Contributionstol52mayh.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Contributionstol52mayh.Pdf / THE UNIVERSITY OF ILLINOIS LIBRARY NATURAL HISTORY SURVBY 5705 ILL, ., 4\ ^^^ V. 5 cop.4 . charge c on an books. is^^L^e^^rall't^'^overdue U. of/. Library ILLINOIS BIOLOGICAL MONOGRAPHS Vol. V April, 19 19 No. 2 Editorial Committee Stephen Alfred Forbes William Trelease Henry Baldwin Ward Published tTNDER the Auspices of the Graduate School by THE University of Illinois Copyright, 1920 by the University of Illinois Distributed Jxjne 7, 1920. CONTRIBUTIONS TO THE LIFE HISTORIES OF GORDIUSROBUS- TUS LEIDY AND PARAGOR- DIUS FARIUS (LEIDY) WITH TWENTY-ONE PLATES BY HENRY GUSTAV MAY Contributions from the Zoological Laboratory of the University of Illinois under the direction of Henry B. Ward, No. 144 THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY IN THE GRADUATE SCHOOL OF THE UNIVERSITY OF ILLINOIS 1917 TABLE OF CONTENTS PAGES Introduction 7 Material and Methods 10 Observations on Gordius robusius 16 Determination of Species 16 Habits of Adults 19 Early Development 21 Parasitism 23 Organogeny 29 29 Metamorphosis , Derivation of Tissues 29 Later Development 31 Observations on Paragordius varius 44 Determination of Species 44 Habits of Adults 44 Early Development 45 Parasitism 45 Organogeny 47 Discussion 56 Biology 56 Occurrence and Behavior of Adults 56 Behavior of Larvae 59 Infection and Intermediate Host 59 Developmental Period 60 Organogeny 60 Metamorphosis 61 Later Development 62 Physiology 68 Nutrition 68 Excretion 68 Functions of Nervous System 69 Relationships 70 Bibliography 72 Explanation of Plates 76 127] UFE HISTORY OF GORDIUS AND PARAGORDIUS—MAY INTRODUCTION The Gordiacea seem to have escaped the observation of the earlier writers or else to have been mistaken for filariae. Meissner (1856) and Villot (1874) who review the older literature, agree that the first reference to the group was made by Albert the Great. Linnaeus introduced the term Gordius on account of the resemblance of a mass of the worms to the Gordian knot. He included in the genus the three species G. aquaticus, medinensis the argillaceus and , representing respectively present families of Gordiidae, Mermithidae and Filariidae, only the first of which is today retained in the order Gordiacea. Dujardin was the first to give detailed descriptions of two species, Gordius aquaticus and Gordius tolosanus, and to point out the difference between Gordius on the one hand and Mermis on the other. Von Siebold and following him Meissner (1855) placed Gordius and Mermis together to form the order Gordiacea. Meissner's work on the anatomy and physiology of Gordius and Mermis is in many respects an excellent production and it is inconceivable how, after such observations, he could still regard the two groups as closely related. The work of Gren- acher (1868) on the anatomy of Gordius was a step in the right direction. He emphasized again the difference between Gordius and Mermis and stated that the two could not possibly belong to the same family. Villot was the first to take up the study of museum specimens and living material in larger quantities. His investigations were carried on for a long series of years and with an earnest desire to solve the problems of taxonomy, physiology and life history; but unfortunately did not con- tribute much to a clearer knowledge of the group. The problem was too great for the methods he employed. In England Baird described several species and in Germany von Lin- stow added a large number of names without giving descriptions adequate for identification. The greatest contributions to the taxonomy of the group have undoubt- edly been made by Camerano, chiefly because he had at his disposal more material than has ever been available to any other writer. He not only described a large number of species, but subdivided the group into several genera. Creplin (1847) had already established the genus Chordodes. Camerano (1897) carried the division farther in separating the genera Paragordius and Parachordodes from the genus Gordius. This separation was made purely on external characters. Montgomery in a paper coming out somewhat later also established a genus Paragordius which, so far as the anatomy of the forms is known, includes the same species as does that of 8 ILLINOIS BIOLOGICAL MONOGRAPHS {128 Camerano, but is founded on much more essential characters. That the genus has found universal acceptance is perhaps due more to Montgomery's characterization tljjn to that of Camerano. The genus Parachordodes has not been universally accepted; but here again the evidence presented in this report shows that the characters given by Cj^merano are accompanied by others which indicate a natural division of the group. He characterizes Gordius by the presence of a postcloacal ridge in the male and the absence of true areoles on the