Critical Role for Inflammasome-Independent IL-1Β Production in Osteomyelitis

Total Page:16

File Type:pdf, Size:1020Kb

Critical Role for Inflammasome-Independent IL-1Β Production in Osteomyelitis Critical role for inflammasome-independent IL-1β production in osteomyelitis John R. Lukensa, Jordan M. Grossa, Christopher Calabreseb, Yoichiro Iwakurac, Mohamed Lamkanfid,e, Peter Vogelf, and Thirumala-Devi Kannegantia,1 aDepartment of Immunology, bSmall Animal Imaging Core, and fAnimal Resources Center and the Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN 38105; cInstitute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; and dDepartmentofBiochemistryand eDepartment of Medical Protein Research, Ghent University, B-9000 Ghent, Belgium Edited by Ruslan Medzhitov, Yale University School of Medicine, New Haven, CT, and approved December 4, 2013 (received for review October 3, 2013) The immune system plays an important role in the pathophysiology signal through the IL-1 receptor (IL-1R) to elicit potent proin- of many acute and chronic bone disorders, but the specific in- flammatory responses (10). IL-1β is generated in a biologically flammatory networks that regulate individual bone disorders remain inactive proform that requires protease-mediated cleavage to be to be elucidated. Here, we characterized the osteoimmunological secreted and elicit its proinflammatory functions. Caspase-1– underpinnings of osteolytic bone disease in Pstpip2cmo mice. These mediated cleavage of IL-1β following inflammasome complex mice carry a homozygous L98P missense mutation in the Pombe formation is the major mechanism responsible for secretion of β Cdc15 homology family phosphatase PSTPIP2 that is responsible bioactive IL-1 in many disease models (11). Inflammasome- β for the development of a persistent autoinflammatory disease re- independent sources of IL-1 have also been suggested to con- sembling chronic recurrent multifocal osteomyelitis in humans. We tribute to inflammatory disease pathogenesis; however, very little β is known about the molecular regulation of these pathogenic found that improper regulation of IL-1 production resulted in sec- α ondary induction of inflammatory cytokines, inflammatory cell infil- pathways (12, 13). IL-1 , on the other hand, does not require tration in the bone, and unremitting bone inflammation. Aberrant cleavage to induce its biological activity and is passively released following inflammatory forms of cell death (14, 15). Il1β expression precedes the development of osteolytic damage in cmo In this study, we sought to investigate the immunological young Pstpip2 mice, and genetic deletion of Il1r and Il1β, but not cmo factors that contribute to bone disease in Pstpip2 mice. We Il1α, IMMUNOLOGY rescued osteolytic bone disease in mutant mice. Intriguingly, show that osteomyelitic disease in these mice is characterized by caspase-1 and nucleotide-binding oligomerization domain (NOD)- uncontrolled and unremitting inflammatory cytokine production like receptor family, pyrin domain containing 3 activation in the and immune cell infiltration. Furthermore, we report a critical Pstpip2cmo inflammasome complex were dispensable for -mediated role for IL-1β that is derived independently of inflammasome bone disease. Thus, our findings establish a critical role for inflam- activation in osteolytic disease progression. masome-independent production of IL-1β in osteolytic bone dis- ease and identify PSTPIP2 as a negative regulator of caspase-1– Results β autonomous IL-1 production. Osteomyelitis Development in Pstpip2cmo Mice Is Associated with cmo Altered Immune Cell Composition. Pstpip2 mice develop bone osteoimmunology | interleukin-1 | autoinflammation nodules on their tails and paw inflammation that is characterized by severe erythema and hind paw deformities by 7–14 wk of age one diseases including