Redalyc.Evolutionary Analysis of Five Bryophyte Families Using Virtual Fossils

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Evolutionary Analysis of Five Bryophyte Families Using Virtual Fossils Anales del Jardín Botánico de Madrid ISSN: 0211-1322 [email protected] Consejo Superior de Investigaciones Científicas España Zander, Richard H. Evolutionary analysis of five bryophyte families using virtual fossils Anales del Jardín Botánico de Madrid, vol. 66, núm. 2, julio-diciembre, 2009, pp. 263-277 Consejo Superior de Investigaciones Científicas Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=55612913005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anales del Jardín Botánico de Madrid Vol. 66(2): 263-277 julio-diciembre 2009 ISSN: 0211-1322 doi: 10.3989/ajbm.2224 Evolutionary analysis of five bryophyte families using virtual fossils by Richard H. Zander Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299 U.S.A. [email protected] Abstract Resumen Zander, R.H. 2009. Evolutionary analysis of five bryophyte fami- Zander, R.H. 2009. Análisis evolutivo de cinco familias de briofi- lies using virtual fossils. Anales Jard. Bot. Madrid 66(2): 263-277. tas empleando fósiles virtuales. Anales Jard. Bot. Madrid 66(2): 263-277 (en inglés). Traditional taxa paraphyletic or polyphyletic on a molecular Los táxones parafiléticos o polifiléticos tradicionales en un árbol phylogenetic tree may be interpreted as populations of surviv- molecular filogenético pueden interpretarse como poblaciones ing ancestors that are evolutionarily static in expressed traits de ancestros supervivientes que están evolutivamente estáticos though labile in DNA traits used to track genetic continuity. In en los caracteres expresados a través de lábiles en los caracteres those cases in which re-evolution (convergence) of such taxa is ADN que se emplean para seguir la continuidad genética. En deemed improbable, such heterophyly may be used to infer esos casos en los cuales la re-evolución (convergencia) de tales evolutionary series of virtual fossils reflecting macroevolution. táxones se considere improbable, la heterofilia puede usarse Descent with modification of taxa is here demonstrated by rein- para inferir series evolutivas de fósiles virtuales que reflejan la terpreting published cladograms of molecular studies of Di- macroevolución. El descenso con modificación de táxones se de- cranaceae, Pottiaceae, Grimmiaceae, Hypopterygiaceae, and muestra con la interpretación publicada de los cladogramas de Mniaceae as taxon trees. Given this argument, superimposed estudios moleculares de Dicranaceae, Pottiaceae, Grimmiaceae, inferred ancestors are support for the theory of punctuated Hypopterygiaceae y Mniaceae como árboles taxonómicos. En equilibrium. vista de este argumento, resulta que los ancestros inferidos su- perimpuestos apoyan la teoría del equilibrio puntuado. Keywords: virtual fossil, heterophyly, punctuated equilibrium, Palabras clave: fósil virtual, heterofilia, equilibrio puntuado, ár- taxon tree, evolution, autophyletic, Grimmiaceae, Hypoptery- bol taxonómico, evolución, autofilético, Grimmiaceae, Hypop- giaceae, Mniaceae, Pottiaceae. terygiaceae, Mniaceae, Pottiaceae. Introduction lution as descent with modification (Hall, 2003) of taxa because bioroles may be inferred from expressed It has long been recognized that phylogenetic analysis does not model evolution of sequences of trait combinations. In phylogenetic analysis, ancestral named ancestral and descendant taxa, i.e. genealo- mapped morphological or molecular traits, though gies, but demonstrates the evolution of characteristics presented as sequential, remain atomized. Attempts as branching lines of trait changes (e.g., Bowler, 1989: to infer soft tissues in geologic fossils also deal with in- 345-346; Farjon, 2007; Hörandl, 2006, 2007) for ex- dividual traits. For instance, in extant phylogenetic emplars of named terminal taxa. Of three particular bracketing (Witmer, 1995, 1998), a fossil lineage taxa, two are more likely to share an ancestor but that bracketed by two lineages each sharing one particular ancestor is generally not identified as a taxon different trait in their extant taxa would be expected to also from its descendants; it is simply represented in phy- have that trait, but features not present in both brack- logenetics by an unnamed node, or “common ances- eting lineages would be expected to be absent in the tor” of descendant lineages. When fossils are at hand, fossil. This method does not rely on and explain, how- however, they are potentially more informative of evo- ever, para- or polyphyly. 