cuticula, Parachordodes by the absence of postcloacal lidge and the presence of areoles. In America several species were described by Leidy, but most of the systematic work was done later by Montgomery. Here as well as in Europe little more than pioneer work has been done. Descriptions and identi- fications have been made chiefly from preserved material and isolated specimens and only in a few cases from living material collected in abim- dance. The confusion that still exists in the group is due in a large measure to the fact that the variations within a species are very great while the differ- ences between species are relatively small. When isolated and often poorly preserved specimens are studied it is natural that essential characters are often overlooked and variations are taken for specific characters. This tends on the one hand to throw species together and on the other to separate members of a single species. The two characters causing the most confusion are size and color. Nearly all of von Linstow's descriptions include besides these only those that are common to nearly all Gordiacea. Such descriptions are useless. I have in my own collection specimens of a single species ranging in length from 10 to 50 cm. and in color from light brown to nearly black and others that are an iridescent gray. Even as late as 1910 Wesenberg-Lund identi- fied specimens as Gordius aquaiicus on account of their size and made the errors that I shall point out later. The light spots in the cuticula and the postcloacal ridge in the male have been taken as specific characters, and the species bearing either has usually without hesitation been assigned to Gordius aquaiicus. The ridge certainly is possessed by more than one species and may be a generic character while the white spots, as Montgomery suspected, are due to physiological con- ditions in the American species but may be due to structures in the hypo- derm in some of the European species. Altho the structure of the cuticula is one of the best specific characters, its use has led to confusion because different authors have studied it imder different conditions and have made different interpretations of what they saw. The erroneous theory that size, color and cuticular structures change with the age of the free living specimen has also contributed to the tangle. 1291 UFE HISTORY OF GORDIUS AND PARAGORDIUS—MA 7 9 The habits of different species are practically unknown. Most of the material has been found accidentally as isolated specimens and observations on behavior have been made mostly on animals in captivity as Wesenberg- Lund has already pointed out. The scant observations made on animals in nature are mostly referred to the group as a whole and not to any parti- cular species. But there is no reason for supposing that the habits of different species are the same, and they are not the same in the species forming the subject of this paper. The problem of the life history of the group has attracted much atten- tion. Villot at one time thought he had the complete cycle, but found later that he had to modify his theories. He observed the embryological development, the encystment of the larvae in a large number of animals, and the presence of nearly adult worms in beetles. After holding for a long time the view that the animals harboring the encysted larvae were inter- mediate hosts he finally concluded that the encysted larvae perish and that the life cycle is completed in some other way. Camerano indepen- dently arrived at the same conclusion. Blunck (1915) again speaks of an intermediate host. He states that the larvae of Gordius tolosanus penetrate soft-bodied animals and these in turn are devoured by Dytiscus larvae. Tadpoles form for the most part the intermediate host. Development is completed in Dytiscus and the worms escape soon after the beetle emerges from the puparium. The facts upon which these deductions are based are not given. Nothing has been published on the metamorphosis or the structure of the early parasite. In regard to the later organogeny Villot (1891) and Vejdovsky (1894) have supplied the only information. The adult organization is better known. If the knowledge of it is still incomplete, that is due chiefly to the fact that the material at hand has often been scarce and the methods employed have given only poor results. Here as elsewhere the greatest confusion has arisen because of the belief that what is true of one species must be true for all. Writers have not hesitated to denounce their fellow workers when their particular species failed to show what others had found in very different species. This very brief discussion of the literature on Gordiacea has been given not with the purpose of presenting an historical account of the subject but with the object of pointing out the need for further investigation and some of the difficulties that have presented themselves.
