Steiner Acknowledgments The Lecture Notes making up this volume are an expanded and updated version of the notes distributed to attendees of the 39th Saas Fee Advanced School of the Swiss Astronomical Society. These Notes actually have had a long and tortuous genesis. They began as class notes for a graduate course in solar physics which, initially thanks to Fran Bagenal, I had the opportunity co-teach at the University of Colorado in Boulder with my then-HAO-colleague Tom Bogdan. Already with the first instance of the course, we opted to treat a few subjects at great depth, rather than give a broad, necessarily shallower survey of all of solar physics. Our emphasis was on modeling, mathematical and computational, the idea being that a detailed understanding of modeling in the context of a few topics, solidly grounded in the underlying physics, could be transferred to other subject areas and remain useful even if some of the chosen topics were to fall out fashion with time. The solar dynamo was one of these topics (which has not yet fallen out of fashion!), for which I was lead author and lecturer. We did have the privilege to have Fausto Cattaneo and David Galloway contributing lectures and written material, and the 1997 instance of the course also benefited greatly from feedback by Nic Brummell and Steve Tobias, who were attending ex officio. It is truly a pleasure for me to acknowledge here the influence all these individuals—as well as Keith MacGregor and Peter Gilman at HAO/NCAR—have had on my own thinking about dynamos. Tom and I eventually started turning these CU class notes into a book, but as we each went our own way, geographically and professionally, this project has yet to come to fruition. Upon moving to the Université de Montréal, I used the dynamo part of this embryonic book to teach graduate courses on astrophysical magneto- hydrodynamics, adding and modifying much of the material in the process. When I was invited to lecture at Saas-Fee 39 on the topic of astrophysical dynamos, this provided a natural starting point to produce the Lecture Notes the reader now has in hand, with some additional material borrowed from an extensive review article I wrote a few years ago for the online Journal Living Reviews in Solar Physics, and skillful LATEX ing and editing manoeuvres by Oskar Steiner. vii viii Acknowledgments At various points in time, many colleagues have kindly provided numerical data or actual plots that are now included in these Lecture Notes; their contributions are explicitly acknowledged in the captions to the corresponding figures. Many graduate students, too numerous to list here, have also provided useful feedback over the years. I do wish to mention explicitly Michel-André Vallières-Nollet, Étienne Racine, Patrice Beaudoin, Alexandre St-Laurent-Lemerle and Caroline Dubé, who have gone well beyond the call of duty in verifying and/or rederiving mathematical expressions, uncovering a number of significant mistakes (usually minus signs) in the process.
Recommended publications
  • On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch
    Andre Koch Torres Assis On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch Abstract The electrostatic, electrodynamic and electromagnetic systems of units utilized during last century by Ampère, Gauss, Weber, Maxwell and all the others are analyzed. It is shown how the constant c was introduced in physics by Weber's force of 1846. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic units of charge. Weber and Kohlrausch's experiment of 1855 to determine c is quoted, emphasizing that they were the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff in 1857 and Weber (1857-64) independently of one another obtained the fact that an electromagnetic signal propagates at light velocity along a thin wire of negligible resistivity. They obtained the telegraphy equation utilizing Weber’s action at a distance force. This was accomplished before the development of Maxwell’s electromagnetic theory of light and before Heaviside’s work. 1. Introduction In this work the introduction of the constant c in electromagnetism by Wilhelm Weber in 1846 is analyzed. It is the ratio of electromagnetic and electrostatic units of charge, one of the most fundamental constants of nature. The meaning of this constant is discussed, the first measurement performed by Weber and Kohlrausch in 1855, and the derivation of the telegraphy equation by Kirchhoff and Weber in 1857. Initially the basic systems of units utilized during last century for describing electromagnetic quantities is presented, along with a short review of Weber’s electrodynamics.