264 R.H. Zander Of particular importance for the present analysis is conservative, gapped phenotypic traits, and that total the idea that a split in a molecular lineage is not nec- convergence or crypsis is improbable or less probable essarily a speciation event. It could signal any isola- (Jardine & Sibson, 1971: 144) than other explana- tion event, sometimes followed by phenotypic stasis tions, simply enforcing monophyly by taxonomically of the isolated population, resulting in a surviving an- recognizing cryptic species, genera or families may be cestor. Identification of a surviving ancestor as a kind less productive scientifically than examining other ex- of living fossil may be done by (1) identification of a planations. The point of traditional taxonomy is to geologic fossil with an extant taxon; (2) biosystemat- make complete evolutionary convergence improbable, ic and cytogenetic studies, particularly in the case of and this applies at any taxonomic level. Classification “quantum” or local evolution (Lewis, 1962; Grant, is here presented as a major source of information 1971; Levin, 2001), the budding of a descendant about evolution needing only reliable information on species from a peripheral ancestral population, genetic continuity to reveal taxic steps. Even morpho- which are identifiable, for instance, as in the event of logical phenocopy involving two or more taxa that apparent daughter species being all more similar to lose traits when highly reduced (e.g. in high elevation an apparent parent than to each other; (3) the recent habitats) commonly allows retention of one or more method of Theriot (1992) inferring a surviving ances- conservative traits that allow accurate identification tor in a group of diatoms by evaluating a morpholog- (Zander, 1977: 261), or when unidentifiable, it is be- ically based cladogram and biogeographical informa- cause the reduced plants are intermediate or general- tion; (4) the somewhat more simplistic and problem- ist in form. Thus, Dollo’s Rule (Hall, 2003) is at least atic selection of a surviving ancestor as one lacking methodologically applicable at the organismal level of autapomorphies on a polytomous morphological a unified combination of traits, while many individual clade (Wiley & Mayden, 2000: 157; discussion by morphological characters may be quite homoplastic Zander, 1998); or (5) the method of virtual fossils (Endress, 1996: 313). used here. The null hypothesis is a fully nested set of pheno- When exemplars of different taxa are clustered to- taxa, without indication of descent with modification gether on a molecular tree, it is impossible to satisfac- of such taxa (Fig. 1). The null hypothesis for the torily infer the phenotype of the shared ancestor or evolution of expressed traits in a genus is that any ancestors. It could be the phenotype of any one of the phenospecies may be derived from any other in spite exemplars or even of a taxon of entirely different phe- of any inferred phylogenetic trees, which give no def- notype. When exemplars of the same taxon are clus- inite information on the phenotype of any ancestor. tered together on a molecular tree, it is straight-for- Falsification of that null is demonstration of one or ward to infer that the phenotype of the immediate more phenoancestors diagramed (e.g., Fig. 5) by mov- shared ancestor is that of the exemplars, rather than ing these (along with all descendants) out of the group all exemplars resulting from multiple convergences as a linked sequence, and leaving a “residuum” of un- from an ancestor of a different phenotype. If the ex- ordered taxa. By extension, with less resolution, one emplars are all one species, the ancestor is that phenogenus of a family may be derived from any oth- species. If they are of different species of one genus, er, unless an ancestor is demonstrable. the ancestor may be inferred to be that genus; or if When exemplars of the same taxon (particularly of genera, then their family, and so on. If two such clus- the same species) are distant from each other on a ters are sister groups, one may infer a particular an- molecular tree, being separated by other taxa at least cestor for each of both clusters, but the phenotype of as sister lineages, the homoplasy is commonly either the immediate shared ancestor of the two clusters is explained as (1) evidence of that taxon or something impossible to infer. It could be one or the other or a quite like it being basal or ancestral to a portion of the different extinct or unstudied taxon of perhaps inter- cladogram, or (2) cryptic or sibling taxa that need dif- mediate phenotype. ferent taxonomic names. Textbook examples of the A solution may be found if exemplars of the same former are given by Futuyma (1998: 456, 470), citing taxon are separated by a lineage of a different pheno- Moritz & al. (1992) where coastal
