PSTPIP2 Inhibits Cisplatin-Induced Acute Kidney Injury by Suppressing

Total Page:16

File Type:pdf, Size:1020Kb

PSTPIP2 Inhibits Cisplatin-Induced Acute Kidney Injury by Suppressing Zhu et al. Cell Death and Disease (2020) 11:1057 https://doi.org/10.1038/s41419-020-03267-2 Cell Death & Disease ARTICLE Open Access PSTPIP2 inhibits cisplatin-induced acute kidney injury by suppressing apoptosis of renal tubular epithelial cells Hong Zhu1, Wenjuan Jiang1,HuiziZhao1, Changsheng He1, Xiaohan Tang1, Songbing Xu1,ChuantingXu1,RuiFeng1, Jun Li1,TaotaoMa1 and Cheng Huang1 Abstract Cisplatin (CP) is an effective chemotherapeutic agent widely used in the treatment of various solid tumours. However, CP nephrotoxicity is an important limitation for CP use; currently, there is no method to ameliorate cisplatin-induced acute kidney injury (AKI). Recently, we identified a specific role of proline–serine–threonine phosphatase-interacting protein 2 (PSTPIP2) in cisplatin-induced AKI. PSTPIP2 was reported to play an important role in a variety of diseases. However, the functions of PSTPIP2 in experimental models of cisplatin-induced AKI have not been extensively studied. The present study demonstrated that cisplatin downregulated the expression of PSTPIP2 in the kidney tissue. Administration of AAV-PSTPIP2 or epithelial cell-specific overexpression of PSTPIP2 reduced cisplatin-induced kidney dysfunction and inhibited apoptosis of renal tubular epithelial cells. Small interfering RNA-based knockdown of PSTPIP2 expression abolished PSTPIP2 regulation of epithelial cell apoptosis in vitro. Histone acetylation may impact gene expression at the epigenetic level, and histone deacetylase (HDAC) inhibitors were reported to prevent cisplatin- induced nephrotoxicity. The UCSC database was used to predict that acetylation of histone H3 at lysine 27 (H3K27ac) 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; induces binding to the PSTPIP2 promoter, and this prediction was validated by a ChIP assay. Interestingly, an HDAC- specific inhibitor (TSA) was sufficient to potently upregulate PSTPIP2 in epithelial cells. Histone acetylation-mediated silencing of PSTPIP2 may contribute to cisplatin nephrotoxicity. PSTPIP2 may serve as a potential therapeutic target in the prevention of cisplatin nephrotoxicity. Introduction side effects of cisplatin3,4. The existing therapy for cis- Cisplatin is one of the most generally used and highly platin nephrotoxicity in humans does not completely effective chemotherapy drugs for the treatment of various prevent AKI occurrence5,6. Therefore, there is an urgent types of human cancer, such as testicular, ovarian, head need to find an effective therapy based on the mechanism and neck, bladder, bone, muscle, small and non-small cell of cisplatin nephrotoxicity. lung and cervical cancers, sarcomas and lymphomas1,2. Apoptosis of tubular epithelial cells and renal inflam- Unfortunately, the clinical application of cisplatin is mation have been shown to be a prominent and char- severely limited by considerable side effects associated acteristic feature of cisplatin-induced AKI7,8. Recent with nephrotoxicity, which is one of the most common studies suggested that proline–serine–threonine phosphatase-interacting protein 2 (PSTPIP2) has immu- nomodulatory activity and is closely associated with cell 9–11 Correspondence: Taotao Ma ([email protected])or proliferation and apoptosis . PSTPIP2 is a member of Cheng Huang ([email protected]) the Pombe Cdc15 homology (PCH) family of proteins 1 fl In ammation and Immune Mediated Diseases Laboratory of Anhui Province, located on chromosome 18 and is known as a protein Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China important for the organisation of the cytoskeleton at the Edited by B. Zhivotovsky © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a linktotheCreativeCommons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Official journal of the Cell Death Differentiation Association Zhu et al. Cell Death and Disease (2020) 11:1057 Page 2 of 13 cell membrane12,13. PSTPIP2 is expressed in various and blood urea nitrogen (BUN) levels were significantly organs and tissues, such as brain, heart, kidney, lung, liver, increased in the CP group (Fig. 1c, d). These results etc. At the cellular