Artificial Intelligence
Total Page:16
File Type:pdf, Size:1020Kb
EQUITY RESEARCH INDUSTRY UPDATE June 3, 2021 Artificial Intelligence The Next Technology Frontier TECHNOLOGY/SEMICONDUCTORS & COMPONENTS SUMMARY Artificial Intelligence, once the stuff of science fiction, has arrived. Interest is high and adoption increasing from supercomputers to smartphones. Investors have taken note and rewarded early leaders like NVIDIA. Advances in semiconductors and software have enabled sophisticated neural networks, further accelerating AI development. Models continue to grow in size and sophistication, delivering transformative breakthroughs in image recognition, natural language processing, and recommendation systems. We see AI as a leading catalyst for Industry 4.0, a disruptive technology with broad societal/economic benefits. In this report, we explore key concepts underpinning the evolution of AI from a hardware and software perspective. We consulted more than a dozen leading public and private companies working on the latest AI platforms. We see a large and rapidly expanding AI accelerator opportunity. We estimate AI hardware platform TAM at $105B by 2025, a 34% CAGR. KEY POINTS ■ AI/ML/DL: Artificial Intelligence enables machines to simulate human intelligence. Machine Learning (ML) is one of the most prevalent AI techniques, where data- trained models allow machines to make informed predictions. Within ML, Deep Learning (DL) uses Artificial Neural Networks to replicate the compute capabilities of biological neurons. DL is showing promise in AI research, providing machines the ability to self-learn. ■ Drivers: We highlight three factors driving the latest DL breakthroughs: 1) Rapid Data Growth—global data is expected to reach 180ZB by 2025 (25% CAGR), necessitating AI to process this data and create meaningful inferences; 2) Advanced Processors—the decline of Moore’s Law and shift to heterogeneous computing have sparked specialized AI silicon development, providing critical performance gains; 3) Neural Networks—DL performance scales with exponential data and neural network model growth. ■ Hardware/Software: As Moore’s Law sunsets, we see diminishing performance gains from transistor shrinkage. Semiconductor engineers are increasingly focused on architectural improvements. The market is seeing a growing trend toward heterogeneous computing, where multiple processors (GPUs, ASICs, FPGAs, DPUs, CPUs) work together to improve performance. Software is critical to accelerated AI performance and seeing corresponding incremental investment. ■ Applications/Markets: AI workloads are classified as Training or Inference. Training is the creation of an AI model through repetitive data processing/learning. Training is compute-intensive, requiring the most advanced AI hardware/software. Generally located in hyperscale DC, we estimate training TAM at $21B by 2025. Inference utilizes a trained model to predict results from a dataset. We see inference increasingly moving to edge devices, improving speed/cost. Led by Smartphones/PCs/IoT/Robotics/Auto, we see an $84B Edge market by 2025. ■ Competitive Backdrop: NVIDIA is the clear AI leader, with dominant training share (~99%) and growing inference (~20%). Being nimble is key, as competitors Rick Schafer Wei Mok must adapt quickly to a rapidly changing market. Hyperscalers are developing in- 720-554-1119 212-667-8387 [email protected] [email protected] house AI solutions for custom/proprietary workloads, where merchant silicon is not Andrew Hummel, CFA available. Traditional semi vendors are consolidating to strengthen Cloud/Edge AI 312-360-5946 offerings. AI has also inspired a wave of semiconductor startups. [email protected] For analyst certification and important disclosures, see the Disclosure Disseminated: June 3, 2021 23:45 EDT; Produced: June 3, 2021 23:36 EDT Appendix. Oppenheimer & Co Inc. 85 Broad Street, New York, NY 10004 Tel: 800-221-5588 Fax: 212-667-8229 TECHNOLOGY / SEMICONDUCTORS & COMPONENTS Contents Artificial Intelligence: The Next General-Purpose Plateau of Clock Speeds and the Megahertz Myth ............ 34 Technology ............................................................................. 3 Measuring Performance with FLOPS and TOPS .............. 34 AI: The Next General-Purpose Technology .......................... 3 Benchmarking AI Training/Inference Results ..................... 37 The Industrial Revolution and Industry 4.0 ........................... 3 ResNet-50 ..................................................................... 37 Single Shot Detection (SSD) ........................................ 37 Artificial Intelligence .............................................................. 5 Neural Machine Translation (NMT) ............................... 37 Background and AI Classification ......................................... 5 Transformer ................................................................... 37 Artificial Intelligence Fundamentals ...................................... 7 NLP (BERT) .................................................................. 38 Machine Learning ............................................................ 7 Deep Learning Recommendation Model (DLRM) ......... 38 Training ........................................................................... 9 Mini-Go .......................................................................... 38 Inference ........................................................................ 11 Deep Learning ............................................................... 11 AI Accelerators in Datacenters ........................................... 40 Artificial Neural Networks ............................................... 12 Enterprise Servers ............................................................. 40 AI Applications.................................................................... 13 Cloud Computing ............................................................... 40 Image Processing .......................................................... 13 Hyperscalers ...................................................................... 42 Natural Language Processing........................................ 13 Datacenter AI Startups....................................................... 44 Recommendation Systems ............................................ 13 AI Accelerators at the Edge................................................. 45 Case Study: History of AI Cycles ........................................ 15 Edge Infrastructure: Cloud and Telco ................................ 46 Robotics: Rise of Machines ............................................... 47 Moore’s Law and the Implications on Semiconductor Autonomous Vehicles: New Age of Transportation ............ 49 Industry ................................................................................. 17 Endpoint Devices: PCs, Smartphones, Internet of Things . 53 Moore’s Law: Industry Guide to Innovation in the Last Half PCs and Smartphones .................................................. 53 Century ............................................................................... 17 Embedded ..................................................................... 54 Dennard Scaling ............................................................ 18 Silicon IP, Custom Silicon ............................................. 55 A New Compute Paradigm: Emergence of AI Specialized Silicon ................................................................................. 19 Leading Public Companies Developing AI Silicon ........... 56 Achronix ............................................................................. 56 AI Hardware: CPU, GPU, ASIC, FPGA, DPU ....................... 21 AMD ................................................................................... 57 AI Silicon: It Starts with the Hardware ................................ 21 Broadcom .......................................................................... 57 CPU: x86 and ARM ....................................................... 22 Intel .................................................................................... 57 GPU .............................................................................. 24 Marvell ............................................................................... 58 ASIC .............................................................................. 25 NVIDIA ............................................................................... 59 FPGA ............................................................................. 26 NXP ................................................................................... 60 DPU ............................................................................... 27 Qualcomm ......................................................................... 61 Heterogenous Computing: All Chips Play a Role ................... 29 Xilinx .................................................................................. 61 AI/ML Software, Frameworks/Libraries; Software 2.0 ....... 30 Leading Startup Companies Developing AI Silicon ......... 63 Programming Languages ................................................... 30 Blaize Semi ........................................................................ 63 Deep Learning Frameworks and Libraries ........................ 31 Cerebras Systems ............................................................. 63 TensorFlow .................................................................... 32 EdgeCortix ........................................................................