Recommended publications
  • Benthic Foraminifera Across the Cretaceous/Paleogene Boundary in the Southern Ocean (ODP Site 690): Diversity, Food and Carbonate Saturation
    Marine Micropaleontology 105 (2013) 40–51 Contents lists available at ScienceDirect Marine Micropaleontology journal homepage: www.elsevier.com/locate/marmicro Research paper Benthic foraminifera across the Cretaceous/Paleogene boundary in the Southern Ocean (ODP Site 690): Diversity, food and carbonate saturation Laia Alegret a,⁎, Ellen Thomas b,c a Departamento de Ciencias de la Tierra & Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, Universidad de Zaragoza, Spain b Department of Geology and Geophysics, Yale University, USA c Department of Earth and Environmental Sciences, Wesleyan University, USA article info abstract Article history: The impact of an asteroid at the Cretaceous/Paleogene (K/Pg) boundary triggered dramatic biotic, biogeochem- Received 20 June 2013 ical and sedimentological changes in the oceans that have been intensively studied. Paleo-biogeographical Received in revised form 21 October 2013 differences in the biotic response to the impact and its environmental consequences, however, have been less Accepted 24 October 2013 well documented. We present a high-resolution analysis of benthic foraminiferal assemblages at Southern Ocean ODP Site 690 (Maud Rise, Weddell Sea, Antarctica). Keywords: At this high latitude site, late Maastrichtian environmental variability was high, but benthic foraminiferal assem- Cretaceous/Paleogene boundary fi benthic foraminifera blages were not less diverse than at lower latitudes, in contrast to those of planktic calci ers. Also in contrast to high southern latitudes planktic calcifiers, benthic foraminifera did not suffer significant extinction at the K/Pg boundary, but show export productivity transient assemblage changes and decreased diversity. At Site 690, the extinction rate was even lower (~3%) carbonate saturation than at other sites.
    [Show full text]
  • Fossil Mosses: What Do They Tell Us About Moss Evolution?
    Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca.
    [Show full text]
  • A Framework for Post-Phylogenetic Systematics
    A FRAMEWORK FOR POST-PHYLOGENETIC SYSTEMATICS Richard H. Zander Zetetic Publications, St. Louis Richard H. Zander Missouri Botanical Garden P.O. Box 299 St. Louis, MO 63166 [email protected] Zetetic Publications in St. Louis produces but does not sell this book. Any book dealer can obtain a copy for you through the usual channels. Resellers please contact CreateSpace Independent Publishing Platform of Amazon. ISBN-13: 978-1492220404 ISBN-10: 149222040X © Copyright 2013, all rights reserved. The image on the cover and title page is a stylized dendrogram of paraphyly (see Plate 1.1). This is, in macroevolutionary terms, an ancestral taxon of two (or more) species or of molecular strains of one taxon giving rise to a descendant taxon (unconnected comma) from one ancestral branch. The image on the back cover is a stylized dendrogram of two, genus-level speciational bursts or dis- silience. Here, the dissilient genus is the basic evolutionary unit (see Plate 13.1). This evolutionary model is evident in analysis of the moss Didymodon (Chapter 8) through superoptimization. A super- generative core species with a set of radiative, specialized descendant species in the stylized tree com- promises one genus. In this exemplary image; another genus of similar complexity is generated by the core supergenerative species of the first. TABLE OF CONTENTS Preface..................................................................................................................................................... 1 Acknowledgments..................................................................................................................................