level, the expression of PSTPIP2 was suggest that CP induced significant lesions. Western blot detected in monocytes, lymphocytes, granulocytes and analysis showed that KIM-1 (kidney injury molecule-1) mast cells. PSTPIP2 plays an imperative role in tumours, was upregulated in the kidneys of the CP group (Fig. 1e). autoimmune diseases and other diseases by influencing The protein level of PSTPIP2 in the kidney tissue of the cell proliferation, apoptosis and secretion of inflammatory CP group was decreased (Fig. 1f). Renal tubular epithelial – factors14 18. Ales Drobek et al. showed that PSTPIP2 cells were reported as the main site of cell injury during binds lipid phosphatase SHIP1 and protein tyrosine kinase cisplatin nephrotoxicity. Then, we used HK-2 cells to Csk (negative regulators of inflammation) to prevent the induce acute kidney injury in vitro. CP at 2.5, 5, 10, 15 and development of auto-inflammation. Baum et al. reported 20 μM concentrations was used to determine the optimal that PSTPIP2 can bind and interact with the intracellular concentration of cisplatin. As shown in Fig. 2a, b, the FasL domain, regulate FasL localisation in the cytoplasm, protein levels of KIM-1 and PSTPIP2 were increased and and coordinate apoptosis of HEK 293T, COS-1, RBL2H3 decreased, respectively, in a dose-dependent manner after and other cells. Moreover, Halle et al. found that PSTPIP2 the treatment with cisplatin. Therefore, the concentra- controls the function of activated caspase-3 by acting as a tions of cisplatin in the subsequent experiment in HK-2 substrate of PTP-PEST and plays an important role in cell cells were 20 μM. Western blot analysis showed that KIM- apoptosis10,19,20. These studies suggest that investigation 1 is significantly upregulated in CP-treated HK-2 cells of the effect of PSTPIP2 on apoptosis of renal tubular (Fig. 2c). Moreover, western blot results demonstrated epithelial cells can promote the understanding of the that the expression of PSTPIP2 was downregulated in CP- pathogenesis of cisplatin-induced AKI and provide ideas treated HK-2 cells (Fig. 2d). Similar patterns of KIM-1 and for clinical prevention and treatment of cisplatin-induced PSTPIP2 expression were demonstrated by immuno- AKI to identify new drug targets. fluorescence staining (Fig. 2e, f). Collectively, these results In this study, we investigated whether PSTPIP2 can suggest that PSTPIP2 expression is decreased in cisplatin- suppress cisplatin nephrotoxicity and what are the treated mice and in cisplatin-treated HK-2 cells. mechanisms of this effect. Our results show that admin- istration of AAV-PSTPIP2 or epithelial cell-specific PSTPIP2 administration suppressed cisplatin-induced overexpression of PSTPIP2 reduces cisplatin-induced kidney dysfunction kidney dysfunction and inhibits apoptosis of renal tubu- To examine the functional importance of PSTPIP2 in lar epithelial cells. Interestingly, we have detected that the progressive kidney injury in a mouse model of AKI, histone H3 acetylated at lysine 27 (H3K27ac) binds to the rAAV9–PSTPIP2 was confirmed as an efficient means of PSTPIP2 promoter. Furthermore, an HDAC inhibitor delivery in CP-treated AKI mice (Fig. 3a, b). Macro- trichostatin A (TSA) can upregulated PSTPIP2 in vivo scopically, rAAV9–PSTPIP2 can significantly improve and in vitro. In conclusion, this study is the first to renal function, which is related to improved preservation demonstrate that PSTPIP2 plays a pivotal role in AKI and of kidney morphology. Histological analysis with periodic may be a potential therapeutic target for cisplatin acid-Schiff (PAS) staining revealed a significant decrease nephrotoxicity. in the tissue damage in the rAAV9–PSTPIP2 group compared to that in the CP group (Fig. 3c). Body weight in Results the rAAV9–PSTPIP2 group was slightly increased com- PSTPIP2 was downregulated in vivo and in vitro pared to that in the CP group and was close to that in the To explore the role of PSTPIP2 in cisplatin-induced normal group (Fig. 3d). Consistently, an increase in the Cr acute kidney injury (AKI) model, AKI mice model was and BUN levels was significantly attenuated by initially validated by assessing the effects of cisplatin on rAAV9–PSTPIP2 (Fig. 3e, f). Western blot analysis the renal injury markers and the levels of PSTPIP2 on the showed that KIM-1 protein expression was significantly third day after intraperitoneal injection21. Histopatholo- upregulated in the CP treatment group, and gical changes are direct indicators of kidney injury. The rAAV9–PSTPIP2 can reduce the expression of KIM-1 mice had messy fur and slow movements on the third day protein (Fig. 3g). These results indicate that