osteoporosis, chronic recurrent mul- (Fig. 1A). Microcomputed tomography (micro-CT) scans of the ’ inflamed areas reveal extensive loss of bone density and struc- Btifocal osteomyelitis (CRMO), Paget s disease, arthritis, and cmo periodontal disease are a major burden to human health and can tural malformation in the feet and tails of Pstpip2 mice (Fig. 1 cause debilitating pain, physical impairments, and morbidity. Regulated crosstalk between cells of the skeletal and immune Significance systems is required to maintain normal bone integrity and ho- meostasis (1). It is now widely accepted that inflammatory immune The IL-1 cytokines, IL-1α and IL-1β, are proinflammatory cyto- cells contribute centrally to the induction and perpetuation of kines that are implicated in numerous inflammatory and au- various inherited and induced bone disorders (2, 3). However, the toimmune diseases. This study demonstrates that dysregulated roles of specific inflammatory pathways and immune cell networks immune responses centrally contribute to the pathogenesis of in disease pathogenesis remain to be fully characterized for most osteomyelitis and identifies a critical role for IL-1β in driving the – bone disorders. Recently, missense mutations in the proline ser- inflammatory cascade that provokes bone destruction. Cas- ine–threonine phosphatase interacting protein 2 (PSTPIP2) were pase-1 activation in the inflammasome complex is the most shown to cause a bone disease in mice that is characterized by well established mechanism for IL-1β secretion. Interestingly, osteomyelitis and bone deformity (4–6). In particular, the chronic inflammasome-independent sources of IL-1β were found to multifocal osteomyelitis (cmo) mouse that carries a homozygous cmo provoke inflammation and osteolytic bone disease. Our find- L98P missense mutation in PSTPIP2 (referred to as Pstpip2 ings establish a unique role for inflammasome-independent mice) develops a chronic autoinflammatory disease that resembles IL-1β in autoinflammatory bone disease and osteomyelitis, and CRMO in humans (7). CRMO is a painful genetic inflammatory identify proline–serine–threonine phosphatase interacting protein disorder that primarily affects children and is characterized by bone 2 as a negative regulator of inflammasome-autonomous IL-1β. inflammation, destruction, and deformity (8). The etiology of CRMO remains unknown, and treatment is currently limited to the Author contributions: J.R.L., C.C., M.L., and T.-D.K. designed research; J.R.L., J.M.G., C.C., prescription of nonsteroidal anti-inflammatory drugs (NSAIDs) and P.V. performed research; Y.I. contributed new reagents/analytic tools; J.R.L., J.M.G., and bisphosphonates. C.C., M.L., P.V., and T.-D.K. analyzed data; and J.R.L. and T.-D.K. wrote the paper. Excessive IL-1 production and signaling has recently been The authors declare no conflict of interest. identified to centrally contribute to a spectrum of autoinflam- This article is a PNAS Direct Submission. matory diseases (9). Recent data suggest that IL-1 can directly 1To whom correspondence should be addressed. E-mail: thirumala-devi.kanneganti@ influence bone homeostasis, and dysregulation of IL-1 has been stjude.org. found to contribute to bone disorders such as osteoarthritis (2). This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. IL-1 exists in two distinct forms, IL-1α and IL-1β, both of which 1073/pnas.1318688111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1318688111 PNAS Early Edition | 1of6 Downloaded by guest on September 29, 2021 Metacarpal ABWT Pstpip2cmo WT Pstpip2cmo CWT Pstpip2cmo D cmo WT Pstpip2 Caudal Vertebrae WT Pstpip2cmo WT 5 22.66 +1.4% E FG10 104 cmo WT Pstpip2 2.5 *** 103 2.0 WT Pstpip2cmo 44.2 + 6 1.5 102 1.8% 0 1.0 N.S. 0.5 0102 103 104 105 Pstpip2cmo N.S. MHCII *** 105 57.6 +5.1% 0.10 *** 4 #popLN cells x 10 10 0.05 * 