ASTRONET Coordinating Strategic Planning for European Astronomy

Total Page:16

File Type:pdf, Size:1020Kb

ASTRONET Coordinating Strategic Planning for European Astronomy Integrating and strengthening the European Research Area ERA-NET Coordination and Support Action ASTRONET Coordinating Strategic Planning for European Astronomy Contract n° 262162 Starting date : 1 January 2011 Duration : 4 ½ years Deliverable number 5.10 Report on the implementation of the radio telescope review committee Title recommendations Work package 5 Due date 30/6/2015 Submission date 11/6/2015 Organisation name(s) of NWO / INAF lead contractor for this deliverable Saskia Matheussen Prepared by on behalf of the European Radio Telescope Review Committee (ERTRC) Approved by Board Released by Project Coordinator Nature Report Revision v1.0 Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013) Dissemination Level PU Public x PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Coversheet.D5.10 2 1 ERTRC report: Final version – June 2015 2 Table of Contents List of figures ..................................................................................................................................................... 7 List of tables ....................................................................................................................................................... 8 Chapter 1: Executive Summary ................................................................................................................... 9 Chapter 2: Introduction .............................................................................................................................. 12 2.1 – Background and method ............................................................................................................. 12 2.2 – New horizons in radio astronomy ........................................................................................... 12 2.3 – Approach and mode of operation ............................................................................................ 13 2.4 – Organization of this report ......................................................................................................... 14 Chapter 3: Review of major European radio telescopes ................................................................. 15 3.1 – Introduction ..................................................................................................................................... 15 3.2 – Regional interferometers: e-MERLIN, WSRT, and AMI ..................................................... 15 3.2.1 – e-MERLIN ............................................................................................................................................................... 15 3.2.2 – WSRT – The Westerbork Synthesis Radio Telescope .................................................................. 17 3.2.3 – AMI – Arcminute Micro-kelvin Imager ..................................................................................................... 18 3.2.4 – Major regional interferometers outside Europe: ATCA, JVLA and GMRT .......................... 18 3.3 – Pan-European interferometers: EVN & LOFAR ................................................................... 19 3.3.1 – EVN – European VLBI Network .................................................................................................................. 19 3.3.2 – LOFAR – Low-Frequency Array ................................................................................................................. 20 3.3.3 – Other major, non-European facilities: VLBA, MeerKAT and ASKAP ..................................... 22 3.4 – Large single dishes: Effelsberg, Lovell, Yevpatoria, Nançay and Sardinia ................. 23 3.4.1 – Effelsberg ................................................................................................................................................................ 23 3.4.2 – Lovell ......................................................................................................................................................................... 24 3.4.3 – Yevpatoria .............................................................................................................................................................. 25 3.4.4 – Nançay ..................................................................................................................................................................... 25 3.4.5 – Sardinia .................................................................................................................................................................... 26 3.4.6 – Other major, non-European facilities: Arecibo, Parkes, GBT and FAST .............................. 26 3.5 – Medium-sized single dishes: Medicina, Noto, Metsähovi, Onsala, Toruń and Yebes ......................................................................................................................................................................... 27 3.5.1 – Medicina and Noto ............................................................................................................................................. 27 3.5.2 – Metsähovi ............................................................................................................................................................... 28 3.5.3 – Onsala ...................................................................................................................................................................... 28 3.5.4 – Toruń ......................................................................................................................................................................... 29 3.5.5 – Yebes ........................................................................................................................................................................ 30 3.5.6 – Other medium-sized facilities ....................................................................................... 30 3.6 – Conclusions ...................................................................................................................................... 30 A.1 – Graphical comparison of telescope parameters ................................................................ 