Recommended publications
  • AMCOP 69 Booklet
    AMCOP 69 June 8-10, 2017 Center for Sciences and Agriculture Wilmington College Wilmington, OH 45177 Contents OFFICERS 1 ACKNOWLEDGEMENTS 2 SCHEDULE 3 ABSTRACTS 11 AMCOP-68 MEETING SUMMARY 22 ORGANIZATION INFORMATION 26 SUMMARIES OF PREVIOUS MEETINGS 29 2016 FINANCIAL REPORT 37 2017 INTERIM FINANCIAL REPORT 38 MEMBERSHIP DIRECTORY 39 DUES PAYMENT FORM 44 Officers for 2017 Presiding Officer..................................Dr. Matthew Bolek Oklahoma State University Program Officer…………………Dr. Doug Woodmansee Wilmington College Secretary/ Treasurer ………............ Dr. Robert Sorensen Minnesota State University Mankato www.amcop.org Acknowledgements ELANCO ANIMAL HEALTH A Division of Eli Lilly and Company For support of the Herrick Award. THE AMERICAN SOCIETY OF PARASITOLOGISTS For support of speakers’ travel expenses. THE MEMBERSHIP OF AMCOP For support of the LaRue, Cable, Honorable Mention Awards and other expenses. For support of speakers’ travel expenses The 69th Annual Midwestern Conference of Parasitologists provides 4 Continuing Education Credits (4 CE). Your registration confirmation is proof of your attendance. 2 SCHEDULE THURSDAY, JUNE 8, 2017 2:00-5:00 pm Room Check-in at Pyle Center for Students 7:00-10:00 pm Opening Mixer: The Escape, 36 W. Sugartree St, Wilmington, OH FRIDAY, JUNE 9, 2017 Center for The Sciences and Agriculture (CSA) Room 242 8:00am Continental Breakfast (CSA Hallway) and Silent Auction Setup (Tables in back of CSA 242) 8:45am Opening Remarks and Welcome • Dr. Doug Woodmansee, Program Officer • Dr. Erica Goodwin, Vice President for Academic Affairs and Dean of the Faculty CONTRIBUTED PAPERS (STUDENT PAPERS INDICATED BY *) 9:00 1* Chronic Cytauxzoon felis infections in wild caught bobcats (Lynx rufus).
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • A Parasitological Evaluation of Edible Insects and Their Role in the Transmission of Parasitic Diseases to Humans and Animals
    RESEARCH ARTICLE A parasitological evaluation of edible insects and their role in the transmission of parasitic diseases to humans and animals 1 2 Remigiusz GaøęckiID *, Rajmund Soko ø 1 Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland, 2 Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract From 1 January 2018 came into force Regulation (EU) 2015/2238 of the European Parlia- ment and of the Council of 25 November 2015, introducing the concept of ªnovel foodsº, including insects and their parts. One of the most commonly used species of insects are: OPEN ACCESS mealworms (Tenebrio molitor), house crickets (Acheta domesticus), cockroaches (Blatto- Citation: Gaøęcki R, SokoÂø R (2019) A dea) and migratory locusts (Locusta migrans). In this context, the unfathomable issue is the parasitological evaluation of edible insects and their role in the transmission of parasitic diseases to role of edible insects in transmitting parasitic diseases that can cause significant losses in humans and animals. PLoS ONE 14(7): e0219303. their breeding and may pose a threat to humans and animals. The aim of this study was to https://doi.org/10.1371/journal.pone.0219303 identify and evaluate the developmental forms of parasites colonizing edible insects in Editor: Pedro L. Oliveira, Universidade Federal do household farms and pet stores in Central Europe and to determine the potential risk of par- Rio de Janeiro, BRAZIL asitic infections for humans and animals.
    [Show full text]
  • The Life Cycle of a Horsehair Worm, Gordius Robustus (Nematomorpha: Gordioidea)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln John Janovy Publications Papers in the Biological Sciences 2-1999 The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea) Ben Hanelt University of New Mexico, [email protected] John J. Janovy Jr. University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscijanovy Part of the Parasitology Commons Hanelt, Ben and Janovy, John J. Jr., "The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea)" (1999). John Janovy Publications. 9. https://digitalcommons.unl.edu/bioscijanovy/9 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in John Janovy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Hanelt & Janovy, Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordoidea) Journal of Parasitology (1999) 85. Copyright 1999, American Society of Parasitologists. Used by permission. RESEARCH NOTES 139 J. Parasitol., 85(1), 1999 p. 139-141 @ American Society of Parasitologists 1999 The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea) Ben Hanelt and John Janovy, Jr., School of Biological Sciences, University of Nebraska-lincoln, Lincoln, Nebraska 68588-0118 ABSTRACf: Aspects of the life cycle of the nematomorph Gordius ro­ Nematomorphs are a poorly studied phylum of pseudocoe­ bustus were investigated. Gordius robustus larvae fed to Tenebrio mol­ lomates. As adults they are free living, but their ontogeny is itor (Coleoptera: Tenebrionidae) readily penetrated and subsequently completed as obligate parasites.