103 0.00 *** 102 18.0 + cells 3.8% Tregs + + cells 0 + Tcells 2 3 4 5 Neutrophils 010 10 10 10 MHCII CD4 CD11b CD4 Fig. 1. Mutation in Pstpip2 results in osteomyelitis and altered immune cell composition. (A) Spontaneous induction of paw inflammation and osteo- arthropathy (Top) and tail kinks (Bottom)inPstpip2cmo mice at 7–14 wk of age. Black arrows denote tail kinks. (B and C) Isosurface microcomputed to- mography (micro-CT) scans (B) and bone density heat maps (C) of WT and Pstpip2cmo mice. Blue arrows highlight areas of bone deformity, and white arrows denote sites of bone deposition. (D) Hind paw metacarpal bone and caudal vertebrae hematoxylin and eosin (H&E) sections from WT and Pstpip2cmo mice. (E–G) WT and diseased Pstpip2cmo mice were harvested at 10–12 wk of age. (E) Representative images of popliteal lymph nodes (popLN). (F) Number (mean ± SEM) of popLN cells. Data are representative of three independent experiments with at least five to six mice per group. Tregs, Foxp3-expressing regulatory T cells. (G) Expression of MHCII and CD4 by popLN cells. Numbers in the FACS plots represent the mean ± SEM. Data are representative of three independent experiments with at least five to six mice per group. *P < 0.05, **P < 0.01, ***P < 0.001. B and C). Histological evaluation of the metacarpal bones and earlier report showing that osteomyelitic disease ensues in the the caudal vertebrae further demonstrated osteolytic inflammation absence of T cells in a separate Pstpip2 genetic mouse model lupo that was accompanied by hypertrophic osteoarthropathy and (Pstpip2 mice) (5). Collectively, these results suggest that cmo multifocal severe eosinophilic granulomatous inflammation osteolytic bone disease in Pstpip2 mice may primarily be (Fig. 1D). Moreover, the inflammatory bone lesions led to linked to dysregulated innate immune signaling. secondary s.c. inflammation and fibrosis of the surrounding soft tissue (Fig. 1D). Pstpip2cmo Mutation
Recommended publications
  • Inflammasome-Independent IL-1Β Mediates Autoinflammatory Disease in Pstpip2-Deficient Mice
    Inflammasome-independent IL-1β mediates autoinflammatory disease in Pstpip2-deficient mice Suzanne L. Cassela,b,c,1, John R. Janczya,c, Xinyu Bingd, Shruti P. Wilsonb, Alicia K. Oliviere, Jesse E. Oterof, Yoichiro Iwakurag,h, Dmitry M. Shayakhmetovi, Alexander G. Bassukd, Yousef Abu-Amerj, Kim A. Brogdenk, Trudy L. Burnsd,l, Fayyaz S. Sutterwalaa,b,c,m,1, and Polly J. Fergusond,1,2 aInflammation Program, bDepartment of Internal Medicine, cGraduate Program in Immunology, dDepartment of Pediatrics, eDepartment of Pathology, fDepartment of Orthopedics, kDows Institute for Dental Research and Department of Periodontics, College of Dentistry, and lDepartment of Epidemiology, University of Iowa, Iowa City, IA 52242; gResearch Institute for Biomedical Sciences, Tokyo University of Science Yamasaki 2669, Noda, Chiba 278-0022, Japan; hCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; iDivision of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195; jDepartment of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110; and mVeterans Affairs Medical Center, Iowa City, IA 52241 Edited by Ruslan Medzhitov, Yale University School of Medicine, New Haven, CT, and approved December 13, 2013 (received for review October 3, 2013) Chronic recurrent multifocal osteomyelitis (CRMO) is a human auto- of disease (9). Although it is known that cmo mice have a dysre- inflammatory disorder that primarily affects bone. Missense muta- gulated innate immune system, it is not clear what inflammatory tion (L98P) of proline-serine-threonine phosphatase-interacting pathway is critical for disease. protein 2 (Pstpip2) in mice leads to a disease that is phenotypically Mutations within NLRP3 (also known as NALP3 or cryopyrin) similar to CRMO called chronic multifocal osteomyelitis (cmo).
