Uranus: Discovery of the Seventh Planet in Sun Family, April 26, 1781

Total Page:16

File Type:pdf, Size:1020Kb

Uranus: Discovery of the Seventh Planet in Sun Family, April 26, 1781 DISCOVERYDOM OF THE MONTHEDITORIAL 4(10), April 1, 2013 ISSN 2278–5469 EISSN 2278–5450 DDiissccoovveerryy Uranus: Discovery of the Seventh Planet in Sun family, April 26, 1781 Jegatheesan R☼ ☼Correspondence to: Supportive Editor; E-mail: [email protected] Publication History Received: 11 February 2013 Accepted: 05 March 2013 Published: 1 April 2013 Citation Jegatheesan R. Uranus: Discovery of the Seventh Planet in Sun family, April 26, 1781. Discovery, 2013, 4(10), 3-4 Publication License This work is licensed under a Creative Commons Attribution 4.0 International License. General Note Article is recommended to print as color digital version in recycled paper. Uranus is the 7th world from the Sun. It has the third-largest planetary distance and fourth-largest planetary huge in the Solar Program. Uranus is identical in structure to Neptune, and both are of different substance structure than the bigger gas leaders Jupiter and Saturn. Because of this, astronomers sometimes position them in a individual classification known as "ice giants". Herschel first revealed the invention of Uranus on Apr 26, 1781, originally knowing it a comet. Sir Frederick William Herschel, was a German-born English astronomer, specialized professional, and musician. Uranus had been noticed on many events before its identification as a world, but it was usually wrong for a celebrity. The first documented sighting was in 1690 when John Flamsteed noticed the planet at least six periods, cataloging it as 34 Tauri. The France astronomer Pierre Lemonnier noticed Uranus at least 12 periods between 1750 and 1769, such as on four successive night time. Herschel noticed the earth on Apr 13, 1781 while in the lawn of his home at 19 New King Street in the city of Bath, Somerset, Britain (now the Herschel Art gallery of Astronomy), but originally revealed it (on Apr 26, 1781) as a "comet". Herschel "engaged in a sequence of findings on the parallax of the set stars", using a telescope of his own style. He documented in his journal "In the quartile near ζ Tauri ... either [a] Nebulous star or perhaps a comet". On March 17, he mentioned, "I looked for the Comet or Nebulous Star and found that it is a Comet, for it has changed its place". When he provided his development to the Royal Society, he ongoing to claim that he had discovered a comet while also unquestioningly evaluating it to a planet: The energy I had on when I first saw the comet was 227. From encounter I know that the diameters of the set celebrities are not proportionally amplified with greater abilities, as planet's are; therefore I now put the abilities at 460 and 932, and discovered that the size of the comet improved in percentage to the energy, as it ought to be, on the rumours of its not being a set celebrity, while the diameters of the celebrities to which I in comparison it were not improved in the same rate. Moreover, the comet being amplified much beyond what its mild would confess have showed up obscure and ill- defined with these excellent abilities, while the celebrities maintained that lustre and distinctness which from many million findings I realized they would maintain. The follow up has proven that my surmises were well-founded, this showing to 3 3 3 be the Comet we have lately noticed. PagePage Page © 2013 Discovery Publication. All Rights Reserved. www.discoveryjournals.com OPEN ACCESS DOM EDITORIAL Imitation of the telescope used by Herschel to find Uranus (William Herschel Art gallery, Bath). Herschel informed the Astronomer Royal, Nevil Maskelyne, of his development and obtained this flummoxed response from him on Apr 23: "I don't know what to call it. It is as likely to be a regular planet moving in an orbit nearly circular to the sun as a Comet moving in a very eccentric