31 Chapter 4: Addressing the ASTRONET Science Vision goals with existing European radio telescopes ........................................................................................................................................................ 39 4.1 – Introduction ..................................................................................................................................... 39 4.2 – Contributions of radio astronomy to the ASTRONET Science Vision .......................... 39 A. Do we understand the extremes of the Universe? ................................................................... 39 A1. How did the Universe begin? ............................................................................................................................... 39 A2. What is dark matter and energy? ...................................................................................................................... 39 A3. Can we observe strong gravity in action? ..................................................................................................... 41 A4. How do supernovae and gamma-ray bursts work? ................................................................................. 41 A5. How do black hole accretion, jets and outflows operate? .................................................................... 42 A6. What do we learn from energetic radiation and particles? .................................................................. 42 B. How do galaxies form and evolve? ................................................................................................ 43 B1. How did the Universe emerge from the Dark Ages?............................................................................... 43 B2. How did the structure of the cosmic web evolve? .................................................................................... 43 B3. Where are most of the metals throughout cosmic time? ...................................................................... 44 B4. How were galaxies assembled? ........................................................................................................................ 44 3 B5. How did our galaxy form? ...................................................................................................................................... 45 C. What is the origin and evolution of stars and planets? .......................................................... 46 C1. How do stars form? ................................................................................................................................................... 46 C2. Do we understand stellar structure and evolution? ................................................................................. 46 C3. What is the life cycle of the interstellar medium and stars? ................................................................ 47 C4. How do planetary systems form and evolve? ............................................................................................. 47 C5. What is the diversity
Recommended publications
  • 50 Years of the Lovell Telescope Transcript
    50 years of the Lovell telescope Transcript Date: Wednesday, 5 December 2007 - 12:00AM 50 YEARS OF THE LOVELL TELESCOPE Professor Ian Morison The Early days at Jodrell Bank In late 1945 Dr Bernard Lovell (as he then was) returned to Manchester University after working on the development of radar during the war years. His aim was to continue his researches into cosmic rays - highly energetic particles that enter the Earth's atmosphere from outer space. He had the idea that sporadic echoes sometimes received by military radars might be the result of cosmic rays entering the atmosphere and thus radar observations might provide a new way to continue his researches. Radar observations were not practical in the centre of Manchester so he took his ex-army radar system out to the University's Botanical Grounds at Jodrell Bank, some 20 miles to the south. By the middle of December 1945, the system was operating and his team was soon able to prove that the echoes were coming not from cosmic rays but from ionized meteor trails left behind when small particles, released from comets, are burnt up in the upper atmosphere of the Earth. Radar Antenna in the Botany Grounds. The Jodrell Bank Experimental Station. The observations continued and, to house the expanding staff and equipment, the Jodrell Bank Experimental Station was built in the field next to the Botanic Grounds. Lovell realised that a much more sensitive radio telescope would be required to detect cosmic rays and so, in 1947, the researchers built a large parabolic reflector, 66-m across, pointing upwards to observe the sky passing overhead.
    [Show full text]
  • Radio Astronomy
    Theme 8: Beyond the Visible I: radio astronomy Until the turn of the 17th century, astronomical observations relied on the naked eye. For 250 years after this, although astronomical instrumentation made great strides, the radiation being detected was still essentially confined to visible light (Herschel discovered infrared radiation in 1800, and the advent of photography opened up the near ultraviolet, but these had little practical significance). This changed dramatically in the mid-20th century with the advent of radio astronomy. 8.1 Early work: Jansky and Reber The atmosphere is transparent to visible light, but opaque to many other wavelengths. The only other clear “window” of transparency lies in the radio region, between 1 mm and 30 m wavelength. One might expect that the astronomical community would deliberately plan to explore this region, but in fact radio astronomy was born almost accidentally, with little if any involvement of professional astronomers. Karl Jansky (1905−50) was a radio engineer at Bell Telephone. In 1932, while studying the cause of interference on the transatlantic radio-telephone link, he discovered that part of the interference had a periodicity of one sidereal day (23h 56m), and must therefore be coming from an extraterrestrial source. By considering the time at which the interference occurred, Jansky identified the source as the Milky Way. This interesting finding was completely ignored by professional astronomers, and was followed up only by the radio engineer and amateur astronomer Grote Reber (1911−2002). Reber built a modern-looking paraboloid antenna and constructed maps of the radio sky, which also failed to attract significant professional attention.