    [Show full text]
  • Osteoimmunology in Rheumatoid and Psoriatic Arthritis: Potential Effects of Tofacitinib on Bone Involvement
    Clinical Rheumatology (2020) 39:727–736 https://doi.org/10.1007/s10067-020-04930-x REVIEW ARTICLE Osteoimmunology in rheumatoid and psoriatic arthritis: potential effects of tofacitinib on bone involvement Giovanni Orsolini1 & Ilaria Bertoldi2 & Maurizio Rossini1 Received: 14 October 2019 /Revised: 20 December 2019 /Accepted: 6 January 2020 /Published online: 22 January 2020 # The Author(s) 2020 Abstract Chronic inflammation, such as that present in rheumatoid arthritis (RA) and psoriatic arthritis (PsA), leads to aberrations in bone remodeling, which is mediated by several signaling pathways, including the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. In this light, pro-inflammatory cytokines are now clearly implicated in these processes as they can perturb normal bone remodeling through their action on osteoclasts and osteoblasts at both intra- and extra-articular skeletal sites. As a selective inhibitor of JAK1 and JAK3, tofacitinib has the potential to play a role in the management of rheumatic diseases such as RA and PsA. Preclinical studies have demonstrated that tofacitinib can inhibit disturbed osteoclas- togenesis in RA, which suggests that targeting the JAK-STAT pathway may help limit bone erosion. Evidence from clinical trials with tofacitinib in RA and PsA is encouraging, as tofacitinib treatment has been shown to decrease articular bone erosion. In this review, the authors summarize current knowledge on the relationship between the immune system and the skeleton before examining the involvement of JAK-STATsignaling in bone homeostasis as well as the available preclinical and clinical evidence on the benefits of tofacitinib on prevention of bone involvement in RA and PsA.
    [Show full text]
  • Osteoimmunology: Interactions of the Bone and Immune System
    Osteoimmunology: Interactions of the Bone and Immune System Joseph Lorenzo, Mark Horowitz and Yongwon Choi Endocr. Rev. 2008 29:403-440 originally published online May 1, 2008; , doi: 10.1210/er.2007-0038 To subscribe to Endocrine Reviews or any of the other journals published by The Endocrine Society please go to: http://edrv.endojournals.org//subscriptions/ Copyright © The Endocrine Society. All rights reserved. Print ISSN: 0021-972X. Online 0163-769X/08/$20.00/0 Endocrine Reviews 29(4):403–440 Printed in U.S.A. Copyright © 2008 by The Endocrine Society doi: 10.1210/er.2007-0038 Osteoimmunology: Interactions of the Bone and Immune System Joseph Lorenzo, Mark Horowitz, and Yongwon Choi Department of Medicine and the Musculoskeletal Institute (J.L.), The University of Connecticut Health Center, Farmington, Connecticut 06030; Department of Orthopaedics (M.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Laboratory Medicine (Y.C.), The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 Bone and the immune system are both complex tissues that that the other system has on the function of the tissue they are respectively regulate the skeleton and the body’s response to studying. This review is meant to provide a broad overview of invading pathogens. It has now become clear that these organ the many ways that bone and immune cells interact so that a systems often interact in their function. This is particularly better understanding of the role that each plays in the devel- true for the development of immune cells in the bone marrow opment and function of the other can develop.
    [Show full text]
  • Β Homeostatic Function of IL-1 Osteoclast Precursors Identifies a +
    Direct Inhibition of Human RANK+ Osteoclast Precursors Identifies a Homeostatic Function of IL-1β This information is current as Bitnara Lee, Tae-Hwan Kim, Jae-Bum Jun, Dae-Hyun Yoo, of October 2, 2021. Jin-Hyun Woo, Sung Jae Choi, Young Ho Lee, Gwan Gyu Song, Jeongwon Sohn, Kyung-Hyun Park-Min, Lionel B. Ivashkiv and Jong Dae Ji J Immunol 2010; 185:5926-5934; Prepublished online 8 October 2010; doi: 10.4049/jimmunol.1001591 Downloaded from http://www.jimmunol.org/content/185/10/5926 Supplementary http://www.jimmunol.org/content/suppl/2010/10/08/jimmunol.100159 http://www.jimmunol.org/ Material 1.DC1 References This article cites 47 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/185/10/5926.full#ref-list-1 Why The JI? Submit online. by guest on October 2, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • PSTPIP2 Inhibits Cisplatin-Induced Acute Kidney Injury by Suppressing
