Laser Separation of Isotopes

Total Page:16

File Type:pdf, Size:1020Kb

Laser Separation of Isotopes Laser Separation of Isotopes The isotopes of an element, ordinarily indistinguishable, can be sorted out in the monochromatic light of a laser. The process may make isotopes plentiful for medicine, research and nuclear power by Richard N. Zare n nature most elements are mixtures the products of separation-isotopically or other electromagnetic radiation. It is of isotopes: they are made up of at­ pure or enriched elements--are ex­ only a matter of convenience whether I oms that all have the same number tremely costly. The enriched uranium the radiation is regarded as a stream of of protons and electrons but that differ that serves as the fuel for nuclear fission particles or as a system of waves; the in number of neutrons. Ordinarily the reactors is the most important of these two expressions are formally equiva­ fact that an element is a mixture of sev­ products; other isotopes. employed in lent. The particles. called photons. each eral ·kinds of atoms matters little be­ small quantities in research. in medicine have a definite energy. inversely propor­ cause the various isotopes are all but and in other fields. are many times more tional to the wavelength of the corre­ indistinguishable in most of their prop­ expensive. sponding wave. Photon energy (and erties. For that very reason. however. The separation of isotopes by laser wavelength) is unaffected by the intensi­ when we do want to separate the iso­ light differs fundamentally from other ty of a light source; increasing the inten­ topes of an element. the task can be ex­ methods. It distinguishes between atoms sity simply increases the number of pho­ ceedingly difficult. Some recent investi­ of different isotopes or between com­ tons. Within the visible portion of the gations into the absorption of laser light pounds containing different isotopes not spectrum the energy or wavelength of a by the isotopes of elements and by com­ on the basis of mass but through sub­ photon is perceived by the eye as color. pounds containing those elements now tle differences in electronic structure. Light can be absorbed by matter only promise to make the separation both These differences. even though they are when the energy of a photon corre­ easier and cheaper. small. affect the wavelengths of light ab­ sponds to the difference in energy be­ In isolating an element from a com­ sorbed by a substance; each isotope ab­ tween two of an atom's allowed states; pound or a mixture of elements it is sorbs light of a slightly different color. photons of other energies simply fail to common to rely on differences in the Because a laser emits light of very pure interact with the atoms and the light chemical properties of atoms. These color it can be employed to "tag" the is transmitted. When a photon is ab­ properties are determined almost entire­ atoms or compounds of one isotope sorbed. it induces a change in the atom's ly by the electron clouds that surround while leaving all others undisturbed. electronic structure: a single electron is the nucleus; the atoms of each element. promoted to a state of higher energy and of course. have a characteristic number ne of the first principles of quantum the atom is said to have entered an ex­ of electrons. The isotopes of a single ele­ O mechanics is that an atom or a cited state. On the average the excited ment. on the other hand. have virtually molecule can absorb energy only in dis­ electron is farther from the nucleus. identical electron clouds: the electrons crete units. That is because the atom has Additional photons (of the appropriate are identical in number and differ only only a finite number of discrete energy energy or wavelength) can elevate the slightly in their geometric configuration. states. each one representing a particu­ electron to still higher energy levels. As a result the separation of isotopes by lar configuration of its electron clouds. and as the energy increases so does the single-step chemical extraction has not By absorbing or radiating away energy density of the allowed states. The ulti­ proved practical. the atom can move abruptly from one mate level is the ionization limit. where For light elements isotope separation state to another. but intermediate ener­ the electron is torn loose from the atom; by repeated chemical extraction is possi­ gies are forbidden. ionization can be regarded as a contin­ ble. but for all those heavier than oxy­ Atoms can make these abrupt tran­ uum of allowed states. gen only physical methods have been sitions by absorbing or emitting light After an atom has absorbed a photon developed. The physical methods all de­ pend ultimately on the small discrepan­ cies in mass per atom that result from variations in the number of neutrons in SELECTIVE LASER EXCITATION of two isotopes of molecular iodine (12) is demonstrated the nucleus. The best-known of these in an experiment couducted by Douglas M. Brenner aud Saswati Datta iu the author's labora­ methods is gaseous diffusion. in which tory at Columbia University. The laser, part of which is visible at the right, emits light in a nar­ isotopes are distinguished by the slightly row band of wavelengths, but its spectrum is broad euough for the light to be absorbed by both different rates at which they diffuse isotopes of iodiue. The laser beam passes through two glass cells, one containing molecules in through a porous barrier; lighter atoms which both iodine atoms have an atomic mass of 127 (le!t), the other containing iodine mole­ pass through the barrier somewhat fast­ cules made up of atoms with a mass of 129 (center). In the top photograph the light is absorbed by the gases in both cells. Each molecule that absorbs a photon, or light quantum, is promoted er than heavier ones. Gaseous centrifu­ to an excited state, then dissipates its energy by reemitting photons, which are observed as flu­ gation. multiple distillation and electro­ orescence, a streak of soft orange light through the middle of each cell. In the bottom photo­ magnetic separation take advantage of graph an additional cell (right) containing molecular iodine 127 has been inserted in the laser other properties that depend on atomic cavity, where it suppresses the output of the laser at just those wavelengths that are absorbed mass. All these procedures are tedious by