    [Show full text]
  • The Lovell Telescope … Through Its Surfaces Simon Garrington, JBO/University of Manchester
    The Lovell Telescope … through its surfaces Simon Garrington, JBO/University of Manchester • Original design & redesign: 1950-1957 • Radical modification & new surface: 1971 • Replacement of surface: 2001 • Replacement of original Picture A. Holloway surface: 2018 • Other consequences: foundations O1 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in mesh -> stronger cradle … but Air Ministry step back O2 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in mesh -> stronger cradle … but Air Ministry step back O3 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in
    [Show full text]
  • (LWA): a Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar
    The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar A Ground-Based Instrument Paper for the 2010 NRC Decadal Survey of Solar and Space Physics Lee J Rickard, Joseph Craig, Gregory B. Taylor, Steven Tremblay, and Christopher Watts University of New Mexico, Albuquerque, NM 87131 Namir E. Kassim, Tracy Clarke, Clayton Coker, Kenneth Dymond, Joseph Helmboldt, Brian C. Hicks, Paul Ray, and Kenneth P. Stewart Naval Research Laboratory, Washington, DC 20375 Jacob M. Hartman NRC Research Associate, in residence at Naval Research Laboratory Stephen M. White AFRL, Kirtland AFB, Albuquerque, NM 87117 Paul Rodriguez Consultant, Washington, DC 20375 Steve Ellingson and Chris Wolfe Virginia Tech, Blacksburg, VA 24060 Robert Navarro and Joseph Lazio NASA Jet Propulsion Laboratory, Pasadena, CA 91109 Charles Cormier and Van Romero New Mexico Institute of Mining & Technology, Socorro, NM 87801 Fredrick Jenet University of Texas, Brownsville, TX 78520 and the LWA Consortium Executive Summary The Long Wavelength Array (LWA), currently under construction in New Mexico, will be an imaging HF/VHF interferometer providing a new approach for studying the Sun-Earth environment from the surface of the sun through the Earth’s ionosphere [1]. The LWA will be a powerful tool for solar physics and space weather investigations, through its ability to characterize a diverse range of low- frequency, solar-related emissions, thereby increasing our understanding of particle acceleration and shocks in the solar atmosphere along with their impact on the Sun-Earth environment. As a passive receiver the LWA will directly detect Coronal Mass Ejections (CMEs) in emission, and indirectly through the scattering of cosmic background sources.
    [Show full text]
  • Istituto Di Radioastronomia Inaf
    ISTITUTO DI RADIOASTRONOMIA INAF STATUS REPORT October 2007 http://www.ira.inaf.it/ Chapter 1. STRUCTURE AND ORGANIZATION The Istituto di Radioastronomia (IRA) is presently the only INAF structure with divisions distributed over the national territory. Such an organization came about because IRA was originally a part of the National Council of Research (CNR), which imposed the first of its own reforms in 2001. The transition from CNR to INAF began in 2004 and was completed on January 1st , 2005. The Institute has its headquarters in Bologna in the CNR campus area, and two divisions in Firenze and Noto. The Medicina station belongs to the Bologna headquarters. A fourth division is foreseen in Cagliari at the Sardinia Radiotelescope site. The IRA operates 3 radio telescopes: the Northern Cross Radio Telescope (Medicina), and two 32-m dishes (Medicina and Noto), which are used primarily for Very Long Baseline Interferometry (VLBI) observations. The IRA leads the construction of the Sardinia Radio Telescope (SRT), a 64-m dish of new design. This is one of the INAF large projects nowadays. The aims of the Institute comprise: - the pursuit of excellence in many research areas ranging from observational radio astronomy, both galactic and extragalactic, to cosmology, to geodesy and Earth studies; - the design and management of the Italian radio astronomical facilities; - the design and fabrication of instrumentation operating in bands from radio to infrared and visible. Main activities of the various sites include: Bologna: The headquarters are responsible for the institute management and act as interface with the INAF central headquarters in Roma. Much of the astronomical research is done in Bologna, with major areas in cosmology, extragalactic astrophysics, star formation and geodesy.