ellipsis. I have not yet seen any coma or tail to it". While Herschel ongoing to very carefully explain his new item as a comet, other astronomers had already started to suppose otherwise. European astronomer Anders Johan Lexell was the first to estimate the orbit of the new item and its nearly round orbit led him to a summary that it was a world rather than a comet. Germany astronomer Johann Elert Bode described Herschel's invention as "a shifting star that can be considered a previously unidentified planet-like item distributing beyond the orbit of Saturn". Bode determined that its near-circular orbit was more like a world than a comet. The planet was soon globally approved as a new world. By 1783, Herschel himself recognized this reality to Royal Society president Joseph Banks: "By the observation of the most eminent Astronomers in Europe it appears that the new star, which I had the honour of pointing out to them in March 1781, is a Primary Planet of our Solar System." In identification of his accomplishment, King George III provided Herschel a yearly stipend of £200 on the situation that he shift to Windsor so that the Royal Family could have a opportunity to look through his telescopes. REFERENCE 1. Bath Preservation Trust 2. Dreyer JLE. The Scientific Papers of Sir William Herschel. 1. Royal Society and Royal Astronomical Society. 1912, p. 100 3. Dunkerson, Duane. Uranus—About Saying, Finding, and Describing It. Thespaceguy.com 4. Johann Elert Bode, Berliner Astronomisches Jahrbuch, p. 210, 1781, quoted in Miner p. 11 5. Journal of the Royal Society and Royal Astronomical Society 1, 30, quoted in Miner, p. 8 6. Journal of the Royal Society and Royal Astronomical Society 1, 30; quoted in Miner p. 8 7. Lexell AJ. Recherches sur la nouvelle planete, decouverte par M. Herschel & nominee Georgium Sidus. Acta Academia Scientarum Imperialis Petropolitanae 1783, 1, 303–329 8. RAS MSS Herschel W.2/1.2, 24, quoted in Miner p. 8 9. RAS MSS Herschel W1/13.M, 14 quoted in Miner p. 8 10. Royal Astronomical Society MSS W.2/1.2, 23; quoted in Miner p. 8 11. William Herschel, Watson Dr. Account of a Comet, 1781, By Mr. Herschel FRS. Communicated by Dr. Watson, Jun. of Bath FRS. Philosophical Transactions of the Royal Society of London 71, 492–501 4 4 4 PagePage Page © 2013 Discovery Publication. All Rights Reserved. www.discoveryjournals.com OPEN ACCESS.
Recommended publications
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Chapter Two: the Astronomers and Extraterrestrials
    Warning Concerning Copyright Restrictions The Copyright Law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials, Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction, One of these specified conditions is that the photocopy or reproduction is not to be used for any purpose other than private study, scholarship, or research , If electronic transmission of reserve material is used for purposes in excess of what constitutes "fair use," that user may be liable for copyright infringement. • THE EXTRATERRESTRIAL LIFE DEBATE 1750-1900 The idea of a plurality of worlds from Kant to Lowell J MICHAEL]. CROWE University of Notre Dame TII~ right 0/ ,It, U,,;v"Jily 0/ Camb,idg4' to P'''''' a"d s,1I all MO""" of oooks WM grattlrd by H,rr,y Vlf(;ff I $J4. TM U,wNn;fyltas pritr"d and pu"fisllrd rOffti",.ously sincr J5U. Cambridge University Press Cambridge London New York New Rochelle Melbourne Sydney Published by the Press Syndicate of the University of Cambridge In lovi ng The Pirr Building, Trumpingron Srreer, Cambridge CB2. I RP Claire H 32. Easr 57th Streer, New York, NY 1002.2., U SA J 0 Sramford Road, Oakleigh, Melbourne 3166, Australia and Mi ha © Cambridge Univ ersiry Press 1986 firsr published 1986 Prinred in rh e Unired Srares of America Library of Congress Cataloging in Publication Data Crowe, Michael J. The exrrarerresrriallife debare '750-1900. Bibliography: p. Includes index. I. Pluraliry of worlds - Hisrory.