    [Show full text]
  • Conversion of the MKSA Units to the MKS and CGS Units
    American Journal of Electromagnetics and Applications 2018; 6(1): 24-27 http://www.sciencepublishinggroup.com/j/ajea doi: 10.11648/j.ajea.20180601.14 ISSN: 2376-5968 (Print); ISSN: 2376-5984 (Online) Progress of the SI and CGS Systems: Conversion of the MKSA Units to the MKS and CGS Units Askar Abdukadyrov Mechanical Faculty, Kyrgyz Technical University, Bishkek, Kyrgyzstan Email address: To cite this article: Askar Abdukadyrov. Progress of the SI and CGS Systems: Conversion of the MKSA Units to the MKS and CGS Units. American Journal of Electromagnetics and Applications . Vol. 6, No. 1, 2018, pp. 24-27. doi: 10.11648/j.ajea.20180601.14 Received : April 16, 2018; Accepted : May 2, 2018; Published : May 22, 2018 Abstract: Recording of the equations in mechanics does not depend on the choice of system of measurement. However, in electrodynamics the dimension of the electromagnetic quantities (involving current, charge and so on) depends on the choice of unit systems, such as SI (MKSА), CGSE, CGSM, Gaussian system. We show that the units of the MKSA system can be written in the units of the MKS system and in conforming units of the CGS system. This conversion allows to unify the formulas for the laws of electromagnetism in SI and CGS. Using the conversion of units we received two new formulas that complement Maxwell's equations and allow deeper to understand the nature of electromagnetic phenomena, in particular, the mechanism of propagation of electromagnetic waves. Keywords: SI, CGS, Unit Systems, Conversion of Units, Maxwell's Equations Thus, to unify the formulas of electrodynamics in SI and 1.
    [Show full text]
  • Redefinition of the International System of Units
    Redefinition of the International System of Units Martin Hudlička Czech metrology institute [email protected] CTU FEE K13117 Departmental seminar, 12th February 2019, Prague Overview • SI history • Measurement traceability • The need for change of SI units • Preparations for change – the kilogram – the mole – the ampere – the kelvin • Consequences for users • Further reading CTU FEE K13117 Departmental seminar, 12th February 2019, Prague SI history • various units used for thousands of years, some of systems stable over time • mostly based on nature or human body measures (which were thought to be constant) – Babylonian system (example – units of length) source: Wikipedia CTU FEE K13117 Departmental seminar, 12th February 2019, Prague SI history – Egyptian system measurement of length, volume, mass, time bronze capacity weight measure standard source: Wikipedia CTU FEE K13117 Departmental seminar, 12th February 2019, Prague SI history • many other official measurement systems for large societies (Olympic system of Greece, Roman system, ...), some of the systems adopted into later systems • English system – measurements used in England up to 1826, huge number of units for various areas – liquid measures (dram, teaspoon, tablespoon, pint, gallon, ...) – length (digit, finger, inch, nail, palm, hand, ...) – weight (grain, pound, nail, stone, ounce, ...) • Imperial system (post-1824) used in the British Empire and countries in the British sphere of influence credit: D. Pisano, Flickr CTU FEE K13117 Departmental seminar, 12th February 2019,
    [Show full text]
  • The Daniell Cell, Ohm's Law and the Emergence of the International System of Units
    The Daniell Cell, Ohm’s Law and the Emergence of the International System of Units Joel S. Jayson∗ Brooklyn, NY (Dated: December 24, 2015) Telegraphy originated in the 1830s and 40s and flourished in the following decades, but with a patchwork of electrical standards. Electromotive force was for the most part measured in units of the predominant Daniell cell. Each company had their own resistance standard. In 1862 the British Association for the Advancement of Science formed a committee to address this situation. By 1873 they had given definition to the electromagnetic system of units (emu) and defined the practical units of the ohm as 109 emu units of resistance and the volt as 108 emu units of electromotive force. These recommendations were ratified and expanded upon in a series of international congresses held between 1881 and 1904. A proposal by Giovanni Giorgi in 1901 took advantage of a coincidence between the conversion of the units of energy in the emu system (the erg) and in the practical system (the joule) in that the same conversion factor existed between the cgs based emu system and a theretofore undefined MKS system. By introducing another unit, X (where X could be any of the practical electrical units), Giorgi demonstrated that a self consistent MKSX system was tenable without the need for multiplying factors. Ultimately the ampere was selected as the fourth unit. It took nearly 60 years, but in 1960 Giorgi’s proposal was incorporated as the core of the newly inaugurated International System of Units (SI). This article surveys the physics, physicists and events that contributed to those developments.