    [Show full text]
  • NATIONAL ACADEMIES of SCIENCES and ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES of AMERICA
    NATIONAL ACADEMIES OF SCIENCES AND ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES OF AMERICA UNITED STATES NATIONAL COMMITTEE International Union of Radio Science National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI University of Colorado Boulder, Colorado U.S.A. United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE PROGRAM AND ABSTRACTS National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI NOTE: Programs and Abstracts of the USNC/URSI Meetings are available from: USNC/URSI National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, DC 20418 at $5 for 1983-1999 meetings. The full papers are not published in any collected format; requests for them should be addressed to the authors who may have them published on their own initiative. Please note that these meetings are national. They are not organized by the International Union, nor are the programs available from the International Secretariat. ii MEMBERSHIP United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE Chair: Gary Brown* Secretary & Chair-Elect: Umran S. !nan* Immediate Past Chair: Susan K. Avery* Members Representing Societies, Groups, and Institutes: American Astronomical Society Thomas G. Phillips American Geophysical Union Donald T. Farley American Meteorological Society vacant IEEE Antennas and Propagation Society Linda P.B. Katehi IEEE Geosciences and Remote Sensing Society Roger Lang IEEE Microwave Theory and Techniques Society Arthur A. Oliner Members-at-Large: Amalia Barrios J. Richard Fisher Melinda Picket-May Ronald Pogorzelski W. Ross Stone Richard Ziolkowski Chairs of the USNC/URSI Commissions: Commission A Moto Kanda Commission B Piergiorgio L. E. Uslenghi Commission C Alfred 0.
    [Show full text]
  • Essential Radio Astronomy
    February 2, 2016 Time: 09:25am chapter1.tex © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. 1 Introduction 1.1 AN INTRODUCTION TO RADIO ASTRONOMY 1.1.1 What Is Radio Astronomy? Radio astronomy is the study of natural radio emission from celestial sources. The range of radio frequencies or wavelengths is loosely defined by atmospheric opacity and by quantum noise in coherent amplifiers. Together they place the boundary be- tween radio and far-infrared astronomy at frequency ν ∼ 1 THz (1 THz ≡ 1012 Hz) or wavelength λ = c/ν ∼ 0.3 mm, where c ≈ 3 × 1010 cm s−1 is the vacuum speed of light. The Earth’s ionosphere sets a low-frequency limit to ground-based radio astronomy by reflecting extraterrestrial radio waves with frequencies below ν ∼ 10 MHz (λ ∼ 30 m), and the ionized interstellar medium of our own Galaxy absorbs extragalactic radio signals below ν ∼ 2 MHz. The radio band is very broad logarithmically: it spans the five decades between 10 MHz and 1 THz at the low-frequency end of the electromagnetic spectrum. Nearly everything emits radio waves at some level, via a wide variety of emission mechanisms. Few astronomical radio sources are obscured because radio waves can penetrate interstellar dust clouds and Compton-thick layers of neutral gas. Because only optical and radio observations can be made from the ground, pioneering radio astronomers had the first opportunity to explore a “parallel universe” containing unexpected new objects such as radio galaxies, quasars, and pulsars, plus very cold sources such as interstellar molecular clouds and the cosmic microwave background radiation from the big bang itself.