Recommended publications
  • Inflammasome-Independent IL-1Β Mediates Autoinflammatory Disease in Pstpip2-Deficient Mice
    Inflammasome-independent IL-1β mediates autoinflammatory disease in Pstpip2-deficient mice Suzanne L. Cassela,b,c,1, John R. Janczya,c, Xinyu Bingd, Shruti P. Wilsonb, Alicia K. Oliviere, Jesse E. Oterof, Yoichiro Iwakurag,h, Dmitry M. Shayakhmetovi, Alexander G. Bassukd, Yousef Abu-Amerj, Kim A. Brogdenk, Trudy L. Burnsd,l, Fayyaz S. Sutterwalaa,b,c,m,1, and Polly J. Fergusond,1,2 aInflammation Program, bDepartment of Internal Medicine, cGraduate Program in Immunology, dDepartment of Pediatrics, eDepartment of Pathology, fDepartment of Orthopedics, kDows Institute for Dental Research and Department of Periodontics, College of Dentistry, and lDepartment of Epidemiology, University of Iowa, Iowa City, IA 52242; gResearch Institute for Biomedical Sciences, Tokyo University of Science Yamasaki 2669, Noda, Chiba 278-0022, Japan; hCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; iDivision of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195; jDepartment of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110; and mVeterans Affairs Medical Center, Iowa City, IA 52241 Edited by Ruslan Medzhitov, Yale University School of Medicine, New Haven, CT, and approved December 13, 2013 (received for review October 3, 2013) Chronic recurrent multifocal osteomyelitis (CRMO) is a human auto- of disease (9). Although it is known that cmo mice have a dysre- inflammatory disorder that primarily affects bone. Missense muta- gulated innate immune system, it is not clear what inflammatory tion (L98P) of proline-serine-threonine phosphatase-interacting pathway is critical for disease. protein 2 (Pstpip2) in mice leads to a disease that is phenotypically Mutations within NLRP3 (also known as NALP3 or cryopyrin) similar to CRMO called chronic multifocal osteomyelitis (cmo).
    [Show full text]
  • Viewed by the Institutional Lab- M2mws Were Counted, and 1.03106 Viable Cells Were Suspended in Oratory Animal Care and Use Committee of Nagoya City University
    BASIC RESEARCH www.jasn.org Colony-Stimulating Factor-1 Signaling Suppresses Renal Crystal Formation † Kazumi Taguchi,* Atsushi Okada,* Hiroshi Kitamura, Takahiro Yasui,* Taku Naiki,* Shuzo Hamamoto,* Ryosuke Ando,* Kentaro Mizuno,* Noriyasu Kawai,* Keiichi Tozawa,* ‡ ‡ † Kenichi Asano, Masato Tanaka, Ichiro Miyoshi, and Kenjiro Kohri* Departments of *Nephro-urology, and †Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and ‡Laboratory of Immune Regulation, School of Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan ABSTRACT We recently reported evidence suggesting that migrating macrophages (Mws) eliminate renal crystals in hyperoxaluric mice. Mwscanbeinflammatory (M1) or anti-inflammatory (M2), and colony-stimulating factor-1 (CSF-1) mediates polarization to the M2Mw phenotype. M2Mws promote renal tissue repair and regeneration, but it is not clear whether these cells are involved in suppressing renal crystal formation. We investigated the role of M2Mws in renal crystal formation during hyperoxaluria using CSF-1–deficient mice, which lack M2Mws. Compared with wild-type mice, CSF-1–deficient mice had significantly higher amounts of renal calcium oxalate crystal deposition. Treatment with recombinant human CSF-1 increased the expression of M2-related genes and markedly decreased the number of renal crystals in both CSF-1– deficient and wild-type mice. Flow cytometry of sorted renal Mws showed that CSF-1 deficiency resulted in a smaller population of CD11b+F4/80+CD163+CD206hi cells, which represent M2-like Mws. Additionally, transfusion of M2Mws into CSF-1–deficient mice suppressed renal crystal deposition. In vitro phagocytosis assays with calcium oxalate monohydrate crystals showed a higher rate of crystal phagocytosis by M2- polarized Mws than M1-polarized Mws or renal tubular cells.