    [Show full text]
  • Edwin Danson, UK: the Work of Charles Mason and Jeremiah Dixon
    The Work of Charles Mason and Jeremiah Dixon Edwin DANSON, United Kingdom Key words: Mason, Charles; Dixon, Jeremiah; Mason-Dixon Line; Pre-revolutionary History; Surveying; Geodesy; US History; Pennsylvania; Maryland. ABSTRACT The geodetic activities of Charles Mason and Jeremiah Dixon in America between 1763-68 were, for the period, without precedent. Their famous boundary dividing Maryland from Pennsylvania, the Mason-Dixon Line, today remains a fitting monument to these two brave, resourceful and extremely talented scientists. Tutored by Astronomer Royal Dr James Bradley, Charles Mason was aware of the contemporary theories and experiments to establish the true shape of the Earth. He was also cognisant of what was being termed “the attraction of mountains” (deviation of the vertical). However, at the time it was no more than a theory, a possibility, and it was by no means certain whether the Earth was solid or hollow. The Mason-Dixon Line, a line of constant latitude fifteen miles south of Philadelphia, although the most arduous of their tasks, was only part of their work for the proprietors of Maryland and Pennsylvania. For the Royal Society of London, they also measured the first degree of latitude in America. In recent years, the Mason-Dixon Line Preservation Partnership has located many of the original markers and surveyed them using GPS. The paper reviews the work of Mason and Dixon covering the period 1756-1786. In particular, their methods and results for the American boundary lines are discussed together with comments on the accuracy they achieved compared with GPS observations. CONTACT Edwin Danson 14 Sword Gardens Swindon, SN5 8ZE UNITED KINGDOM Tel.
    [Show full text]
  • The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 a Good Way to Start – Find North
    The expression "dog days" refers to the period from July 3 through Aug. 11 when our brightest night star, SIRIUS (aka the dog star), rises in conjunction* with the sun. Conjunction, in astronomy, is defined as the apparent meeting or passing of two celestial bodies. TAAS Fabulous Fifty A program for those new to astronomy Friday Evening, July 20, 2018, 8:00 pm All TAAS and other new and not so new astronomers are welcome. What is the TAAS Fabulous 50 Program? It is a set of 4 meetings spread across a calendar year in which a beginner to astronomy learns to locate 50 of the most prominent night sky objects visible to the naked eye. These include stars, constellations, asterisms, and Messier objects. Methodology 1. Meeting dates for each season in year 2018 Winter Jan 19 Spring Apr 20 Summer Jul 20 Fall Oct 19 2. Locate the brightest and easiest to observe stars and associated constellations 3. Add new prominent constellations for each season Tonight’s Schedule 8:00 pm – We meet inside for a slide presentation overview of the Summer sky. 8:40 pm – View night sky outside The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 A Good Way to Start – Find North Polaris North Star Polaris is about the 50th brightest star. It appears isolated making it easy to identify. Circumpolar Stars Polaris Horizon Line Albuquerque -- 35° N Circumpolar Stars Capella the Goat Star AS THE WORLD TURNS The Circle of Perpetual Apparition for Albuquerque Deneb 1 URSA MINOR 2 3 2 URSA MAJOR & Vega BIG DIPPER 1 3 Draco 4 Camelopardalis 6 4 Deneb 5 CASSIOPEIA 5 6 Cepheus Capella the Goat Star 2 3 1 Draco Ursa Minor Ursa Major 6 Camelopardalis 4 Cassiopeia 5 Cepheus Clock and Calendar A single map of the stars can show the places of the stars at different hours and months of the year in consequence of the earth’s two primary movements: Daily Clock The rotation of the earth on it's own axis amounts to 360 degrees in 24 hours, or 15 degrees per hour (360/24).
    [Show full text]
  • Articles Articles
    Articles Articles ALEXI BAKER “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century Résumé Abstract On représente souvent les instruments scientifiques Early modern British “scientific” instruments, including du 18e siècle, y compris les chronomètres de précision, precision timekeepers, are often represented as static, comme des objets statiques, à l’état neuf et complets en pristine, and self-contained in 18th-century depictions eux-mêmes dans les descriptions des débuts de l’époque and in many modern museum displays. In reality, they moderne et dans de nombreuses expositions muséales were almost constantly in physical flux. Movement and d’aujourd’hui. En réalité, ces instruments se trouvaient changing and challenging environmental conditions presque constamment soumis à des courants physiques. frequently impaired their usage and maintenance, Le mouvement et les conditions environnementales especially at sea and on expeditions of “science” and difficiles et changeantes perturbaient souvent leur exploration. As a result, individuals’ experiences with utilisation et leur entretien, en particulier en mer et mending and adapting instruments greatly defined the lors d’expéditions scientifiques et d’exploration. Ce culture of technology and its use as well as later efforts sont donc les expériences individuelles de réparation at standardization. et d’adaptation des instruments qui ont grandement contribué à définir la culture de la technologie. In 1769, the astronomer John Bradley finally the calculation of the distance between the Earth reached the Lizard peninsula in Cornwall and the Sun. Bradley had not needed to travel with his men, instruments, and portable tent as far as many of his Transit counterparts, but observatory after a stressful journey.
