Brighan Young University Geology Studies

Total Page:16

File Type:pdf, Size:1020Kb

Brighan Young University Geology Studies GEOLOGY I YOUNG STUDIES f UNIVERSITY Volume 12 December 1965 r' r' CONTENTS Thrusting in the Southern Wasatch Mountains, Utah ........ Michael J. Brady 3 Nebo Overthrust, Southern Wasatch Mountains, Utah ........ B. Allen Black 55 Paleoecologic implications of Strontium, Calcium, and Magnesium in Jurassic rocks near Thistle, Utah .... Button W. Bordine 91 Paleoecology of the Twin Creek Limestone In the Thistle, Utah area .................................... .... .....Ladell R. Bullock 121 Geolo of the Stockton stock and related intmsives, &1e County, Utah ................................................. John L. Lufkin 149 Stratigraphy and rifera of Ordovician rocks near Columbia Iceads, Jasper National Park, Alberta, Canada .............................................................. .. .... J. Keith Rigby 165 Lower Ordovician conodonts and other microfossils from the Columbia Icefields Section, Alberta, Canada ........................... .. .......... R. L. Ethington and D. L. Clark 185 Publications and maps of the Geology Department ........................... .. ..... 207 Brigham Young University Geology Studies Volume 12 - December 1965 Contents Thrusting in the Southern Wasatch Mountains, Utah ........ Michael J. Brady 3 Nebo Overthrust, Southern Wasatch Mountains, Utah ........ B. Allen Black 55 Paleoecologic irriplications of Strontium, Calcium, and Magnesium in Jurassic rocks near Thistle, Utah .... Burton W. Bordine 91 Paleoecology of the Twin Creek Limestone in the Thistle, Utah area .................................................... Ladell R. Bullock 121 Geology of the Stockton stock and related intrusives, Tooele County, Utah .................................................... John L. Lufkin 149 Stratigraphy and porifera of Ordovician rocks near Columbia Icefields, Jasper National Park, Alberta, . Canada .......................................................................... J. Kelth Rlgby 165 Lower Ordovician conodonts and other microfossils from the Columbia Icefields Section, Alberta, Canada ............................................ R. L. Ethington and D. L. Clark 185 Publications and maps of the Geology Department ........................................ 207 A publication of the Department of Geology Brlgham Young University Provo, Utah 84601 Ed~tor J. Keith Rigby Editorial Staff Lehi F. Hintze Myron G. Best Brzgham Your~gUniuerszty Geology Studres is published annually by the Department. Geology Studies consists of graduate student and staff research in the Department and occasional papers from other contributors, and is the successor to BYU Research Studies, Geology Serier, published in separate numbers from 1954 to 1960. Distributed December 31, 1965 Prrce $4.00 Geology of the Stockton Stock and Related Intrusives, Tooele County, Utah* JOHN L. LUFKIN Deparment of Geology, Western Mtchigan Urrrvers~ly,Kalamazoo, Mrrhrgan ABSTRACT.-TheStockton Stock and related intrusives were mapped in an area approxi- mately six square m~les,along the north wall of Soldier Canyon, in the west-central part cf the Oquirrh Mountains, Tooele County, Utah Samples were collected to determine mineralogy, method of emplacement, and metamorphic effects on Intruded formations. The Stockton Stock 1s a porphyritic adamellite intrusive that has invaded the lower Oquirrh Format~on. Related ~ntrus~vesinclude hypabyssal dikes and sills that are hypocrystalline and intermediate in composition. A bleached metamorphic aureole surrounds the stock and includes, in part, two facies of contact metamorphism: albite.ep~dotehornfels and hornblende-hornfels. Mining aaivlty flour~shedin nearby areas during the late 1800's and early 1900's. but how much ore was obtained from mlnes in this area 1s not known. Rush Valley District, adjacent to the mapped area, probably did not exceed $10,000,000 in total prcduct~on The economic future of the distr~ctdoes not appear to be great, due to the shallow nature of lntrusives, low rank metamorphism, and past hlstory of mining production. CONTENTS TEXT Economlc Geology ............................... 163 page Development and History ............ 163 Acknowledgments ................................ 149 References Clted ................................ 164 Introduction ........................................ 150 Stratigraphy ........................................ 