    [Show full text]
  • Nematomorpha, Gordiida) Species
    A peer-reviewed open-access journal ZooKeys 733: 131–145 (2018) New hairworm (Nematomorpha, Gordiida) species... 131 doi: 10.3897/zookeys.733.22798 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research New hairworm (Nematomorpha, Gordiida) species described from the Arizona Madrean Sky Islands Rachel J. Swanteson-Franz1, Destinie A. Marquez1, Craig I. Goldstein2, Andreas Schmidt-Rhaesa3, Matthew G. Bolek4, Ben Hanelt1 1 Center for Evolutionary and Theoretical Immunology, Department of Biology, 163 Castetter Hall, MSC032020, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA 2 Rush Oak Park Hospital, Department of Emergency Medicine, 520 South Maple Avenue, Oak Park, Illinois 60304, USA 3 Zoological Museum and Institute, Biocenter Grindel, Martin-Luther-King-Platz 3, University of Hamburg, 20146 Hamburg, Germany 4 Department of Integrative Biology, 501 Life Sciences West, Oklahoma State University, Stillwater, Oklahoma 74078, USA Corresponding author: Ben Hanelt ([email protected]) Academic editor: H-P Fagerholm | Received 5 December 2017 | Accepted 7 January 2018 | Published 1 February 2018 http://zoobank.org/DC5CDDD5-74A1-4BF9-BA09-4EC956A57179 Citation: Swanteson-Franz RJ, Marquez DA, Goldstein CI, Schmidt-Rhaesa A, Bolek MG, Hanelt B (2018) New hairworm (Nematomorpha, Gordiida) species described from the Arizona Madrean Sky Islands. ZooKeys 733: 131– 145. https://doi.org/10.3897/zookeys.733.22798 Abstract Gordiids, or freshwater hairworms, are members of the phylum Nematomorpha that use terrestrial de- finitive hosts (arthropods) and live as adults in rivers, lakes, or streams. The genus Paragordius consists of 18 species, one of which was described from the Nearctic in 1851. More than 150 years later, we are describing a second Paragordius species from a unique habitat within the Nearctic; the Madrean Sky Island complex.
    [Show full text]
  • Proceedings of the Helminthological Society of Washington 38(2) 1971
    i~rl&'-->¥J:,'\±" •• • :•> ' .- fec?^VIS3; Volufrie/r38 '$ .4,^ July--! 97.1' Number 2 The Helmintholog^ ri ' ^V seibionjpua/ /ourriq/ of research devoted fo 1 ^' {HelminiholQQy arid all branches, of Parasitol&gy in :; i~ ^ ; g / Brdytpn H.. Ransom Memorial /Trust Fjund x ; ;;, '' ''''•'".''.''/ .'.^'rv'"^.' 7'' ';';< • ''-,."' •.! :."•"'•'-- ^. ! •• - , '• ';;/- - '*.-. ' • •' ' '//Y'- •' ; ;' -'/V.- " y, ? Subscription $9.00 a ,VpIurne; Fpreign, $9.50 '^ ^ / ' ; \ ^ ;> v £ ^','ilfnl ''$$** ^ CONTENTS;V ^v^^,;^;--.^- ;, '••1,J,>; V- ALI, S, MEHDI, M. V. SuRYAWANSHi, AND K. ZAkitrDDiN GHISTY. ^Rogertis rosae , r/ sp..ri.\(Nematoda: jGylindrolaimiriae ) from Marathwada, India .-.-.-,-.,.lr... 193 BECKERDlTE, FRED W., GROV^R' C. 'IVllLliER, AND REINARD HAR«3EMA. ; Obser- •*"— '••,'' vatioris on "the Life Cycle ofi Pharyngostomoides !spp. and the Description ' ;pf P. adenp'eeplidla sp. -ri.' (Strigeoidea: DijilostOmatidae ) -from 'the ,Rac-,'x • >:'' .coon, Proctjon lotor (L. ) ______ ^-_-_L^-J..-^-—r.— ,-.l.^--^^_L.^.,-^ _____-,.^.lj.^: ; ;149 CQLGLAZIER, 'M. L., .K. Q. KATES, A^D ,F.. D. ENZIE. ( Activity , of LevamisoleP i" "Pyrantel rTartrate., and :Rafoxanide Against T\vo 'Tiiiahendazole-tolerant Iso- ^ ,'Jate s 6i'<H,aeinbnclws /contortus, and 'T\v'o Species of 'Ti'ichdstrorigylus^m DOUVRES, FRANK W. AND FKANCIS G. TROMBA. Comparative , Development of ^ " \ ' . Ascpris$w,iin in Rabbits, Guinea "Pigs,' Mice;, arid Swine in I'l "Days •-. ,.-_— ^\ 246 , JQHN V.,<G. TRUMAN FINCHER, AND : 'T, BONNER STEWART. \Eimeria ' •, 'pat/neisp.n.J, Protozoa:' Eimeriidae) rfrom tiie Gopher ^Tortoise, 'Gflphenis > Polyphemus J__^^-l_r-..r-_-l-__J^:l.u--— _. _____ L_ rrl— ~- ..— -—.-----^--- - l-----A---i---^-t:. '- ..'223 !:,, JACOB H, AND J.,D. THOMAS. - Some Hemiuricl Trematodes of Marine Fishes^from Ghana ._.-1::...^.._-JJ— 1..L _____:.„;... ^:l..-:-.^-.^.:-lL_-_.