    [Show full text]
  • Downloading Material Is Agreeing to Abide by the Terms of the Repository Licence
    Cronfa - Swansea University Open Access Repository _____________________________________________________________ This is an author produced version of a paper published in: Transactions of the Honourable Society of Cymmrodorion Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa40899 _____________________________________________________________ Paper: Tucker, J. Richard Price and the History of Science. Transactions of the Honourable Society of Cymmrodorion, 23, 69- 86. _____________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. http://www.swansea.ac.uk/library/researchsupport/ris-support/ 69 RICHARD PRICE AND THE HISTORY OF SCIENCE John V. Tucker Abstract Richard Price (1723–1791) was born in south Wales and practised as a minister of religion in London. He was also a keen scientist who wrote extensively about mathematics, astronomy, and electricity, and was elected a Fellow of the Royal Society. Written in support of a national history of science for Wales, this article explores the legacy of Richard Price and his considerable contribution to science and the intellectual history of Wales.
    [Show full text]
  • Remembering Bill Bogardus Photographing the Moon
    Published by the Astronomical League Vol. 71, No. 2 March 2019 REMEMBERING BILL BOGARDUS PHOTOGRAPHING THE MOON 7.20.69 5 YEARS TREASURES OF THE LINDA HALL LIBRARY APOLLO 11 THE COSMIC WEB ONOMY T STR O T A H G E N P I E Contents G O N P I L R E B 4 . Reflector Mail ASTRONOMY DAY Join a Tour This Year! 4 . President’s Corner May 11 & 5 . International Dark-Sky Association From 37,000 feet above the Pacific Total Eclipse Flight: Chile October 5, 2019 6 . Night Sky Network Ocean, you’ll be high above any clouds, July 2, 2019 For a FREE 76-page seeing up to 3¼ minutes of totality in a dark sky that makes the Sun’s corona look 6 . Deep-Sky Objects Astronomy Day Handbook incredibly dramatic. Our flight will de- full of ideas and suggestions, part from and return to Santiago, Chile. 9 . Remembering Bill Bogardus skyandtelescope.com/2019eclipseflight go to: 10 . From Around the League www.astroleague.org Click on "Astronomy Day” African Stargazing Safari Join astronomer Stephen James PAGE 19 13 . Observing Awards Scroll down to "Free O’Meara in wildlife-rich Botswana July 29–August 4, 2019 Astronomy Day Handbook" for evening stargazing and daytime 14 . Basic Small-Scope Lunar Imaging safari drives at three luxury field For more information, contact: camps. Only 16 spaces available! 18 . The Vault of Heaven – Gary Tomlinson Optional extension to Victoria Falls. ̨̨̨̨̨̨̨̨̨̨̨̨̨̨̨Treasures of the Linda Hall Library Astronomy Day Coordinator skyandtelescope.com/botswana2019 [email protected] 24 . The Cosmic Web Iceland Aurorae 27 .