151 1I.LUSTRATIONS General Statement ............................ 151 f ~gure Page M~ss~ss~ppianSystem ........................ 151 1. Index map ................................ 151 Great Blue Limestone ................ 151 Mississippian-Pennsylvanian System 154 plate Page Mannlng Canyon Shale ................ 154 1. Geologic map .................... 152-153 Pennsyl\-anian System .................... 154 2. Soldier Canyon Oquirrh Formation ................... 154 ...................... following page 160 Quaternary System ............................ 155 3. Sill Outcrops Structure ................................................ 155 ........................ following page 160 Igneous Rocks .................................... 155 4. Photomicrographs of Adamel- General Statement ........................... 155 I~te,contact zone of Stockton Stockton Stock ............................... 155 Stock ................ following page 160 Petrology .................................... 157 5. Photomicrographs of contact Sills .................................................... 157 zonc Stockton Stock and dior~te Dikes ................................................ 159 s~ll.................... following page 160 Summary of igneous activity ........ 160 table Emplacement .................................... 161 1. Mineral composition of igneous Metamorphism ................................ 161 rocks ............................................ 156 The writer expresses his appreciation to Dr. K. C .Bullock, thesis chairman, who suggested the problem, ass~sted in the field work, and constructively criticized the thesis writing. Thanks are also due to Dr. H. J. Bissell, who 'A thesls submrtted to the Faculty of the Department of Geology, Bngham Young Un~verslty In partla1 fulfillment of the requ~rementsfor the degree of Master of Sr~enre 150 JOHN L. LUFKIN supplied the aerial photographs; Burt Bordine, for helping measure sections, and Dr. Wm. Revell Phillips, who helped with the petrographic work. INTRODUCTION In the early 1900's, most workers in the Oquirrh Mountains were con- cerned with mining activities centered around Mercur and Ophir Canyons and the famous Bingham porphyry copper deposits to the northeast. The first reconnaissance mapping in the thesis area was probably done by Paige of the U.S. Geological Servey in 1925. Gilluly (1932) continued Paige's work in 1926, publishing a geologic map of the Stockton-Fairfield Quadrangles on a topographic base of 1 :31, 250 scale. More recently, the area has been studied from a stratigraphic-paleoecologic standpoint. Moyle (1958) completed a thesis on paleoecology of the Manning Canyon Shale, measuring and describing the section exposed at the mouth of Soldier Canyon. Tooker and Roberts (1961a, b) have worked out the strati- graphy and structural geology immediately to the north. The thesis area constitutes the north half of Soldier Canyon, a prominent drainage on the west flank of the Oquirrh Mountains in west-central Utah (Text-fig. 1). This includes parts of Secs. 26-29, 32-35, T. 4 S., R. 4 W., in the northeast corner of the Stockton Quadrangle-. (Plates 1 and 2). The town of stockton, approximately four and one-half miles. northwest of the mouth of Soldier Canyon, is accessible both from the north and the south, via State Highways 36 and 73. The road leading from Stockton into Soldier Canyon is mainly an unimproved gravel road, which crosses Soldier Creek near the mouth of the canyon. The Stockton Stock and related intrusive bodies are located in the west- central Oquirrh Mountains (Plate 1). This mountain range trends north- south, rising steeply from Rush and Tooele Valleys on the west and Cedar and Salt Lake Valleys on the east. Gilbert (1890), Tooker and Roberts (1961b) have described a fault which borders the range on the west, thus associating this range with other fault-block mountains in the Basin and Range Province (Spurr, 1901) . Field work was done intermittently during the summer of 1964. The main concern of the writer was with the igneous and metamorphic rocks, which were mapped on an aerial photo base map, enlarged to a scale of 1"-1100'. Laboratory work included thin-sectioning collected samples and petro- graphic analyses, with the aid of a Universal Stage. Johannsen's (1931) System was followed, with minor deviations, in the classification of the igneous rocks. Under the heading of "Hypabyssal Rocks of Family 6"/7" ", Johannsen (1931, p. 310) states: "Corresponding to the porphyries, aplites, and