    [Show full text]
  • Ephemerum Homomallum
    Acta Societatis Botanicorum Poloniae Article ID: 8938 DOI: 10.5586/asbp.8938 ORIGINAL RESEARCH PAPER in RECENT DEVELOPMENTS IN TAXONOMY AND PHYLOGENY OF PLANTS Publication History Received: 2020-07-15 Accepted: 2020-08-09 Ephemerum homomallum (Pottiaceae) and Published: 2020-11-24 Torrentaria aquatica (Brachytheciaceae), Handling Editor Beata Zagórska-Marek; University Two Additional American Moss Species of Wrocław, Poland; https://orcid.org/0000-0001- 6385-858X New to Africa , Authors Contributions 1* 2,3 4† Ryszard Ochyra , Jacques Van Rooy , Virginia S. Bryan JVR and RO conceived and 1Department of Bryology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz performed the taxonomic 46, Kraków, 31-512, Poland research and wrote the 2National Herbarium, South African National Biodiversity Institute, Private Bag X101, Pretoria, manuscript; VSB determined the 0001, South Africa specimens of Ephemerum 3School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, homomallum and provided Private Bag 3, Wits, 2050, South Africa taxonomic comments on the 4Department of Biology, Duke University, Box 90338, Durham, 27708-0338, NC, United States species *To whom correspondence should be addressed. Email: [email protected] Funding †Deceased. This work was fnanced through the statutory fund of the W. Szafer Institute of Botany, Polish Abstract Academy of Sciences, and by the South African National Two American species of moss, Ephemerum homomallum Müll. Hal. (Pottiaceae) Biodiversity Institute. and Torrentaria aquatica (A. Jaeger) Ochyra (Brachytheciaceae), are reported as new to Africa, based on collections from the Limpopo and Eastern Cape Competing Interests provinces of South Africa, respectively. Tese discoveries changed the No competing interests have phytogeographical status of both species, which now belong to the Afro-American been declared.
    [Show full text]
  • World Atlas of Biodiversity
    WORLD ATLAS OF BIODIVERSITY EARTH'S LIVING RESOURCES IN THE 21st CENTURY ^ > (\ X >r BRIAN GROOMBRIDGE and MARTIN D. JENKINS UNEP WCMC World Atlas of Biodiversity addresses the remark- ible growth in concern at all levels for living things and the environment and the increased appreciation ' the links between the state of ecosystems and the state of humankind. Building on a wealth of re- search and analysis by the conservation community worldwide, this book provides a comprehensive and accessible view of key global issues in biodiver- sity. It outlines some of the broad ecological relationships between humans and the rest of the iterial world and summarizes information on the health of the planet. Opening with an outline of some fundamental aspects of material cycles and energy flow in the biosphere, the book goes on to discuss the expansion of this diversity through geo- logical time and the pattern of its distribution over the surface of the Earth, and analyzes trends in the condition of the main ecosystem types and the species integral to them. Digitized by tine Internet Arciiive in 2010 witii funding from UNEP-WCIVIC, Cambridge Iittp://www.arcliive.org/details/worldatlasofbiod02groo World Atlas of Biodiversity Published in association witli Ihe contents of this volume do not UNEP-WCMC by the University of necessarily reflect the views or policies of California Press UNEP-WCfvIC, contributory organizations, University of California Press editors or publishers. The designations Berl<eley and Los Angeles, California employed and the presentations do not imply University of California Press, Ltd. the expression of any opinion whatsoever on London, England the part of UNEP-WCIvIC or contributory organizations, editors or publishers © 2002 UNEP World Conservation concerning the legal status of any country, Monitoring Centre territory, city or area or its authority, or UNEP-WCMC concerning the delimitation of its frontiers or 219 Huntingdon Road boundaries or the designation of its name or Cambridge CB3 DDL, UK allegiances.