    Zhu et al. Cell Death and Disease (2020) 11:1057 https://doi.org/10.1038/s41419-020-03267-2 Cell Death & Disease ARTICLE Open Access PSTPIP2 inhibits cisplatin-induced acute kidney injury by suppressing apoptosis of renal tubular epithelial cells Hong Zhu1, Wenjuan Jiang1,HuiziZhao1, Changsheng He1, Xiaohan Tang1, Songbing Xu1,ChuantingXu1,RuiFeng1, Jun Li1,TaotaoMa1 and Cheng Huang1 Abstract Cisplatin (CP) is an effective chemotherapeutic agent widely used in the treatment of various solid tumours. However, CP nephrotoxicity is an important limitation for CP use; currently, there is no method to ameliorate cisplatin-induced acute kidney injury (AKI). Recently, we identified a specific role of proline–serine–threonine phosphatase-interacting protein 2 (PSTPIP2) in cisplatin-induced AKI. PSTPIP2 was reported to play an important role in a variety of diseases. However, the functions of PSTPIP2 in experimental models of cisplatin-induced AKI have not been extensively studied. The present study demonstrated that cisplatin downregulated the expression of PSTPIP2 in the kidney tissue. Administration of AAV-PSTPIP2 or epithelial cell-specific overexpression of PSTPIP2 reduced cisplatin-induced kidney dysfunction and inhibited apoptosis of renal tubular epithelial cells. Small interfering RNA-based knockdown of PSTPIP2 expression abolished PSTPIP2 regulation of epithelial cell apoptosis in vitro. Histone acetylation may impact gene expression at the epigenetic level, and histone deacetylase (HDAC) inhibitors were reported to prevent cisplatin- induced nephrotoxicity. The UCSC database was used to predict that acetylation of histone H3 at lysine 27 (H3K27ac) 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; induces binding to the PSTPIP2 promoter, and this prediction was validated by a ChIP assay.
    [Show full text]
  • Viewed by the Institutional Lab- M2mws Were Counted, and 1.03106 Viable Cells Were Suspended in Oratory Animal Care and Use Committee of Nagoya City University
    BASIC RESEARCH www.jasn.org Colony-Stimulating Factor-1 Signaling Suppresses Renal Crystal Formation † Kazumi Taguchi,* Atsushi Okada,* Hiroshi Kitamura, Takahiro Yasui,* Taku Naiki,* Shuzo Hamamoto,* Ryosuke Ando,* Kentaro Mizuno,* Noriyasu Kawai,* Keiichi Tozawa,* ‡ ‡ † Kenichi Asano, Masato Tanaka, Ichiro Miyoshi, and Kenjiro Kohri* Departments of *Nephro-urology, and †Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and ‡Laboratory of Immune Regulation, School of Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan ABSTRACT We recently reported evidence suggesting that migrating macrophages (Mws) eliminate renal crystals in hyperoxaluric mice. Mwscanbeinflammatory (M1) or anti-inflammatory (M2), and colony-stimulating factor-1 (CSF-1) mediates polarization to the M2Mw phenotype. M2Mws promote renal tissue repair and regeneration, but it is not clear whether these cells are involved in suppressing renal crystal formation. We investigated the role of M2Mws in renal crystal formation during hyperoxaluria using CSF-1–deficient mice, which lack M2Mws. Compared with wild-type mice, CSF-1–deficient mice had significantly higher amounts of renal calcium oxalate crystal deposition. Treatment with recombinant human CSF-1 increased the expression of M2-related genes and markedly decreased the number of renal crystals in both CSF-1– deficient and wild-type mice. Flow cytometry of sorted renal Mws showed that CSF-1 deficiency resulted in a smaller population of CD11b+F4/80+CD163+CD206hi cells, which represent M2-like Mws. Additionally, transfusion of M2Mws into CSF-1–deficient mice suppressed renal crystal deposition. In vitro phagocytosis assays with calcium oxalate monohydrate crystals showed a higher rate of crystal phagocytosis by M2- polarized Mws than M1-polarized Mws or renal tubular cells.
    [Show full text]
  • NK Cells: Natural Bone Killers?