    [Show full text]
  • Wikipedia, the Free Encyclopedia
    SKA newsletter Volume 21 - April 2011 The Square Kilometre Array Exploring the Universe with the world’s largest radio telescope www.skatelescope.org Please click the relevant section title to skip to that section 03 Project news 04 From the SPDO 05 SKA science 08 Engineering update 10 Site characterisation 12 Outreach update 14 Industry participation 17 News from around the world 18 Africa 20 Australia and New Zealand 23 Canada 25 China 28 Europe 31 India 33 US 35 Future meetings and events Project news Project news 04 From the SPDO Crucial steps for the SKA project were At its first meeting on 2 April, the Founding taken in the last week of March 2011. A Board decided that the location of the SKA Founding Board was created with the Project Office (SPO) will be at the Jodrell aim of establishing a legal entity for the Bank Observatory near Manchester in the project by the time of the SKA Forum in UK. This decision followed a competitive Canada in early July, as well as agreeing bidding process in which a number of the resourcing of the Project Execution excellent proposals were evaluated in an Plan for the Pre-construction Phase international review process. The SPO, which from 2012 to 2015. The Founding Board is hoped to grow to 60 people over the next replaces the Agencies SKA Group with four years, will supersede the SPDO currently immediate effect. Prof John Womersley based at the University of Manchester. The from the UK’s Science and Technology physical move to a new building at Jodrell Facilities Council (STFC) was elected Bank Observatory is scheduled for mid-2012.
    [Show full text]
  • A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization
    A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization Aaron Parsons, Donald Backer, and Andrew Siemion Astronomy Department, University of California, Berkeley, CA [email protected] Henry Chen and Dan Werthimer Space Science Laboratory, University of California, Berkeley, CA Pierre Droz, Terry Filiba, Jason Manley1, Peter McMahon1, and Arash Parsa Berkeley Wireless Research Center, University of California, Berkeley, CA David MacMahon, Melvyn Wright Radio Astronomy Laboratory, University of California, Berkeley, CA ABSTRACT A new generation of radio telescopes is achieving unprecedented levels of sensitiv- ity and resolution, as well as increased agility and field-of-view, by employing high- performance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BMN 2, where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second. To meet this challenge, we have developed a general purpose correlator architecture using standard 10-Gbit Ethernet switches to pass data between flexible hardware mod- ules containing Field Programmable Gate Array (FPGA) chips. These chips are pro- grammed using open-source signal processing libraries we have developed to be flexible, arXiv:0809.2266v3 [astro-ph] 17 Mar 2009 scalable, and chip-independent. This work reduces the time and cost of implement- ing a wide range of signal processing systems, with correlators foremost among them, and facilitates upgrading to new generations of processing technology.
    [Show full text]
  • Adventures in Radio Astronomy Instrumentation and Signal Processing
    Adventures in Radio Astronomy Instrumentation and Signal Processing by Peter Leonard McMahon Submitted to the Department of Electrical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering at the University of Cape Town July 2008 Supervisor: Professor Michael Inggs Co-supervisors: Dr Dan Werthimer, CASPER1, University of California, Berkeley Dr Alan Langman, Karoo Array Telescope arXiv:1109.0416v1 [astro-ph.IM] 2 Sep 2011 1Center for Astronomy Signal Processing and Electronics Research Abstract This thesis describes the design and implementation of several instruments for digi- tizing and processing analogue astronomical signals collected using radio telescopes. Modern radio telescopes have significant digital signal processing demands that are typically best met using custom processing engines implemented in Field Pro- grammable Gate Arrays. These demands essentially stem from the ever-larger ana- logue bandwidths that astronomers wish to observe, resulting in large data volumes that need to be processed in real time. We focused on the development of spectrometers for enabling improved pulsar2 sci- ence on the Allen Telescope Array, the Hartebeesthoek Radio Observatory telescope, the Nan¸cay Radio Telescope, and the Parkes Radio Telescope. We also present work that we conducted on the development of real-time pulsar timing instrumentation. All the work described in this thesis was carried out using generic astronomy pro- cessing tools and hardware developed by the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California, Berkeley. We successfully deployed to several telescopes instruments that were built solely with CASPER technology, which has helped to validate the approach to developing radio astronomy instruments that CASPER advocates.