pegmatite5 or normal granites, there are similar rocks belonging to the suite of the adarnellites, and called quartz-monzonites or adamellite-porphyries, -aplites and -pegmatites. In the present classification they ;\re not separated from the granitic and granodioritic hypabyssals, where they belong." The writer believes that since the bulk of the mapped igneous rocks are hypabyssal, porphyritic, and related to the Stockton Stock (an adamellite pluton), Families 6" and 7" of Johannsen's Classification should be referred to, although the letter "H" (hypabyssal) will be substituted, rather than the standard "E" (extrusive), or "P" (plutonic) notation. Thus, a STOCKTON STOCK 151 TEXT-FIGURE1.-Index
Recommended publications
  • The Laccolith-Stock Controversy: New Results from the Southern Henry Mountains, Utah
    The laccolith-stock controversy: New results from the southern Henry Mountains, Utah MARIE D. JACKSON* Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218 DAVID D. POLLARD Departments of Applied Earth Sciences and Geology, Stanford University, Stanford, California 94305 ABSTRACT rule out the possibility of a stock at depth. At Mesa, Fig. 1). Gilbert inferred that the central Mount Hillers, paleomagnetic vectors indi- intrusions underlying the large domes are Domes of sedimentary strata at Mount cate that tongue-shaped sills and thin lacco- floored, mushroom-shaped laccoliths (Fig. 3). Holmes, Mount Ellsworth, and Mount Hillers liths overlying the central intrusion were More recently, C. B. Hunt (1953) inferred that in the southern Henry Mountains record suc- emplaced horizontally and were rotated dur- the central intrusions in the Henry Mountains cessive stages in the growth of shallow (3 to 4 ing doming through about 80° of dip. This are cylindrical stocks, surrounded by zones of km deep) magma chambers. Whether the in- sequence of events is not consistent with the shattered host rock. He postulated a process in trusions under these domes are laccoliths or emplacement of a stock and subsequent or which a narrow stock is injected vertically up- stocks has been the subject of controversy. contemporaneous lateral growth of sills and ward and then pushes aside and domes the sed- According to G. K. Gilbert, the central intru- minor laccoliths. Growth in diameter of a imentary strata as it grows in diameter. After the sions are direct analogues of much smaller, stock from about 300 m at Mount Holmes to stock is emplaced, tongue-shaped sills and lacco- floored intrusions, exposed on the flanks of nearly 3 km at Mount Hillers, as Hunt sug- liths are injected radially from the discordant the domes, that grew from sills by lifting and gested, should have been accompanied by sides of the stock (Fig.
    [Show full text]
  • Petrographic Study of a Quartz Diorite Stock Near Superior, Pinal County, Arizona
    Petrographic study of a quartz diorite stock near Superior, Pinal County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Puckett, James Carl, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 23:40:37 Link to Item http://hdl.handle.net/10150/554062 PETROGRAPHIC STUDY OF A QUARTZ DIORITE STOCK NEAR SUPERIOR, PINAL COUNTY, ARIZONA by James Carl Puckett, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 0 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Geology and Tectonic Setting of the Kamloops Group, South
    GEOLOGY AND TECTONIC SETTING OF THE KAMLOOPS GROUP, SOUTH- CENTRAL BRITISH COLUMBIA by THOMAS EDWARD EWING B.A., The Colorado College, 1975 M.S., New Mexico Institute of Mining and Technology, 1977 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Geological Sciences We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA February 1981 © Thomas Edward Ewing, 1981 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of r.pnlnpiVal Sri PTirp.S The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date February 17, 1981 ABSTRACT The Kamloops Group is a widespread assemblage of Eocene volcanic and sedimentary rocks in south-central British Columbia. Detailed mapping of the type area near Kamloops has resulted in its subdivision into two formations and thirteen formal and informal members. The Tranquille Formation, 0-450 metres thick, consists of lacustrine sediments which grade upward into pillowed flows, hyaloclastite breccia and aquagene tuff. The overlying Dewdrop Flats Formation, with nine members, consists of up to 1000 metres of basalt to andesite phreatic breccia, flow breccia and flat-lying flows.