    RESEARCH HIGHLIGHTS OSTEOIMMUNOLOGY NK cells: natural bone killers? atural killer (NK) cells contribute in direct contact with each other in the findings, the authors observed that to the bone erosion characteristic presence of IL-15, the cultures produced PB CD56bright NK cells from healthy Nof rheumatoid arthritis (RA) by large numbers of round, multinucleated individuals were more potent than CD56dim inducing the differentiation of monocytes cells that expressed the osteoclast marker NK cells (and PB T cells from healthy into osteoclasts, according to new tartrate-resistant acid phosphatase donors) in inducing the formation of research by Söderström et al. published (TRAP). Staining confirmed that these osteoclasts from autologous PB monocytes. in Proceedings of the National Academy cells also expressed markers associated To investigate the role of NK cells in of Sciences. with functional resorbing osteoclasts. osteoclastogenesis in vivo, the authors Although osteoclasts have been Analysis of lacunar resorption on dentine turned to a mouse model of implicated as the cell type predominantly slices confirmed that the cells were capable RA, collagen-induced responsible for mediating periarticular of eroding bone substrates. arthritis (CIA). They first bone loss in RA, the immunological events A standard method of producing confirmed the presence underlying their formation at these sites osteoclasts from peripheral blood (PB) of RANKL+ NK cells in remain unclear. NK cells are known to monocytes in vitro involves two key the joints of DBA/1 mice be present in the inflamed synovium of cytokines involved in bone resorption, with CIA; notably, these patients with RA—representing up to macrophage-colony stimulating factor cells were found next 20% of all lymphocytes in the synovial (M-CSF) and receptor activator of NFκB to sites of bone erosion.
    [Show full text]
  • PSTPIP2 Deficiency in Mice Causes Osteopenia and Increased Differentiation of Multipotent Myeloid Precursors Into Osteoclasts
    From bloodjournal.hematologylibrary.org at MRC LAB OF MOLECULAR BIOLOGY on October 12, 2012. For personal use only. PHAGOCYTES, GRANULOCYTES, AND MYELOPOIESIS PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts Violeta Chitu,1 Viorel Nacu,1 Julia F. Charles,2,3 William M. Henne,4 Harvey T. McMahon,5 Sayan Nandi,1 Halley Ketchum,1 Renee Harris,1 Mary C. Nakamura,2,3 and E. Richard Stanley1 1Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY; 2Department of Medicine and Rosalind Russell Arthritis Center, University of California, San Francisco, San Francisco, CA; 3Medical Service, Veterans Administration Medical Center, San Francisco, CA; 4Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Weill Hall, Ithaca, NY; and 5Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, United Kingdom Missense mutations that reduce or abro- serum levels of the pro-osteoclastogenic probe the structural requirements for PST- gate myeloid cell expression of the F-BAR factor, MIP-1␣, were elevated and CSF-1 PIP2 suppression of osteoclast develop- domain protein, proline serine threonine receptor (CSF-1R)–dependent produc- ment. PSTPIP2 tyrosine phosphorylation phosphatase-interacting protein 2 (PST- tion of MIP-1␣ by macrophages was in- and a functional F-BAR domain were es- PIP2), lead to autoinflammatory disease creased. Treatment of cmo mice with a sential for PSTPIP2 inhibition of TRAP involving extramedullary hematopoiesis, dual specificity CSF-1R and c-Kit inhibi- expression and osteoclast precursor fu- skin and bone lesions. However, little is tor, PLX3397, decreased circulating sion, whereas interaction with PEST-type known about how PSTPIP2 regulates os- MIP-1␣ and ameliorated the extramedul- phosphatases was only required for sup- teoclast development.
    [Show full text]
  • Interleukin-1 Induced Matrix Metalloproteinase Expression In
    International Journal of Molecular Sciences Article Interleukin-1β Induced Matrix Metalloproteinase Expression in Human Periodontal Ligament-Derived Mesenchymal Stromal Cells under In Vitro Simulated Static Orthodontic Forces Christian Behm 1,2,† , Michael Nemec 1,†, Alice Blufstein 2,3, Maria Schubert 2, Xiaohui Rausch-Fan 3, Oleh Andrukhov 2,* and Erwin Jonke 1 1 Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; [email protected] (C.B.); [email protected] (M.N.); [email protected] (E.J.) 2 Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; [email protected] (A.B.); [email protected] (M.S.) 3 Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The periodontal ligament (PDL) responds to applied orthodontic forces by extracellular matrix (ECM) remodeling, in which human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) are largely involved by producing matrix metalloproteinases (MMPs) and their local inhibitors (TIMPs). Apart from orthodontic forces, the synthesis of MMPs and TIMPs is influenced by the aseptic inflammation occurring during orthodontic treatment. Interleukin (IL)-1β is one of Citation: Behm, C.; Nemec, M.; the most abundant inflammatory mediators in this process and crucially affects the expression Blufstein, A.; Schubert, M.; of MMPs and TIMPs in the presence of cyclic low-magnitude orthodontic tensile forces. In this Rausch-Fan, X.; Andrukhov, O.; study we aimed to investigate, for the first time, how IL-1β induced expression of MMPs, TIMPs Jonke, E.