    [Show full text]
  • AMCOP 68 Booklet
    AMCOP 68 June 9-11, 2016 Touch of Nature Environmental Center Southern Illinois University in Carbondale Makanda, IL 62958 Contents OFFICERS 1 ACKNOWLEDGEMENTS 2 SCHEDULE 3 ABSTRACTS 11 AMCOP-67 MEETING SUMMARY 38 ORGANIZATION INFORMATION 40 SUMMARIES OF PREVIOUS MEETINGS 43 2015 FINANCIAL REPORT 51 2016 FINANCIAL REPORT 52 MEMBERSHIP DIRECTORY 53 DUES PAYMENT FORM 58 Officers for 2016 Presiding Officer...............................Dr. Matthew Brewer Iowa State University Program Officer……………………Dr. Agustín Jiménez Southern Illinois University Secretary/ Treasurer ………............ Dr. Robert Sorensen Minnesota State University Mankato www.amcop.org Acknowledgements ELANCO ANIMAL HEALTH A Division of Eli Lilly and Company For support of the Herrick Award. THE AMERICAN SOCIETY OF PARASITOLOGISTS For support of speakers’ travel expenses. THE MEMBERSHIP OF AMCOP For support of the LaRue, Cable, and Honorable Mention Awards and other expenses. PLOS PATHOGENS For support of speaker’s travel expenses THE COLLEGE OF SCIENCE, DEPARTMENT OF ZOOLOGY AND SIU SIGMA XI CHAPTER The 68th Annual Midwestern Conference of Parasitologists provides 4 Continuing Education Credits (4 CE). Your registration confirmation is proof of your attendance. 2 SCHEDULE THURSDAY, JUNE 9, 2016 2:00-5:00 pm Room Check-in at Front Desk of Little Grassy Lodge 6:00-8:00 pm Opening Mixer: Giant City Lodge, 460 Giant City Lodge Rd, Makanda, IL 62958 FRIDAY, JUNE 10, 2016 Touch of Nature Environmental Center The Friends Room 8:00am Continental Breakfast (The Friends Room), Silent Auction Set Up (Back of the Friends Rooms) 8:45am Opening Remarks and Welcome (The Friends Room) • Dr. Agustín Jiménez, Program Officer CONTRIBUTED PAPERS (STUDENT PAPERS INDICATED BY *) 9:00 1* Morphological and physiological effects of Paragordius varius (nematomorpha: gordiida) on the cricket host, Acheta domesticus.
    [Show full text]
  • Hairworm Anti-Predator Strategy: a Study of Causes and Consequences
    1 Hairworm anti-predator strategy: a study of causes and consequences F. PONTON1*,C. LEBARBENCHON1,2,T.LEFE` VRE1,F.THOMAS1,D.DUNEAU1, L. MARCHE´ 3, L. RENAULT3, D. P. HUGHES4 and D. G. BIRON1 1 Ge´ne´tique et Evolution des Maladies Infectieuses, UMR CNRS-IRD 2724, Equipe: ‘Evolution des Syste`mes Symbiotiques’, IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France 2 Station Biologique de la Tour du Valat, Le Sambuc, 13200 Arles, France 3 INRA, UMR BiO3P, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France 4 Centre for Social Evolution, Institute of Biology, Universitetsparken 15, DK-21000 Copenhagen (Received 4 May 2006; revised 7 June 2006; accepted 7 June 2006) SUMMARY One of the most fascinating anti-predator responses displayed by parasites is that of hairworms (Nematomorpha). Following the ingestion of the insect host by fish or frogs, the parasitic worm is able to actively exit both its host and the gut of the predator. Using as a model the hairworm, Paragordius tricuspidatus, (parasitizing the cricket Nemobius sylvestris) and the fish predator Micropterus salmoı¨des, we explored, with proteomics tools, the physiological basis of this anti-predator response. By examining the proteome of the parasitic worm, we detected a differential expression of 27 protein spots in those worms able to escape the predator. Peptide Mass Fingerprints of candidate protein spots suggest the existence of an intense muscular activity in escaping worms, which functions in parallel with their distinctive biology. In a second step, we attempted to determine whether the energy expended by worms to escape the predator is traded off against its reproductive potential.