    [Show full text]
  • High Resolution Radio Astronomy Using Very Long Baseline Interferometry
    IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS Rep. Prog. Phys. 71 (2008) 066901 (32pp) doi:10.1088/0034-4885/71/6/066901 High resolution radio astronomy using very long baseline interferometry Enno Middelberg1 and Uwe Bach2 1 Astronomisches Institut, Universitat¨ Bochum, 44801 Bochum, Germany 2 Max-Planck-Institut fur¨ Radioastronomie, Auf dem Hugel¨ 69, 53121 Bonn, Germany E-mail: [email protected] and [email protected] Received 3 December 2007, in final form 11 March 2008 Published 2 May 2008 Online at stacks.iop.org/RoPP/71/066901 Abstract Very long baseline interferometry, or VLBI, is the observing technique yielding the highest-resolution images today. Whilst a traditionally large fraction of VLBI observations is concentrating on active galactic nuclei, the number of observations concerned with other astronomical objects such as stars and masers, and with astrometric applications, is significant. In the last decade, much progress has been made in all of these fields. We give a brief introduction to the technique of radio interferometry, focusing on the particularities of VLBI observations, and review recent results which would not have been possible without VLBI observations. This article was invited by Professor J Silk. Contents 1. Introduction 1 2.9. The future of VLBI: eVLBI, VLBI in space and 2. The theory of interferometry and aperture the SKA 10 synthesis 2 2.10. VLBI arrays around the world and their 2.1. Fundamentals 2 capabilities 10 2.2. Sources of error in VLBI observations 7 3. Astrophysical applications 11 2.3. The problem of phase calibration: 3.1. Active galactic nuclei and their jets 12 self-calibration 7 2.4.
    [Show full text]
  • Wide-Band, Low-Frequency Pulse Profiles of 100 Radio Pulsars With
    A&A 586, A92 (2016) Astronomy DOI: 10.1051/0004-6361/201425196 & c ESO 2016 Astrophysics Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR M. Pilia1,2, J. W. T. Hessels1,3,B.W.Stappers4, V. I. Kondratiev1,5,M.Kramer6,4, J. van Leeuwen1,3, P. Weltevrede4, A. G. Lyne4,K.Zagkouris7, T. E. Hassall8,A.V.Bilous9,R.P.Breton8,H.Falcke9,1, J.-M. Grießmeier10,11, E. Keane12,13, A. Karastergiou7 , M. Kuniyoshi14, A. Noutsos6, S. Osłowski15,6, M. Serylak16, C. Sobey1, S. ter Veen9, A. Alexov17, J. Anderson18, A. Asgekar1,19,I.M.Avruch20,21,M.E.Bell22,M.J.Bentum1,23,G.Bernardi24, L. Bîrzan25, A. Bonafede26, F. Breitling27,J.W.Broderick7,8, M. Brüggen26,B.Ciardi28,S.Corbel29,11,E.deGeus1,30, A. de Jong1,A.Deller1,S.Duscha1,J.Eislöffel31,R.A.Fallows1, R. Fender7, C. Ferrari32, W. Frieswijk1, M. A. Garrett1,25,A.W.Gunst1, J. P. Hamaker1, G. Heald1, A. Horneffer6, P. Jonker20, E. Juette33, G. Kuper1, P. Maat1, G. Mann27,S.Markoff3, R. McFadden1, D. McKay-Bukowski34,35, J. C. A. Miller-Jones36, A. Nelles9, H. Paas37, M. Pandey-Pommier38, M. Pietka7,R.Pizzo1,A.G.Polatidis1,W.Reich6, H. Röttgering25, A. Rowlinson22, D. Schwarz15,O.Smirnov39,40, M. Steinmetz27,A.Stewart7, J. D. Swinbank41,M.Tagger10,Y.Tang1, C. Tasse42, S. Thoudam9,M.C.Toribio1,A.J.vanderHorst3,R.Vermeulen1,C.Vocks27, R. J. van Weeren24, R. A. M. J. Wijers3, R. Wijnands3, S. J. Wijnholds1,O.Wucknitz6,andP.Zarka42 (Affiliations can be found after the references) Received 20 October 2014 / Accepted 18 September 2015 ABSTRACT Context.
    [Show full text]