    [Show full text]
  • GEOLOGY of the SLEETMUTE A-5, A-6, B-5, and B-6 QUADRANGLES, SOUTHWESTERN ALASKA by John Decker, R.R
    GEOLOGY OF THE SLEETMUTE A-5, A-6, B-5, AND B-6 QUADRANGLES, SOUTHWESTERN ALASKA by John Decker, R.R. Reifenstuhl, M.S. Robinson, C.F. Waythomas, and J.G. Clough Professional Report 99 1995 Published by Alaska Department of State of Alaska Department of Natural Resources NATURAL DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS GEOLOGY OF THE SLEETMUTE A-5, Ad, B-5, AND B-6 QUADRANGLES, SOUTHWESTERN ALASKA by John Decker, R.R. Reifenstuhl, M.S. Robinson, C.F. Waythomas, and J.G. Clough Professional Report 99 Division of Geological & Geophysical Surveys Cover photo: Northwest-vergent isocline of veryfine-grained sandstone of the Lower(?) and Upper Cretaceous Kuskokwim Group. The outcrop of medium- bedded sandstone is 1.5 miles west of Kiokluk Lake in the Sleetmute B-6 Quadrangle (map unit Kkm). The hammer handle in the photo is 46 cm Fairbanks, Alaska long. Photo by R.R. Reifenstuhl. 1995 STATE OF ALASKA Tony Knowles, Governor DEPARTMENT OF NATURAL RESOURCES John Shively, Commissioner DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Milton A. Wiltse, Acting Director and State Geologist Division of Geological & Geophysical Surveys publications may be in- spected at the following locations. Address mail orders to the Fairbanks office. Alaska Division of Geological University of Alaska Anchorage Library & Geophysical Surveys 321 1 Providence Drive 794 University Avenue, Suite 200 Anchorage, Alaska 99508 Fairbanks, Alaska 99709-3645 Elmer E. Rasmuson Library Alaska Resource Library University of Alaska Fairbanks 222 W. 7th Avenue Fairbanks, Alaska 99775-1005 Anchorage, Alaska 995 13-7589 Alaska State Library State Office Building, 8th Floor 333 Willoughby Avenue Juneau, Alaska 998 11-057 1 This publication released by the Division of Geological & Geophysical Surveys, text was produced and printed in Fairbanks, Alaska by Graphics North and maps were printed in Colorado Springs, Colorado by Pikes Peak Lithographing Co., at a cost of $9.50 per copy.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Deadhorse Creek Rare Earth Property
    Deadhorse Creek Rare Earth Property Walsh and Grain Townships Thunder Bay Mining Division, Ontario 48° 51' 7.671" N, 86 39' 45.028" W NTS Mapsheet 42D and 42E Assessment Report Prepared for Canadian International Minerals Inc. Suite 950 – 789 West Pender Street Vancouver, B.C., V6C 1H2 Report Prepared by: 31 October, 2011 1 Contents 1 Contents 1 Contents .......................................................................................................................................................................... 1 2 Figures ............................................................................................................................................................................. 2 3 Tables .............................................................................................................................................................................. 4 4 Summary ......................................................................................................................................................................... 5 5 Introduction .................................................................................................................................................................... 6 6 Reliance on other experts ............................................................................................................................................... 6 7 Property description and location .................................................................................................................................