    [Show full text]
  • Two Steps to Suicide in Crickets Harbouring Hairworms
    ANIMAL BEHAVIOUR, 2008, 76, 1621e1624 doi:10.1016/j.anbehav.2008.07.018 Available online at www.sciencedirect.com Two steps to suicide in crickets harbouring hairworms MARTA I. SANCHEZ*†,FLEURPONTON*, ANDREAS SCHMIDT-RHAESA‡,DAVIDP.HUGHES§, DOROTHEE MISSE* &FREDERICTHOMAS*** *CNRS/IRD Montpellier yCEFE, CNRS, Montpellier zZoomorphologie und Systematik, Universita¨t Bielefeld xCentre for Social Evolution, Institute of Biology, University of Copenhagen **Institut de recherche en biologie ve´ge´tale, Universite´ de Montre´al (Que´bec) (Received 13 February 2008; initial acceptance 26 March 2008; final acceptance 24 July 2008; published online 3 September 2008; MS. number: D-08-00090R) The hairworm (Nematomorpha) Paragordius tricuspidatus has the ability to alter the behaviour of its terres- trial insect host (the cricket Nemobius sylvestris), making it jump into the water to reach its reproductive habitat. Because water is a limited and critical resource in the ecosystem, we predicted that hairworms should adaptively manipulate host behaviour to maximize parasite reproductive success. Our results sup- ported the hypothesis that the host manipulation strategy of hairworms consists of at least two distinct steps, first the induction of erratic behaviour and then suicidal behaviour per se. Hairworms secured mating by starting to manipulate their host before being fully mature. Once induced, the cricket’s suicidal behaviour was maintained until the host found water but the fecundity of worms decreased over time. As expected, the fecundity of worms was better in crickets with suicidal rather than erratic behaviour. Ó 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. Keywords: environmental constraint; hairworm; manipulation; Nemobius sylvestris; Paragordius tricuspidatus; water Parasites are capable of altering a large range of pheno- host behaviour by parasites (Thomas et al.
    [Show full text]
  • Anatomical Study of Chordodes Koreensis in the Parasitic Phase Using Electron Microscopy
    J Vet Clin 26(6) : 586-590 (2009) Anatomical Study of Chordodes koreensis in the Parasitic Phase Using Electron Microscopy Hwa-Young Son, Joon-Seok Chae*, Nam-Soo Kim, Hyeon-Cheol Kim**, Jeong-Gon Cho*** and Bae-Keun Park1 Research Institute of Veterinary Medicine · College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Korea *College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea **School of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea ***College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea (Accepted : December 09, 2009) Abstract : Horsehair worms (Chordodes koreensis) develop as parasites in the bodies of grasshoppers, crickets, cockroaches, and some beetles. Chordodes koreensis is an accidental parasite of humans, livestock, or pets and poses no public health threat. The male of Chordodes koreensis in the later larval stage from canine vomitus was investigated by the scanning and transmission electron microscopy. In cross sections, the body wall is composed of four components namely epicuticle, cuticle, epidermis, and muscle layers. The parenchymal tissue fills the rest of the body and surrounds the visceral organs such as intestine, and ventral nerve cord but testes were not found. The epicuticle is a thin superficial layer whose surface shows rows of polygonal elevations called areoles. The cuticle has 17 layers of collagenous fibers spirally wound about the long axis of the worm. The section through the cuticle reveals the layers of large fibers cut obliquely lengthwise, alternating with layers of fibers sectioned obliquely crosswise. The layers of large fiber formed a double helix about longitudinal axis of the worm.