    [Show full text]
  • A Note on Pottia Intermedia (Turner) Fürnr. (Pottiaceae, Bryopsida) with Special Reference to Its Phylogeny and New Localities in SW Japan
    Hikobia 16: 67–78. 2011 A note on Pottia intermedia (Turner) Fürnr. (Pottiaceae, Bryopsida) with special reference to its phylogeny and new localities in SW Japan YUYA INOUE, HIROMI TSUBOTA, HARUMORI KUBO, SHINJI UCHIDA, SEIJI MUKAI, MASAKI SHIMAMURA AND HIRONORI DEGUCHI INOUE, Y., TSUBOTA, H., KUBO, H., UCHIDA, S., MUKAI, S., SHIMAMURA, M. & DEGUCHI, H. 2011. A note on Pottia intermedia (Turner) Fürnr. (Pottiaceae, Bryop- sida) with special reference to its phylogeny and new localities in SW Japan. Hikobia 16: 67–78. Eight new localities of Pottia intermedia (Turner) Fürnr. are recorded from Honshu and Shikoku (Hiroshima, Kagawa and Ehime Prefs.), SW Japan. Although it is widely distributed in the world, this species is a rare moss in Japan and is previously known from Honshu, Shikoku and Kyushu for Japan. Japanese populations of P. intermedia grow on soil in open sites, especially in citrus orchards. Analytical illustrations with SEM images of peristome, spores and leaf papillae and a discussion on the phyloge- netic position of this species are provided based on the materials collected. Yuya Inoue, Depertment of Biological Science, Faculty of Science, Hiroshima Univer- sity, 1–3–1 Kagamiyama, Higashi-hiroshima-shi, Hiroshima-ken 739–8526, Japan. Hiromi Tsubota, Harumori Kubo, Shinji Uchida & Seiji Mukai, Miyajima Natural Botanical Garden, Graduate School of Science, Hiroshima University, Mitsumaruko- yama 1156–2, Miyajima-cho, Hatsukaichi-shi, Hiroshima-ken 739–0543, Japan. Masaki Shimamura & Hironori Deguchi, Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1–3–1, Higashi-hiroshima-shi, Hiroshima-ken 739–8526, Japan. mum likelihood analysis. Introduction Pottia intermedia (Turner) Fürnr (Pottiaceae) Materials and methods is an acrocarpous moss, and despite its wide dis- tribution range in the world, it is a rare species For SEM observation and DNA data, fresh in Japan.
    [Show full text]
  • THE LAZARUS AMMONOID FAMILY GONIATITIDAE, the TETRANGULARLY COILED ENTOGONITIDAE, and MISSISSIPPIAN BIOGEOGRAPHY Author(S): DIETER KORN, CHRISTIAN KLUG, ROYAL H
    THE LAZARUS AMMONOID FAMILY GONIATITIDAE, THE TETRANGULARLY COILED ENTOGONITIDAE, AND MISSISSIPPIAN BIOGEOGRAPHY Author(s): DIETER KORN, CHRISTIAN KLUG, ROYAL H. MAPES Source: Journal of Paleontology, 79(2):356-365. Published By: The Paleontological Society DOI: http://dx.doi.org/10.1666/0022-3360(2005)079<0356:TLAFGT>2.0.CO;2 URL: http://www.bioone.org/doi/full/10.1666/0022-3360%282005%29079%3C0356%3ATLAFGT %3E2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. J. Paleont., 79(2), 2005, pp. 356±365 Copyright q 2005, The Paleontological Society 0022-3360/05/0079-356$03.00 THE LAZARUS AMMONOID FAMILY GONIATITIDAE, THE TETRANGULARLY COILED ENTOGONITIDAE, AND MISSISSIPPIAN BIOGEOGRAPHY DIETER KORN,1 CHRISTIAN KLUG,2 AND ROYAL H. MAPES3 1Museum fuÈr Naturkunde der Humboldt-UniversitaÈt zu Berlin, Invalidenstraûe 43, D-10115 Berlin, Germany, ,[email protected]., 2PalaÈontologisches Institut und Museum, UniversitaÈt ZuÈrich, Karl-Schmid-Str.