    [Show full text]
  • Critical Role for Inflammasome-Independent IL-1Β Production in Osteomyelitis
    Critical role for inflammasome-independent IL-1β production in osteomyelitis John R. Lukensa, Jordan M. Grossa, Christopher Calabreseb, Yoichiro Iwakurac, Mohamed Lamkanfid,e, Peter Vogelf, and Thirumala-Devi Kannegantia,1 aDepartment of Immunology, bSmall Animal Imaging Core, and fAnimal Resources Center and the Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN 38105; cInstitute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; and dDepartmentofBiochemistryand eDepartment of Medical Protein Research, Ghent University, B-9000 Ghent, Belgium Edited by Ruslan Medzhitov, Yale University School of Medicine, New Haven, CT, and approved December 4, 2013 (received for review October 3, 2013) The immune system plays an important role in the pathophysiology signal through the IL-1 receptor (IL-1R) to elicit potent proin- of many acute and chronic bone disorders, but the specific in- flammatory responses (10). IL-1β is generated in a biologically flammatory networks that regulate individual bone disorders remain inactive proform that requires protease-mediated cleavage to be to be elucidated. Here, we characterized the osteoimmunological secreted and elicit its proinflammatory functions. Caspase-1– underpinnings of osteolytic bone disease in Pstpip2cmo mice. These mediated cleavage of IL-1β following inflammasome complex mice carry a homozygous L98P missense mutation in the Pombe formation is the major mechanism responsible for secretion of β Cdc15 homology family phosphatase PSTPIP2 that is responsible bioactive IL-1 in many disease models (11). Inflammasome- β for the development of a persistent autoinflammatory disease re- independent sources of IL-1 have also been suggested to con- sembling chronic recurrent multifocal osteomyelitis in humans.
    [Show full text]
  • PSTPIP2 Deficiency in Mice Causes Osteopenia and Increased Differentiation of Multipotent Myeloid Precursors Into Osteoclasts
    From bloodjournal.hematologylibrary.org at MRC LAB OF MOLECULAR BIOLOGY on October 12, 2012. For personal use only. PHAGOCYTES, GRANULOCYTES, AND MYELOPOIESIS PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts Violeta Chitu,1 Viorel Nacu,1 Julia F. Charles,2,3 William M. Henne,4 Harvey T. McMahon,5 Sayan Nandi,1 Halley Ketchum,1 Renee Harris,1 Mary C. Nakamura,2,3 and E. Richard Stanley1 1Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY; 2Department of Medicine and Rosalind Russell Arthritis Center, University of California, San Francisco, San Francisco, CA; 3Medical Service, Veterans Administration Medical Center, San Francisco, CA; 4Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Weill Hall, Ithaca, NY; and 5Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, United Kingdom Missense mutations that reduce or abro- serum levels of the pro-osteoclastogenic probe the structural requirements for PST- gate myeloid cell expression of the F-BAR factor, MIP-1␣, were elevated and CSF-1 PIP2 suppression of osteoclast develop- domain protein, proline serine threonine receptor (CSF-1R)–dependent produc- ment. PSTPIP2 tyrosine phosphorylation phosphatase-interacting protein 2 (PST- tion of MIP-1␣ by macrophages was in- and a functional F-BAR domain were es- PIP2), lead to autoinflammatory disease creased. Treatment of cmo mice with a sential for PSTPIP2 inhibition of TRAP involving extramedullary hematopoiesis, dual specificity CSF-1R and c-Kit inhibi- expression and osteoclast precursor fu- skin and bone lesions. However, little is tor, PLX3397, decreased circulating sion, whereas interaction with PEST-type known about how PSTPIP2 regulates os- MIP-1␣ and ameliorated the extramedul- phosphatases was only required for sup- teoclast development.