    [Show full text]
  • A Comet of the Enlightenment Anders Johan Lexell's Life and Discoveries Series: Vita Mathematica
    birkhauser-science.de Johan C.-E. Stén A Comet of the Enlightenment Anders Johan Lexell's Life and Discoveries Series: Vita Mathematica The first-ever full-length biography of the mathematician and astronomer Anders Johan Lexell (1740–1784) Sheds new light on the collaborators of Leonhard Euler Interesting study of a scientist's grand tour through enlightened Europe The Finnish mathematician and astronomer Anders Johan Lexell (1740–1784) was a long-time close collaborator as well as the academic successor of Leonhard Euler at the Imperial Academy of Sciences in Saint Petersburg. Lexell was initially invited by Euler from his native town of Abo (Turku) in Finland to Saint Petersburg to assist in the mathematical processing of the astronomical data of the forthcoming transit of Venus of 1769. A few years later he 2014, XVI, 300 p. 46 illus., 16 illus. in became an ordinary member of the Academy. This is the first-ever full-length biography color. devoted to Lexell and his prolific scientific output. His rich correspondence especially from his grand tour to Germany, France and England reveals him as a lucid observer of the intellectual Printed book landscape of enlightened Europe. In the skies, a comet, a minor planet and a crater on the Hardcover Moon named after Lexell also perpetuate his memory. 129,99 € | £109.99 | $159.99 [1]139,09 € (D) | 142,99 € (A) | CHF 153,50 Softcover 89,99 € | £79.99 | $109.99 [1]96,29 € (D) | 98,99 € (A) | CHF 106,50 eBook 74,89 € | £63.99 | $84.99 [2]74,89 € (D) | 74,89 € (A) | CHF 85,00 Available from your library or springer.com/shop MyCopy [3] Printed eBook for just € | $ 24.99 springer.com/mycopy Order online at springer.com / or for the Americas call (toll free) 1-800-SPRINGER / or email us at: [email protected].
    [Show full text]
  • Digital Histories: Emergent Approaches Within the New Digital History (Pp
    CHAPTER 14 The Many Ways to Talk about the Transits of Venus Astronomical Discourses in Philosophical Transactions, 1753–1777 Reetta Sippola A Popular Astronomical Event In the 1760s, one of astronomy’s rarest predictable phenomena, the so-called Transit of Venus, was calculated to take place twice: in 1761 and in 1769. This phenomenon, when the planet Venus passes across the Sun, from the Earth’s vantage point, was not only extremely rare, as the previous transit had taken place in 1639 and the next was to follow in 1874, but also very valuable scien- tifically, as observing this kind of transit would make it possible to determine the distance between the Earth and the Sun more accurately than before. This could in turn make it easier to improve a number of practical issues relying on astronomical knowledge, foremost among them to improve the accuracy of calculating locations at sea, which at this time was at best inaccurate, often resulting in costly and deadly accidents. Thus, the two Transit of Venus events and the astronomical information that could be derived from observing them enjoyed wide interest among both scientific professionals and the general How to cite this book chapter: Sippola, R. (2020). The many ways to talk about the Transits of Venus: Astronomical discourses in Philosophical Transactions, 1753–1777. In M. Fridlund, M. Oiva, & P. Paju (Eds.), Digital histories: Emergent approaches within the new digital history (pp. 237–257). Helsinki: Helsinki University Press. https://doi.org/10.33134 /HUP-5-14 238 Digital Histories public. The scientific interest in the transits during the 18th century was rep- resented through a large number of news items and scientific reports in the scientific literature, especially in scientific periodicals, such as thePhilosophi - cal Transactions of the Royal Society of London.
    [Show full text]
  • Self-Organizing Systems in Planetary Physics: Harmonic Resonances Of
    Self-Organizing Systems in Planetary Physics : Harmonic Resonances of Planet and Moon Orbits Markus J. Aschwanden1 1) Lockheed Martin, Solar and Astrophysics Laboratory, Org. A021S, Bldg. 252, 3251 Hanover St., Palo Alto, CA 94304, USA; e-mail: [email protected] ABSTRACT The geometric arrangement of planet and moon orbits into a regularly spaced pattern of distances is the result of a self-organizing system. The positive feedback mechanism that operates a self-organizing system is accomplished by harmonic orbit resonances, leading to long-term stable planet and moon orbits in solar or stellar systems. The distance pattern of planets was originally described by the empirical Titius-Bode law, and by a generalized version with a constant geometric progression factor (corresponding to logarithmic spacing). We find that the orbital periods Ti and planet distances Ri from the Sun are not consistent with logarithmic spacing, 2/3 2/3 but rather follow the quantized scaling (Ri+1/Ri) = (Ti+1/Ti) = (Hi+1/Hi) , where the harmonic ratios are given by five dominant resonances, namely (Hi+1 : Hi)=(3:2), (5 : 3), (2 : 1), (5 : 2), (3 : 1). We find that the orbital period ratios tend to follow the quantized harmonic ratios in increasing order. We apply this harmonic orbit resonance model to the planets and moons in our solar system, and to the exo-planets of 55 Cnc and HD 10180 planetary systems. The model allows us a prediction of missing planets in each planetary system, based on the quasi- regular self-organizing pattern of harmonic orbit resonance zones. We predict 7 (and 4) missing exo-planets around the star 55 Cnc (and HD 10180).