    [Show full text]
  • SOUTHWESTERN ASSOCIATION of PARASITOLOGISTS 50Th Annual
    SOUTHWESTERN ASSOCIATION OF PARASITOLOGISTS 50th Annual Meeting Program & Abstracts April 20-22, 2017 The University of Oklahoma Biological Station Lake Texoma, Oklahoma Affiliate, American Society of Parasitologists SOUTHWESTERN ASSOCIATION OF PARASITOLOGISTS Officers President Nicholas Negovetich Department of Biology Angelo State University San Angelo, TX 76909 President-Elect (Program Officer) Michael Barger Natural Science Peru State College Peru, NE 68421 Immediate Past President Megan Wise de Valdez Program of Biology Texas A&M-San Antonio San Antonio, TX 78224 Secretary-Treasurer Tamara J. Cook Department of Biological Sciences Sam Houston State University Huntsville, TX 77341 Representative to ASP Council Matt Bolek Department of Integrative Biology Oklahoma State University Stillwater, OK 74078 AGENDA Thursday, April 20th, 2017 5:00–9:00 pm Registration Foyer of Dining Hall 6:30 pm Dinner Dining Hall 7:15 pm Presenters’ Meeting Library 8:30 pm Social Hour(s) Dining Hall Friday, April 21st, 2017 7:00-8:00 am Breakfast & Registration Dining Hall 8:05 am Opening Remarks Library 8:15-9:45 am Oral Presentations (#1–6) Library 9:45-10:00 am Break 10:00-11:30 am Oral Presentations (#7–12) Library 11:30-11:45 am Special Presentation Library 11:45-1:00 pm Lunch Dining Hall 1:15-2:15 pm Oral Presentations (#13–16) Library 2:15-2:30 pm Break 2:30-3:30 pm Oral Presentations (#17–20) Library 3:30-4:00 pm Break 4:00-5:30 pm Panel Discussion, SWAP 50th & Refreshments Library 5:30-6:30 pm Dinner Dining Hall 6:30-8:00 pm SWAP Business Meeting Library 8:00-9:00 pm President’s Reception & Poster Session (#21-33) Dining Hall 9:00-10:00 pm Social Hour(s) Dining Hall Saturday, April 22nd, 2017 7:30–8:30 am Breakfast Dining Hall 8:45-10:00 am Oral Presentations (#34-38) Library 10:00 am Closing Remarks & Adjournment Library ABSTRACTS WITH A “U” ARE UNDERGRADUATE STUDENT PAPERS IN THE COMPETITION; THOSE WITH A “G” ARE GRADUATE STUDENT PAPERS IN THE COMPETITION.
    [Show full text]
  • The Horsehair Worm Gordionus Violaceus (Nematomorpha: Gordiida) in Minnesota
    The Great Lakes Entomologist Volume 46 Numbers 1 & 2 - Spring/Summer 2013 Numbers Article 13 1 & 2 - Spring/Summer 2013 April 2013 The Horsehair Worm Gordionus Violaceus (Nematomorpha: Gordiida) in Minnesota Philip A. Cochran Saint Mary's University of Minnesota Jacob D. Zanon Saint Mary's University of Minnesota Ben Hanelt University of New Mexico Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Cochran, Philip A.; Zanon, Jacob D.; and Hanelt, Ben 2013. "The Horsehair Worm Gordionus Violaceus (Nematomorpha: Gordiida) in Minnesota," The Great Lakes Entomologist, vol 46 (1) Available at: https://scholar.valpo.edu/tgle/vol46/iss1/13 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Cochran et al.: The Horsehair Worm <i>Gordionus Violaceus</i> (Nematomorpha: Gord 2013 THE GREAT LAKES ENTOMOLOGIST 133 The Horsehair Worm Gordionus violaceus (Nematomorpha: Gordiida) in Minnesota Philip A. Cochran1, Jacob D. Zanon1, Ben Hanelt2 Abstract A sample of 21 Gordionus violaceus (Baird) (Nematomorpha: Gordioi- dea) was obtained from a puddle in Winona County, southeastern Minnesota. These are the first of this species reported from the upper Midwest. Sex ratio was not significantly different from 50:50 and females and males did not dif- fer significantly in length, but females were of significantly greater diameter than males. ____________________ Three species of horsehair worms (Nematomorpha: Gordioidea) have been reported previously from Minnesota: Gordius robustus Leidy, G.
    [Show full text]