    [Show full text]
  • Plate Tectonics, Volcanic Petrology, and Ore Formation in the Santa Rosalia Area, Baja California, Mexico
    Plate tectonics, volcanic petrology, and ore formation in the Santa Rosalia area, Baja California, Mexico Item Type text; Thesis-Reproduction (electronic) Authors Schmidt, Eugene Karl, 1947- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 01:50:58 Link to Item http://hdl.handle.net/10150/555057 PLATE TECTONICS, VOLCANIC PETROLOGY, AND ORE FORMATION IN THE SANTA ROSALIA AREA, BAJA CALIFORNIA, MEXICO by Eugene Karl Schmidt A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 5 z- STATEMENT BY AUTHOR This thesis has been submitted in partial ful­ fillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate ac­ knowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manu­ script in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Igneous Rocks —!Some Minerals Form During Weathering Processes
    Minerals Give Clues To Their Environment Of Formation !!Can be a unique set of conditions to form a particular mineral or rock !!Temperature and pressure determine conditions to form diamond or graphite (polymorphs) !! Diamonds require pressures and temperatures equivalent to those in the mantle at least 150 km below Earth’s surface. !! Diamond is metastable Figure 3.31 Also Rocks: Mixtures of Minerals !!Clues to climate: !!Igneous rocks —!Some minerals form during weathering processes. !!Formed by solidification of magma. —!Past climates can be determined from the kinds of !!Sedimentary rocks minerals preserved in sedimentary rocks. !! !!Clues to seawater composition: Formed by sedimentation of materials transported in solution or suspension. —!The content of past seawater can be determined from minerals formed when the seawater evaporated and !!Metamorphic rocks deposited its salts. !!Formed by the alteration of preexisting sedimentary or igneous rocks in response to increased pressure and temperature. Distinguishing The Three Rock Types Texture and Mineral Assemblage The differences among rock types are identified !!A systematic description of a rock includes both by two features. texture and mineral assemblage. !!Texture: !!Megascopic textural features of rocks are those —!The overall appearance of a rock due to the size, shape, that we can see with the unaided eye. and arrangement of its constituent mineral grain. !!Microscopic textural features of rocks are those !!Mineral assemblage: that require high magnification to be viewed. —!The type and abundance of the minerals making up a rock. Figure 3.32 Figure 3.32 A B Figure 3.32 Figure 3.32 D C Mineral Concentration !!Two common processes of concentration: !!Fluids released by a cooling body of magma.
    [Show full text]
  • GRANNY, a Data Bank of Chemical Analyses of Laramide and Younger
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY GRANNY A data bank of chemical analyses of Laramide and younger h1gh-s1Uca rhyoMtes and granites from Colorado and north-central New Mexico by 1X ?/ 3/ Celia H. Steigerwald, Felix E. Mutschler, and Steve Ludlngton Open-File Report 83-516 This report is preliminary and has not been edited or reviewed for conformity with U. S. Geological Survey editorial standards and stratIgraphic nomenclature 1983 1/ Eastern Washington University* Cheney, WA 99004 21 Eastern Washington University and U.S.G.S*, Denver* CO 80225 3/ U.S. Geological Survey* Reston, VA 22092 CONTENTS Page Abstract ........................ 1 Introduction ...................... 2 Acknowledgements .................... 2 Description of GRANNY ................. ? Variable descriptions ... ..» 3 Tape description, data formats, coding form, and program listings . 35 References .».. ... »» .». 52 Appendix Data bank GRANNY, hardcopy version . 53 FIGURE Page 1. Index map showing areas represented by major group codes ............. 5 TABLES Page 1. Listing of major group codes, secondary group codes, and sources of analyses for each major group code .......... 7 2* Rock names and codes ................ 28 3. Mineral names and codes . 30 A. Occurrence and petrographic descriptor codes . 32 5. Variable names and formats for GRANNY ....... 36 6. DATATRIEVE programs, procedures, and tables . 40 ?. GRANNY input coding form .............. 50 1 GRANNY A data bank of chemical analyses of Laramide and younger high-silica rhyolites and
    [Show full text]
  • Definitions from Skinner and Porter
    Journal of Geoscience Education, v. 50, n. 1, p. 89-99, January 2002 (edits, June 2005) Computational Geology 19 Classification and the Combination of Sets H.L. Vacher, Department of Geology, University of South Florida, 4202 E. Fowler Ave., Tampa FL, 33620 Topics this issue- Mathematics: Complement, intersection, union; partitions; De Morgan's Laws. Geology: Classification of rocks; aphanitic vs. phaneritic Prerequisite: CG-10, "The Algebra of Deduction," Mar 2000; CG-18, "Definition and the Concept of Set," Sept. 2001. Introduction The special issue of this journal (Nov. 2000) that was devoted to “Some Great Ideas for Geoscience Courses,” included nine ideas under the heading “Earth materials.” Six of those papers involved classification (Thomas and Thomas, 2000; Dowse, 2000; Reynolds and Semken, 2000; Harper, 2000; Christman, 2000; Niemitz, 2000). Classification of rocks and minerals is obviously a necessary component of introductory geology courses. Classification of rocks and minerals is taught in geology courses in order to understand geology better and to provide a basis for communication. Classification of rocks and minerals also provides a rich illustration of mathematical concepts involved in classification in general. These concepts, which are staples of courses in logic, occur in the mathematics curriculum in courses on discrete mathematics. This column is the second on the connection between sets and geological terminology. The context for the first (CG-18) was planets and moons. The context for this one is rocks. Getting Started As discussed in CG-18, a set can be defined either by listing all of its members or by stating a requisite property of its members.