    [Show full text]
  • Cavendish the Experimental Life
    Cavendish The Experimental Life Revised Second Edition Max Planck Research Library for the History and Development of Knowledge Series Editors Ian T. Baldwin, Gerd Graßhoff, Jürgen Renn, Dagmar Schäfer, Robert Schlögl, Bernard F. Schutz Edition Open Access Development Team Lindy Divarci, Georg Pflanz, Klaus Thoden, Dirk Wintergrün. The Edition Open Access (EOA) platform was founded to bring together publi- cation initiatives seeking to disseminate the results of scholarly work in a format that combines traditional publications with the digital medium. It currently hosts the open-access publications of the “Max Planck Research Library for the History and Development of Knowledge” (MPRL) and “Edition Open Sources” (EOS). EOA is open to host other open access initiatives similar in conception and spirit, in accordance with the Berlin Declaration on Open Access to Knowledge in the sciences and humanities, which was launched by the Max Planck Society in 2003. By combining the advantages of traditional publications and the digital medium, the platform offers a new way of publishing research and of studying historical topics or current issues in relation to primary materials that are otherwise not easily available. The volumes are available both as printed books and as online open access publications. They are directed at scholars and students of various disciplines, and at a broader public interested in how science shapes our world. Cavendish The Experimental Life Revised Second Edition Christa Jungnickel and Russell McCormmach Studies 7 Studies 7 Communicated by Jed Z. Buchwald Editorial Team: Lindy Divarci, Georg Pflanz, Bendix Düker, Caroline Frank, Beatrice Hermann, Beatrice Hilke Image Processing: Digitization Group of the Max Planck Institute for the History of Science Cover Image: Chemical Laboratory.
    [Show full text]
  • The Venus Transit: a Historical Retrospective
    The Venus Transit: a Historical Retrospective Larry McHenry The Venus Transit: A Historical Retrospective 1) What is a ‘Venus Transit”? A: Kepler’s Prediction – 1627: B: 1st Transit Observation – Jeremiah Horrocks 1639 2) Why was it so Important? A: Edmund Halley’s call to action 1716 B: The Age of Reason (Enlightenment) and the start of the Industrial Revolution 3) The First World Wide effort – the Transit of 1761. A: Countries and Astronomers involved B: What happened on Transit Day C: The Results 4) The Second Try – the Transit of 1769. A: Countries and Astronomers involved B: What happened on Transit Day C: The Results 5) The 19th Century attempts – 1874 Transit A: Countries and Astronomers involved B: What happened on Transit Day C: The Results 6) The 19th Century’s Last Try – 1882 Transit - Photography will save the day. A: Countries and Astronomers involved B: What happened on Transit Day C: The Results 7) The Modern Era A: Now it’s just for fun: The AU has been calculated by other means). B: the 2004 and 2012 Transits: a Global Observation C: My personal experience – 2004 D: the 2004 and 2012 Transits: a Global Observation…Cont. E: My personal experience - 2012 F: New Science from the Transit 8) Conclusion – What Next – 2117. Credits The Venus Transit: A Historical Retrospective 1) What is a ‘Venus Transit”? Introduction: Last June, 2012, for only the 7th time in recorded history, a rare celestial event was witnessed by millions around the world. This was the transit of the planet Venus across the face of the Sun.
    [Show full text]