    [Show full text]
  • Transdifferentiation of Human Mesenchymal Stem Cells
    Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone
    [Show full text]
  • Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are
    cells Article Fibroblasts from the Human Skin Dermo-Hypodermal Junction are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling Valérie Haydont 1,*, Véronique Neiveyans 1, Philippe Perez 1, Élodie Busson 2, 2 1, 3,4,5,6, , Jean-Jacques Lataillade , Daniel Asselineau y and Nicolas O. Fortunel y * 1 Advanced Research, L’Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France; [email protected] (V.N.); [email protected] (P.P.); [email protected] (D.A.) 2 Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), 91223 CEDEX Brétigny sur Orge, France; [email protected] (É.B.); [email protected] (J.-J.L.) 3 Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France 4 INSERM U967, 92260 Fontenay-aux-Roses, France 5 Université Paris-Diderot, 75013 Paris 7, France 6 Université Paris-Saclay, 78140 Paris 11, France * Correspondence: [email protected] (V.H.); [email protected] (N.O.F.); Tel.: +33-1-48-68-96-00 (V.H.); +33-1-60-87-34-92 or +33-1-60-87-34-98 (N.O.F.) These authors contributed equally to the work. y Received: 15 December 2019; Accepted: 24 January 2020; Published: 5 February 2020 Abstract: Human skin dermis contains fibroblast subpopulations in which characterization is crucial due to their roles in extracellular matrix (ECM) biology.
    [Show full text]
  • Viewer Tool ( 4
    BRIEF COMMUNICATION www.jasn.org Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes † † † ‡ † Jia Fu,* Chengguo Wei, Kyung Lee, Weijia Zhang, Wu He, Peter Chuang, Zhihong Liu,* † and John Cijiang He § *National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; †Division of Nephrology, Department of Medicine, ‡Flow Cytometry Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York; §Renal Program, James J. Peters VA Medical Center at Bronx, New York. ABSTRACT Evaluating the mRNA profile of podocytes in the diabetic kidney may indicate STZ induction alone.10 In order to spe- genes involved in the pathogenesis of diabetic nephropathy. To determine if the cifically label and isolate podoctyes, we 2 2 podocyte-specific gene information contained in mRNA profiles of the whole crossed the eNOS / mice with the IRG glomerulus of the diabetic kidney accurately reflects gene expression in the isolated mice11 that ubiquitously express a red 2/2 podocytes, we crossed Nos3 IRG mice with podocin-rtTA and TetON-Cre mice fluorescent protein prior to Cre-mediated for enhanced green fluorescent protein labeling of podocytes before diabetic injury. recombination and an enhanced green Diabetes was induced by streptozotocin, and mRNA profiles of isolated glomeruli fluorescent protein (EGFP) following re- and sorted podocytes from diabetic and control mice were examined 10 weeks combination. These mice were further later. Expression of podocyte-specific markers in glomeruli was downregulated in bred with podocin-rtTA and TetON-Cre diabetic mice compared with controls. However, expression of these markers was (LC1) transgenic mice for inducible not altered in sorted podocytes from diabetic mice.