    [Show full text]
  • Basics of PET Imaging: Physics, Chemistry, and Regulations
    AHAPR 10/20/2004 1:32 PM Page i Basics of PET Imaging Physics, Chemistry, and Regulations AHAPR 10/20/2004 1:32 PM Page iii Gopal B. Saha, PhD Department of Molecular and Functional Imaging, The Cleveland Clinic Foundation, Cleveland, Ohio Basics of PET Imaging Physics, Chemistry, and Regulations With 64 Illustrations AHAPR 10/20/2004 1:32 PM Page iv Gopal B. Saha, PhD Department of Molecular and Functional Imaging The Cleveland Clinic Foundation Cleveland, OH 44195 USA Library of Congress Cataloging-in-Publication Data Saha, Gopal B. Basics of PET imaging physics, chemistry, and regulations / Gopal B. Saha. p. ; cm. Includes bibliographical references and index. ISBN 0-387-21307-4 (alk. paper) 1. Tomography, Emission. 2. Medical physics. [DNLM: 1. Tomography, Emission-Computed–methods. 2. Prospective Payment System. 3. Radiopharmaceuticals. 4. Technology, Radiologic. 5. Tomography, Emission-Computed–instrumentation. WN 206 S131b 2004] I. Title. RC78.7.T62S24 2004 616.07¢575—dc22 2004048107 ISBN 0-387-21307-4 Printed on acid-free paper. © 2005 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adap- tation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
    [Show full text]
  • Units of Measurement Course Handouts
    AETD MINI-COURSE 115: UNITS OF MEASUREMENT COURSE HANDOUTS D.G. SIMPSON FEBRUARY 2013 GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND Contents 1 Metric Prefixes 2 1.1 SI Prefixes............................................ 2 1.2 Computer Prefixes....................................... 3 2SIUnits 4 2.1SIBaseUnits.......................................... 4 2.2SIDerivedUnits(StandardMKSABaseUnits)........................ 5 2.3SIDerivedUnits(MVSABaseUnits)............................. 6 2.4SIEquationsofElectromagnetism............................... 7 3 Electrostatic Units 8 3.1ElectrostaticBaseUnits..................................... 8 3.2ElectrostaticDerivedUnits................................... 9 3.3ElectrostaticEquationsofElectromagnetism.......................... 10 4 Electromagnetic Units 11 4.1ElectromagneticBaseUnits................................... 11 4.2ElectromagneticDerivedUnits................................. 12 4.3ElectromagneticEquationsofElectromagnetism........................ 13 5 Gaussian Units 14 5.1GaussianBaseUnits...................................... 14 5.2GaussianDerivedUnits..................................... 15 5.3GaussianEquationsofElectromagnetism........................... 16 6 Heaviside-Lorentz Units 17 6.1Heaviside-LorentzBaseUnits................................. 17 6.2Heaviside-LorentzDerivedUnits................................ 18 6.3Heaviside-LorentzEquationsofElectromagnetism...................... 19 7 Units of Physical Quantities 20 8 Formula Conversion Table 23 9 Unit Conversion Tables 25 10 Physical
    [Show full text]
  • The 1856 Weber-Kohlrausch Experiment (The Speed of Light)
    The 1856 Weber-Kohlrausch Experiment (The Speed of Light) Frederick David Tombe, Northern Ireland, United Kingdom, [email protected] 18th October 2015 Abstract. Nineteenth century physicists Wilhelm Eduard Weber, Gustav Kirchhoff, and James Clerk-Maxwell are all credited with connecting electricity to the speed of light. Weber’s breakthrough in 1856, in conjunction with Rudolf Kohlrausch, revealed the speed of light in the context of a ratio as between two different units of electric charge. In 1857 Kirchhoff connected this ratio to the speed of an electric signal travelling along a wire. Later, in 1862, Maxwell connected this ratio to the elasticity in the all-pervading luminiferous medium that serves as the carrier of light waves. This paper sets out to establish the fundamental cause of the speed of light. Introduction I. The 1856 Weber-Kohlrausch experiment established a ratio between two different units of electric charge. The experiment involved discharging a Leyden jar (a capacitor) that had been storing a known amount of charge in electrostatic units, and then seeing how long it took for a unit of electric current, as measured in electrodynamic units, to produce the same deflection in a galvanometer. This resulted in a ratio C, known as Weber’s constant, and we know today that it is equal to c√2 where c is the directly measured speed of light. Weber interpreted this ratio in connection with the convectively induced force that he had identified and formulated in 1846 as between two charged particles in relative motion. He believed C to be the speed that would produce an exact counterbalancing force to the electrostatic force.
