big data and cognitive computing Article Fast and Effective Retrieval for Large Multimedia Collections Stefan Wagenpfeil 1,* , Binh Vu 1 , Paul Mc Kevitt 2 and Matthias Hemmje 1 1 Faculty of Mathematics and Computer Science, University of Hagen, Universitätsstrasse 1, D-58097 Hagen, Germany;
[email protected] (B.V.);
[email protected] (M.H.) 2 Academy for International Science & Research (AISR), Derry BT48 7JL, UK;
[email protected] * Correspondence:
[email protected] Abstract: The indexing and retrieval of multimedia content is generally implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results, but also leads to more complex graph structures. However, graph traversal-based algorithms for similarity are quite inefficient and computationally expensive, especially for large data structures. To deliver fast and effective retrieval especially for large multimedia collections and multimedia big data, an efficient similarity algorithm for large graphs in particular is desirable. Hence, in this paper, we define a graph projection into a 2D space (Graph Code) and the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph traversals due to the simpler processing model and the high level of parallelization. As a consequence, we demonstrate experimentally that the effectiveness of retrieval also increases substantially, as the Graph Code facilitates more levels of detail in feature fusion. These levels of detail also support an increased trust prediction, particularly for fused social media content.