    [Show full text]
  • Supplementary Table 1: Genes Located on Chromosome 18P11-18Q23, an Area Significantly Linked to TMPRSS2-ERG Fusion
    Supplementary Table 1: Genes located on Chromosome 18p11-18q23, an area significantly linked to TMPRSS2-ERG fusion Symbol Cytoband Description LOC260334 18p11 HSA18p11 beta-tubulin 4Q pseudogene IL9RP4 18p11.3 interleukin 9 receptor pseudogene 4 LOC100132166 18p11.32 hypothetical LOC100132166 similar to Rho-associated protein kinase 1 (Rho- associated, coiled-coil-containing protein kinase 1) (p160 LOC727758 18p11.32 ROCK-1) (p160ROCK) (NY-REN-35 antigen) ubiquitin specific peptidase 14 (tRNA-guanine USP14 18p11.32 transglycosylase) THOC1 18p11.32 THO complex 1 COLEC12 18pter-p11.3 collectin sub-family member 12 CETN1 18p11.32 centrin, EF-hand protein, 1 CLUL1 18p11.32 clusterin-like 1 (retinal) C18orf56 18p11.32 chromosome 18 open reading frame 56 TYMS 18p11.32 thymidylate synthetase ENOSF1 18p11.32 enolase superfamily member 1 YES1 18p11.31-p11.21 v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1 LOC645053 18p11.32 similar to BolA-like protein 2 isoform a similar to 26S proteasome non-ATPase regulatory LOC441806 18p11.32 subunit 8 (26S proteasome regulatory subunit S14) (p31) ADCYAP1 18p11 adenylate cyclase activating polypeptide 1 (pituitary) LOC100130247 18p11.32 similar to cytochrome c oxidase subunit VIc LOC100129774 18p11.32 hypothetical LOC100129774 LOC100128360 18p11.32 hypothetical LOC100128360 METTL4 18p11.32 methyltransferase like 4 LOC100128926 18p11.32 hypothetical LOC100128926 NDC80 homolog, kinetochore complex component (S. NDC80 18p11.32 cerevisiae) LOC100130608 18p11.32 hypothetical LOC100130608 structural maintenance
    [Show full text]
  • Chromatin Conformation Links Distal Target Genes to CKD Loci
    BASIC RESEARCH www.jasn.org Chromatin Conformation Links Distal Target Genes to CKD Loci Maarten M. Brandt,1 Claartje A. Meddens,2,3 Laura Louzao-Martinez,4 Noortje A.M. van den Dungen,5,6 Nico R. Lansu,2,3,6 Edward E.S. Nieuwenhuis,2 Dirk J. Duncker,1 Marianne C. Verhaar,4 Jaap A. Joles,4 Michal Mokry,2,3,6 and Caroline Cheng1,4 1Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus University Medical Center, Rotterdam, The Netherlands; and 2Department of Pediatrics, Wilhelmina Children’s Hospital, 3Regenerative Medicine Center Utrecht, Department of Pediatrics, 4Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, 5Department of Cardiology, Division Heart and Lungs, and 6Epigenomics Facility, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ABSTRACT Genome-wide association studies (GWASs) have identified many genetic risk factors for CKD. However, linking common variants to genes that are causal for CKD etiology remains challenging. By adapting self-transcribing active regulatory region sequencing, we evaluated the effect of genetic variation on DNA regulatory elements (DREs). Variants in linkage with the CKD-associated single-nucleotide polymorphism rs11959928 were shown to affect DRE function, illustrating that genes regulated by DREs colocalizing with CKD-associated variation can be dysregulated and therefore, considered as CKD candidate genes. To identify target genes of these DREs, we used circular chro- mosome conformation capture (4C) sequencing on glomerular endothelial cells and renal tubular epithelial cells. Our 4C analyses revealed interactions of CKD-associated susceptibility regions with the transcriptional start sites of 304 target genes. Overlap with multiple databases confirmed that many of these target genes are involved in kidney homeostasis.
    [Show full text]
  • Cytokine Dysregulation in Chronic Nonbacterial Osteomyelitis (CNO)
    Hindawi Publishing Corporation International Journal of Rheumatology Volume 2012, Article ID 310206, 7 pages doi:10.1155/2012/310206 Review Article Update: Cytokine Dysregulation in Chronic Nonbacterial Osteomyelitis (CNO) Sigrun R. Hofmann,1 Angela Roesen-Wolff,1 Gabriele Hahn,2 and Christian M. Hedrich1, 3 1 Department of Pediatrics, University Hospital Carl Gustav Carus, Fetscherstraβe 74, 01307 Dresden, Germany 2 Department of Pediatric Radiology, University Hospital Carl Gustav Carus, 01307 Dresden, Germany 3 Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA Correspondence should be addressed to Sigrun R. Hofmann, [email protected] Received 14 January 2012; Accepted 22 March 2012 Academic Editor: Lorenzo Beretta Copyright © 2012 Sigrun R. Hofmann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Chronic nonbacterial osteomyelitis (CNO) with its most severe form chronic recurrent multifocal osteomyelitis (CRMO) is a non-bacterial osteitis of yet unknown origin. Secondary to the absence of both high-titer autoantibodies and autoreactive T lymphocytes, and the association with other autoimmune diseases, it was recently reclassified as an autoinflammatory disorder of the musculoskeletal system. Since its etiology is largely unknown, the diagnosis is based on clinical criteria, and treatment is empiric and not always successful. In this paper, we summarize recent advances in the understanding of possible etiopathogenetic mechanisms in CNO. 1. Introduction However, little is known about the pathophysiology of CNO. Most research articles focus on clinical aspects of CNO, Chronic nonbacterial osteomyelitis (CNO) (OMIM number and only few reports discuss putative pathomechanisms 259680) is an autoinflammatory, noninfectious disorder that underlying this autoinflammatory disorder.