    [Show full text]
  • 25 Definitions in Electrostatic Units
    25 Definitions in Electrostatic Units As explained in Section 17.6, the observations made in Oersted's experiment gives rise to either define electrical quantities first, or magnetic quantities first, which are named ESU and EMU. The flowchart of definitions in ESU will be presented in this chapter, and the definitions in EMU will be presented in the following chapter. The definitions will be revised in the future chapters, without the use of magnetic charges. Figure 25.1: The definitions flowchart in electrostatic units. Each of the definitions will be summarized in this chapter. Note that there are no circular definitions of the same quantity, and therefore, the electrical quantities are well defined. It will become clear, why some of the equations presented in the previous chapters are valid only in ESU, or EMU, or common to both ESU and EMU. It will become clear that some of the equations, although the units of the variables are different between ESU and EMU, are common to both the systems of units. 25.1 Electric Charge q The electric charge is defined first in ESU using Coulomb's law, q q F~ = 1 2 r;^ (25.1, ESU) r2 172 where q1 and q2 are two points charges, r is the distance between them, andr ^ is the unit vector indicating the direction of the force. The unit electric charge is defined as two equal unit point charges, separated by 1 cm, exerting a force of 1 dyne on each other. 25.2 Electric Field E~ Once the electric charge has been defined, it follows that the electric field E~ can be defined from the force F~ exerted on charge q, F~ E~ = : (25.2) q 25.3 Voltage V The voltage V between two points A and B is the path integral of the electric field E~ , Z B V = E~ · dl:~ (25.3) A It was proven that the electric field is a conservative field, and the above value is independent of the path from A to B.
    [Show full text]
  • SI and CGS Units in Electromagnetism
    SI and CGS Units in Electromagnetism Jim Napolitano January 11, 2021 Two divergent systems of units established themselves over the course of the 20th century. One system, known as SI (from the French Le Systeme` International d’Unites),´ is rooted in the laboratory. It gained favor in the engineering community and forms the basis for most undergraduate curricula. The other system, called Gaussian, is aesthetically cleaner and is much favored in the theoretical physics community. We use the Gaussian system in this book, as do most graduate level physics texts on Quantum Mechanics and other subjects. The SI system is also known as MKSA (for meter, kilogram, second, Ampere), and the Gaussian system is some- times called1 CGS (for centimeter, gram, second). For problems in mechanics, the difference is trivial, amounting only to some powers of ten. The difficulty comes when incorporating electromagnetism. As discussed below, SI incorpo- rates a fourth base unit, the Ampere, which implies that charge and other electromagnetic quantities are dimensionally distinct between the SI and Gaussian systems. This one point is the source of all the confusion. In other words, although we can write that a meter is equal to 100 centimeters, the SI unit of charge, called the Coulomb, is not equal to any number of electrostatic units (esu), the Gaussian unit of charge. The two kinds of charges literally have different physical meanings. They should probably have different names, but historically they are both called “charge.” Similar comments apply to electric current, electric and magnetic fields, the electric potential, and so on. This why you see factors like e0 and m0 appear in SI formulas, whereas factors of c are common in Gaussian formulas.
    [Show full text]
  • Further Reading Appendix C. Systems of Units in Nonlinear Optics
    600 Appendices Further reading Jackson, J.D., 1975. Classical Electrodynamics, Second Edition. Wiley, New York. Marion, J.B., Heald, M.A., 1980. Classical Electromagnetic Radiation. Academic Press, New York. Purcell, E.M., 1965. Electricity and Magnetism. McGraw-Hill, New York. Appendix C. Systems of Units in Nonlinear Optics There are several different systems of units that are commonly used in nonlin- ear optics. In this appendix we describe these different systems and show how to convert among them. For simplicity we restrict the discussion to a medium with instantaneous response so that the nonlinear susceptibilities can be taken to be dispersionless. Clearly the rules derived here for conversion among the systems of units are the same for a dispersive medium. In the gaussian system of units, the polarization P (t) is related to thefield ˜ strength E(t) by the equation ˜ P (t) χ (1)E(t) χ (2)E2(t) χ (3)E3(t) . (C.1) ˜ = ˜ + ˜ + ˜ +··· In the gaussian system, all of thefields E, P, D, B, H , and M have the same ˜ ˜ ˜ ˜ ˜ ˜ units; in particular, the units of P and E are given by ˜ ˜ � � � � � � statvolt statcoulomb erg 1/2 P E . (C.2) ˜ = ˜ = cm = cm2 = cm3 Consequently, we see from Eq. (C.1) that the dimensions of the susceptibili- ties are as follows: χ (1) is dimensionless, (C.3a) � � � � 1/2 � � 1 cm erg − χ (2) , (C.3b) = E = statvolt = cm3 � ˜ � � � 2 1 � � 1 cm erg − χ (3) . (C.3c) = E2 = statvolt2 = cm3 ˜ The units of the nonlinear susceptibilities are often not stated explicitly in the gaussian system of units; one rather simply states that the value is given in electrostatic units (esu).