    [Show full text]
  • 34. the K-Replacement Origin of the Megacrystal Lower Caribou Creek Granodiorite and the Goat Canyon-Halifax Creeks Quartz Monzo
    1 ISSN 1526-5757 34. The K-replacement origin of the megacrystal Lower Caribou Creek granodiorite and the Goat Canyon-Halifax Creeks quartz monzonite --- modifications of a former tonalite and diorite stock, British Columbia, Canada Lorence G. Collins email: [email protected] February 8, 1999 Introduction About 25 km south of Nakusp and 1 km east of Burton, British Columbia, Canada, is a stock whose western half is the Lower Caribou Creek megacrystal granodiorite and whose eastern half is the Goat Canyon-Halifax Creeks fine- grained quartz monzonite (Fig. 1); Hyndman, 1968). Biotite-hornblende tonalite and diorite are additional facies that occur along the border of the stock. Zoned plagioclase in all these rocks indicates a shallow intrusion and relatively rapid crystallization. This stock was called to my attention by Donald Hyndman because the K-feldspar megacrysts in the granodiorite appeared to be orthoclase whereas the smaller K-feldspar crystals in the fine-grained quartz monzonite were microcline. Subsequently, he loaned me 19 thin sections from his Ph.D thesis study (Hyndman, 1968), and these sections provided a broad representation of the textural and compositional variations in both rock types. Because he indicated that the two granitic facies were gradational to each other, this stock offered an opportunity to study the field and textural relationships across the transitions between the rocks having the two kinds of K-feldspar. Following his loan of thin sections, I visited the area and obtained 44 additional samples (and thin sections) across transitions between the two rock types. Examinations of field relationships and both his and my thin sections provide the basis for the conclusions presented in this article.
    [Show full text]
  • Kln Property Kln 1-4 Claims
    on the KLN PROPERTY KLN 1-4 CLAIMS VANCOUVER h4INING DMSION BRITISH COLUMBIA NTS 092N/SE/6E Latitude: 5 l”20’00” Longitude: 125” 30’ 15” Prepared for: Frank Onucki Vancouver, B.C. Brian D. Game, P.Geo July, 1997 Douglas G. Baker, BSc. SUMMARY The KLN 1-4 claim group consistsof four contiguousclaim blocks for a total of 80 units. Claims were stakedto envelopeknown mineralizationin the ruggedHoodoo Creek area, locatedapproximately 120 kilometresnorth of CampbellRiver, B.C. The 1996 explorationprogram focusedon prospectingand gathering logistical information necessaryto developa strategyfor future mapping,sampling and drilling. The property was stakedin March 1996by J.R. Deightonand F. Onucki. KLN l-4 cover mineralizationknown to Mr. Deighton and Mr. Onucki through assessmentreports and their personalknowledge of the region. The areaof the KLN l-4 claimswas first staked in the 1960’sby KenncoExploration Ltd. to cover a zoneof copper-molybdenum mineralization. Minimal work was conductedin 1968by Kennco andthe claims were allowed to lapse. In 1976,United Mineral Servicesrestaked the area. Again minimal work was conductedand the claims allowedto lapse. During 1987,the areaof the current claimswas stakedby United Pacific Gold Ltd. as part of the Hannahgroup. Previousassessment reports show significant, sporadicgeochemical results associated with limonitic stockworkveins, hostedprimarily in dikes and intrusions,probably part of a Tertiary intrusive - extrusivecomplex emplaced in the CoastPlutonic Complex. The KLN claims are underlainby rocks of the CoastPlutonic Complex, primarily made up of coarsecrystalline intrusive rocks of Jurassicthrough Cretaceousage varying in compositionfrom graniteto granodiorite,and are locally overlainby volcanic agglomerateand flows. The purposeof the 1996prospecting program was to perform property reconnaissanceto facilitate fbture exploration,and to locatereported high gradesilver mineralization reportedby property owners.
    [Show full text]