    [Show full text]
  • NLRP3 Inflammasome Plays a Redundant Role with Caspase 8 to Promote IL-1Β–Mediated Osteomyelitis
    NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β–mediated osteomyelitis Prajwal Gurunga, Amanda Burtona, and Thirumala-Devi Kannegantia,1 aDepartment of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105 Edited by Vishva M. Dixit, Genentech, San Francisco, CA, and approved March 9, 2016 (received for review February 1, 2016) Missense mutation in the proline-serine-threonine phosphatase- for CRMO are limited to the use of nonsteroidal antiinflammatory cmo interacting protein 2 (Pstpip2) gene results in the development of drugs (NSAIDs) and bisphosphonates (14). Pstpip2 mice have spontaneous chronic bone disease characterized by bone defor- proved to be a valuable tool in understanding the molecular mity and inflammation that is reminiscent of patients with chronic mechanisms involved in instigation of CRMO and bone diseases in cmo multifocal osteomyelitis (cmo). Interestingly, this disease is specif- general. Using Pstpip2 mice as a model to understand the eti- ically mediated by IL-1β but not IL-1α. The precise molecular path- ology of bone diseases, we previously demonstrated that IL-1R cmo ways that promote pathogenic IL-1β production in Pstpip2 mice signaling completely protected the progression of disease in these remain unidentified. Furthermore, how IL-1β provokes inflamma- mice (1). Adding to these studies, we and others showed that IL-1β, cmo tory bone disease in Pstpip2 mice is not known. Here, we dem- but not IL-1α, was important for induction of bone disease in these onstrate that double deficiency of Nod like receptor family, pyrin cmo mice (1, 15). More recent studies from our laboratory elucidated domain containing 3 (NLRP3) and caspase 8 in Pstpip2 mice a rather surprising redundant role for caspase 1 and caspase 8 provides similar protection as observed in caspase-1 and caspase- β cmo in the processing of IL-1 (2).
    [Show full text]
  • Transcriptomics Uncovers Substantial Variability Associated with Alterations in Manufacturing Processes of Macrophage Cell Therapy Products Olga L
    www.nature.com/scientificreports OPEN Transcriptomics uncovers substantial variability associated with alterations in manufacturing processes of macrophage cell therapy products Olga L. Gurvich1,3, Katja A. Puttonen1,3, Aubrey Bailey1, Anssi Kailaanmäki1, Vita Skirdenko1, Minna Sivonen1, Sanna Pietikäinen1, Nigel R. Parker2, Seppo Ylä‑Herttuala2 & Tuija Kekarainen1* Gene expression plasticity is central for macrophages’ timely responses to cues from the microenvironment permitting phenotypic adaptation from pro‑infammatory (M1) to wound healing and tissue‑regenerative (M2, with several subclasses). Regulatory macrophages are a distinct macrophage type, possessing immunoregulatory, anti‑infammatory, and angiogenic properties. Due to these features, regulatory macrophages are considered as a potential cell therapy product to treat clinical conditions, e.g., non‑healing diabetic foot ulcers. In this study we characterized two diferently manufactured clinically relevant regulatory macrophages, programmable cells of monocytic origin and comparator macrophages (M1, M2a and M0) using fow‑cytometry, RT‑qPCR, phagocytosis and secretome measurements, and RNA‑Seq. We demonstrate that conventional phenotyping had a limited potential to discriminate diferent types of macrophages which was ameliorated when global transcriptome characterization by RNA‑Seq was employed. Using this approach we confrmed that macrophage manufacturing processes can result in a highly reproducible cell phenotype. At the same time, minor changes introduced in manufacturing
    [Show full text]