    [Show full text]
  • Transdifferentiation of Human Mesenchymal Stem Cells
    Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone
    [Show full text]
  • Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are
    cells Article Fibroblasts from the Human Skin Dermo-Hypodermal Junction are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling Valérie Haydont 1,*, Véronique Neiveyans 1, Philippe Perez 1, Élodie Busson 2, 2 1, 3,4,5,6, , Jean-Jacques Lataillade , Daniel Asselineau y and Nicolas O. Fortunel y * 1 Advanced Research, L’Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France; [email protected] (V.N.); [email protected] (P.P.); [email protected] (D.A.) 2 Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), 91223 CEDEX Brétigny sur Orge, France; [email protected] (É.B.); [email protected] (J.-J.L.) 3 Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France 4 INSERM U967, 92260 Fontenay-aux-Roses, France 5 Université Paris-Diderot, 75013 Paris 7, France 6 Université Paris-Saclay, 78140 Paris 11, France * Correspondence: [email protected] (V.H.); [email protected] (N.O.F.); Tel.: +33-1-48-68-96-00 (V.H.); +33-1-60-87-34-92 or +33-1-60-87-34-98 (N.O.F.) These authors contributed equally to the work. y Received: 15 December 2019; Accepted: 24 January 2020; Published: 5 February 2020 Abstract: Human skin dermis contains fibroblast subpopulations in which characterization is crucial due to their roles in extracellular matrix (ECM) biology.
    [Show full text]
  • Osteoporosis in the View of Osteoimmunology: Common Feature Underlined by Different Pathogenic Mechanisms
    PERIODICUM BIOLOGORUM UDC 57:61 VOL. 117, No 1, 35–43, 2015 CODEN PDBIAD ISSN 0031-5362 Osteoporosis in the view of osteoimmunology: common feature underlined by different pathogenic mechanisms Abstract DARJA FLEGAR1,2 ALAN ŠUĆUR1,2 Osteoporosis is a skeletal disorder characterized by low bone mineral ANTONIO MARKOTIĆ1,2,3 2,4 density and microarchitectural changes with increased susceptibility to frac- NATAŠA KOVAČIĆ tures, resulting in significant morbidity and mortality. Although it pre- DANKA GRČEVIĆ1,2 dominantly affects postmenopausal women, it is now well known that sys- 1Department of Physiology and Immunology, temic bone loss is a common underlying feature of different metabolic, University of Zagreb School of Medicine, [alata 3b, endocrine and inflammatory diseases. Investigations of osteoporosis as a com- Zagreb-HR 10000, Croatia plication of chronic inflammatory conditions revealed immune mechanisms 2Laboratory for Molecular Immunology, University of behind the increased osteoclast bone resorption and impaired osteoblast bone Zagreb School of Medicine, formation. This concept was particularly emphasized after the research field [alata 12, Zagreb-HR 10000, Croatia of osteoimmunology emerged, focusing on the interaction between the im- 3Department of Physiology, University of Mostar mune system and bone. It is increasingly becoming evident that immune cells School of Medicine, Bijeli Brijeg bb, 88000 Mostar, and mediators critically regulate osteoclast and osteoblast development, func- Bosnia and Herzegovina tion and coupling activity. Among other mediators, receptor activator of 4Department of Anatomy, University of Zagreb School nuclear factor-kB ligand (RANKL), receptor activator of nuclear factor-kB of Medicine, [alata 3b, (RANK) and soluble decoy receptor osteoprotegerin (OPG) form a key func- Zagreb-HR 10000, Croatia tional link between the immune system and bone, regulating both osteoclast Correspondence: formation and activity as well as immune cell functions.
    [Show full text]