    [Show full text]
  • Late Ludfordian and Early Pridoli Monograptids from the Polish Lowland
    LATE LUDFORDIAN AND EARLY PRIDOLI MONOGRAPTIDS FROM THE POLISH LOWLAND ADAM URBANEK Urbanek, A. 1997. Late Ludfordian and early Pfidoli monograptids from the Polish Low­ land. In: A. Urbanek and L. Teller (eds), Silur ian Graptolite Faunas in the East European Platform: Stratigraphy and Evolution. - Palaeontologia Polonica 56, 87-23 1. Graptolites etched from the Mielnik-I wellcore (EPoland) reveal the main features of the development of monograptid faunas within the late Ludfordian-early Pi'idoli interval. Fifteen species and subspecies are described and Monog raptus (Slovinog raptus) subgen. n. as well as Neocolonograptu s gen. n. are erected. Morphology of many species has been described adequately for the first time and their systematic position corrected. Four grap­ tolite zones of the late Ludfordian are distinguished. The late Ludfordian fauna, which appears after the kozlowskii Event, is composed mainly of immigrants dominated by hooded monograptids. They reappear as a result of the Lazarus effect. Some of them initiated the lobate-spinose phyletic line terminating with Mon ograptus (Uncinatograptus) spineus, a highly characteristic index species. The lobate and the lobate-spinose types are accompanied by bilobate forms (Pse udomonoclimac is latilobu s). The graptolite sequence indicates that the appeara nce of the early Pfidoli fauna was preceded by a biotic crisis, namely the spineus Event. Therefore this fauna is made up of a few holdovers and some new elements which developed from Pristiograptus dubiu s stem lineage (Neocolonograptus gen. n., Istrograpt us Tsegelnjuk). This early assemblage, com­ posed of bilobate forms, was later enriched by hooded monograptid s, reappearing after the spineus Event.
    [Show full text]
  • Current Status of Philippine Mollusk Museum Collections and Research, and Their Implications on Biodiversity Science and Conservation
    Philippine Journal of Science 147 (1): 123-163, March 2018 ISSN 0031 - 7683 Date Received: 28 Feb 2017 Current Status of Philippine Mollusk Museum Collections and Research, and their Implications on Biodiversity Science and Conservation Dino Angelo E. Ramos2*, Gizelle A. Batomalaque1,3, and Jonathan A. Anticamara1,2 1Ecology and Taxonomy Academic Group (ETAG), Institute of Biology, University of the Philippines, Diliman, Quezon City 1101 Philippines 2UP Biology Invertebrate Museum, Institute of Biology, University of the Philippines, Diliman, Quezon City 1101 Philippines 3Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania 19104 USA Mollusks are an invaluable resource in the Philippines, but recent reviews on the status of museum collections of mollusks or research trends in the country are lacking. Such assessments can contribute to a more comprehensive evaluation of natural history museums in the Philippines, as well as biodiversity management. This review showed that local museums in the Philippines have much to improve in terms of their accessibility and geographic coverage in order to effectively cater to research and conservation needs of the country. Online access to databases was lacking for local museums, making it cumbersome to retrieve collection information. The UST museum held the most species and subspecies across all museums (4899), comparable to the national museums of countries such as the USA and France. In terms of size, there were larger Philippine mollusk collections in museums abroad. Majority of mollusk specimens come from Regions 4 and 7, while the CAR and Region 12 were least sampled. Publications on Philippine mollusks are dominated by taxonomic and biodiversity research.