    [Show full text]
  • Page I.1 University of New Mexico Department of Physics And
    University of New Mexico Department of Physics and Astronomy __________________________________________________________________ Physics 511 - Graduate Electrodynamics Prof. I. H. Deutsch Lecture I - Overview I.A Introduction Electricity and magnetism is represented by one of the most beautiful and complete physical theories. During mostly the 18th and 19th centuries scientists amassed a huge collection of empirical data ranging from the effect of electricity on the reflex of a frog leg, to Ørsted and Ampère's discovery of the relation between electric current and magnetism, to Faraday's discovery of electromagnetic induction. This produced important knowledge of the phenomenology of electricity and magnetism and gave strong indication of the unity of these phenomena. This all collimated with Maxwell who reformulated the data in 1873 into a mathematical model which agreed with all measurements. But there was something asymmetric about the theory. A changing magnetic flux produced the electric field, but what about the reverse process? From purely theoretical grounds Maxwell added his now famous "displacement current" which in turn led him to PREDICT that light itself was a wave of the electromagnetic field, a prediction that was verified by Hertz in his 1885-1889 experiments, thereby unifying optics with E&M. The early 20th century gave us the null result of the Michaelson-Morley experiment in their search for the "luminiferous ether", followed by Einstein's revolutionary hypotheses at the foundation of relativity and the unification of space and time. Einstein's dream of the unification of gravity and electromagnetism was not achieved; he of course had deep philosophical problems with quantum field theory.
    [Show full text]
  • Units in Electricity and Magnetism
    Units in Electricity and Magnetism The tables below list the systems of electrical and magnetic units. They only include units of interest in the field of Radio. The older systems were the CGS(centimeter-gram-second) and Gaussian systems. The Gaussian system being based on a mix of Electrostatic units (ESU) and Electromagnetic units (EMU). The current standard is the International System of Units (SI) and is sometimes referred to as rationalised MKS units. The MKS system of units is a physical system of units that expresses any given measurement using fundamental units of the metre, kilogramme, and/or second (MKS) Conversions from one system to others are given in two ways. Firstly numerically by multiplying factors. Note that c stands for the velocity of light in space and its value is exactly 299792458 metre/second exactly (by definition of the metre). The other method of conversion allows you to change formulas given in old books into the modern SI form. This will be particularly useful to you if, like me, you have books by Terman, Scroggie, etc. or the Admiralty Handbook of Wireless Telegraphy. There were lots of useful formulas in these old books, which can now be given new life. I have tried to make the tables as complete and accurate as possible and have checked lots of different sources. Nevertheless there may be errors and I will be grateful for any corrections or additions. Please email me at the address given on the home page. SI Units Quantity Symbol Unit & (Abbr.) Dimensions ESU EMU Mass m kilogram (kg) M 1000 1000 Length l metre (m) L 100 100 Time t second (s) T 1 1 Power P watt (W) ML2T-3 107 107 Electric Current I ampere (A) I=M½L1½T-2 10c 0.1 Charge Q coulomb (C) TI 10c 0.1 Electric Potential V volt (V) ML2T-3I-1 106/c 108 Resistance R ohm ( ) ML2T-3I-2 105/c2 109 Conductance G siemens (S) M-1L-2T3I2 10-5c2 10-9 Inductance H henry (H) ML2T-2I-2 105/c2 109 Capacitance C farad (F) M-1L-2T4I2 10-5c2 10-9 Electric Field Strength E volt/metre (V m-1) MLT-3I-1 104/c 106 Electric Charge Density coulomb/cu.m.
    [Show full text]