    [Show full text]
  • Using Models to Correct Data: Paleodiversity and the Fossil Record
    Forthcoming in Synthese Using Models to Correct Data: Paleodiversity and the Fossil Record Alisa Bokulich Department of Philosophy Boston University [email protected] Abstract Despite an enormous philosophical literature on models in science, surprisingly little has been written about data models and how they are constructed. In this paper, I examine the case of how paleodiversity data models are constructed from the fossil data. In particular, I show how paleontologists are using various model-based techniques to correct the data. Drawing on this research, I argue for the following related theses: First, the 'purity' of a data model is not a measure of its epistemic reliability. Instead it is the fidelity of the data that matters. Second, the fidelity of a data model in capturing the signal of interest is a matter of degree. Third, the fidelity of a data model can be improved 'vicariously', such as through the use of post hoc model-based correction techniques. And, fourth, data models, like theoretical models, should be assessed as adequate (or inadequate) for particular purposes. I. Introduction One of the most influential early papers in thinking about the philosophy of data is Patrick Suppes’s (1962) paper “Models of Data.” In this paper, Suppes introduces the seminal notion of a ‘data model’ and the related concept of a hierarchy of data models. He challenges the simplistic view that there are just two things: ‘theory’ and ‘data’, which are directly compared with one another, and argues that “one of the besetting sins of philosophers of science is to overly simplify the structure of science.
    [Show full text]
  • Vegetative Propagules
    Glime, J. M. 2017. Adaptive Strategies: Vegetative Propagules. Chapt. 4-10. In: Glime, J. M. Bryophyte Ecology. Volume 1. 4-10-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 24 April 2021 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 4-10 ADAPTIVE STRATEGIES: VEGETATIVE PROPAGULES TABLE OF CONTENTS Vegetative Reproduction ................................................................................................................................... 4-10-2 Adaptations ....................................................................................................................................................... 4-10-8 Fragmentation ................................................................................................................................................... 4-10-8 Leaves and Stems ..................................................................................................................................... 4-10-10 Regenerants .............................................................................................................................................. 4-10-14 Protonemata ............................................................................................................................................. 4-10-14 Perianths ..................................................................................................................................................
    [Show full text]
  • Possible Pitfalls in the Procedure for Paleobiodiversity-Dynamics Analysis
    Geologos, 2008, 14 (1): 37–50 Possible pitfalls in the procedure for paleobiodiversity-dynamics analysis Pułapki analizy paleo-bioróŜnorodności DMITRY A. RUBAN 1,2 * & A.J. (T OM ) VAN LOON 3 1 Department of Geology, University of Pretoria, Pretoria 0002, South Africa 2 address for correspondence: P.O.Box 7333, Rostov-na-Donu, 344056, Russia; e-mail: [email protected], [email protected] * corresponding author 3 Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznan, Poland; e-mail: [email protected] Abstract The changes in the diversity of specific taxa during certain parts of the geological past (paleobiodiversity dynamics) can, in principle, be established by counting the number of the fossil taxa present (worldwide or in a specific study area) in rocks dated for the time interval under study. Numerous obstacles are present, however, for instance in the form of lacking field data, disappeared collections, ambiguous identifications, temporary ‘disappearence’ of taxa, and dating problems. One major problem is the fact that, particularly in regional stud- ies in some countries, a local, regional or national chronostratigraphic terminology is used rather than the chronostratigraphy recommended by the International Stratigraphic Commision of the International Union of Geological Sciences. This hampers international correlation and makes precise global paleodiversity-dynamics analyses extremely difficult. A reliable insight into the true paleodiversity dynamics requires not only that the various problems are recognized, but also that their consequences are eliminated or, if this is impossible, minimized. This is particularly important if the effects of mass extinctions on fauna and flora are investigated.
    [Show full text]