iodine-127 molecules. As a result the iodiue 127 iu the external cell is not stimUlated; only and cumbersome. with the result that the iodine 129 absorbs the laser light and fluoresces. The photographs were made by Fritz Goro. 86 © 1977 SCIENTIFIC AMERICAN, INC 87 © 1977 SCIENTIFIC AMERICAN, INC "With TDR* cable testing at American Airlines, we're finding cable disturbances long before they cause system failures." Aubrey Thomas, American Airlines Maintenance and Engineering Center, Tulsa, Oklahoma Aubrey Thomas checks a cable and antenna by looking at their signatures on 'Time Domain Reflectometer the screen of a TEKTRONIX TOR cabre tester in a 747's electronic equipment bay, from which most routine avionics troubleshooting can now be done. Not only can he spot subtle changes in sy_stems-if there is a problem, he quickly knows what it is and precisely where. Aubrey Thomas points out that "any­ Back in 1971 Aubrey Thomas and two body who has had to pull panels other people. at American Airlines were ' throughout an airplane to find a cable looking for a better way to test the fault will understand why we appreci­ miles of cable that carry radio, naviga­ ate the TOR's* ability to quickly identi­ tion, and instrumentation information, fy the nature of the problem and to tell as well as power for complex basic where it is-often to the inch, or electrical systems. "I knew that the TV closer. industry used time domain reflectome­ "But even more impressive is a situa­ try a lot," Aubrey says, "and couldn't cable produces Crimped cable this characteristic ture. One example 01 tion where, let's say, you might have to see why it wouldn't work on airplanes." signature. Detectable a potential problem figure out why a pilot was getting They started by using a TEKTRONIX by other methods, but virtually impossible to strong navigation signals close to a oscilloscope and plug-in TOR unit, on a TOR gives the pre­ detect by conven­ cise location. tional methods. station, but not farther away. If you a roll-around cart. But because work used a meter and it showed continuity quarters on aircraft are often either What an avionics tech sees in the system, you might waste hun­ cramped or relatively inaccessible, A time domain reflectometer (TOR) dreds of man-hours and change thou­ what they really needed was some­ works in a manner similar to radar. sands of dollars worth of components, thing much smaller and battery pow­ It generates repetitive pulses of en­ and still not be any better off. ered. ergy that are sent down a cable and "But by using the TOR in the equip­ Recognizing these needs, Tektronix displayed on a cathode-ray tube ment bay, you would know immediate­ had been developing TOR units that screen. Any cable faults (impedance ly that the problem was, let's say, six were not only small, portable, and bat­ changes) cause pulse reflections. feet of corroded cable shield, starting tery operated-but were also simple The shape of the reflection (the sig­ at the vertical-fin disconnect and com­ to use, had Chart-recording capabili­ nature) allows the type of problem to ing back toward the inside fuselage.
Recommended publications
  • The Taming of “49” Big Science in Little Time
    The Taming of “49” Big science in little time Recollections of Edward F. Hammel During the Manhattan Project, plutonium was often referred to, simply, as 49. Number 4 was for the last digit in 94 (the atomic number of plutonium) and 9 for the last digit in plutonium-239, the isotope of choice for nuclear weapons. The story that unfolds was adapted from Plutonium Metallurgy at Los Alamos, 1943–1945, as Edward F. Hammel remembers the events of those years. 48 Los Alamos Science Number 26 2000 The Taming of “49” he work in plutonium chemistry tion work was an inevitable conse- the metal could be fabricated into and metallurgy carried out at quence of the nuclear and physical satisfactory weapon components. TLos Alamos (Site Y) between research that was still to be conducted In addition, not until January 1944 1943 and 1945 had a somewhat contro- on the metal. It would clearly have did the first few milligrams of pile- versial history. The controversy was been inefficient and time consuming to produced plutonium arrive at Los about who was going to do what. ship small amounts of plutonium metal Alamos. The first 1-gram shipment At the time Los Alamos was being back to Chicago for repurification and arrived in February 1944, and quantity organized, most of the expertise in plu- refabrication into different sizes and shipments of plutonium did not begin to tonium chemistry resided at Berkeley, shapes for the next-scheduled nuclear arrive at Los Alamos until May 1945. where plutonium was discovered in physics experiment. From the outset, it was clear that the December 1940, and at the Met Lab in Minimizing the time spent to solve purification of plutonium was the most Chicago.
    [Show full text]
  • Laser Isotope Separation (LIS), Technical and Economic
    NASA TECHNICAL MEMORANDUM A STATUS OF PROGRESS FOR THL LASER lsofopE SEPARATION (11 SI PROCESS +tear 1976 NASA George C. Mdr~bdlSpace Flight Center Marshdl Space Fb$t Center, Alabama lLSFC - Form 3190 (Rev June 1971) REPORT STANDARD TITLE PACE I nEPMTn0. 3. RECIPIENT*$ CATILOC NO. NASA TM X-73345 10 TITLE UO SUTlTLt IS. REPORT DATE I September A st.tUaof for Iaser isotOpe &paratian lS76 I Progress the (LIS) 6 PERFWYIIIG WGUIZATIO* CQOE George C. M8ralmll!3gam Flight Center I 1. COUTRUT OR am yo. I MarW Flight Center, Alabama 35812 Tecbnid Memormdum National Aemutics and Space Administration Washingtan, D.C. 20546 I I Prepared by Systems Aaalysis and Integration Iaboratory, Science and Engineering An overview of the various categories of the LE3 methodology is given together with illustrations showing a simplified version of the LIS tecbnique, an example of the two-phoiin photoionization category, and a diagram depicting how the energy levels of various isdope influence the LIS process. A&icatlons have been proposed for the LIS system which, in addition to the use to enrich uranium, could in themselves develop into programs of tremendous scope and breadth. Such applications as treatment of radioac '--ewastes from light-water nKzlear reactors, enriching the deuterlum isotope to make heavv-water, and enrlchhg tik light isotopes of such 17 KEt WORDS 18. DISTRIBUTION STATEMENT 5ECUQlTY CLASSIF. Ff thh PI*) 21 NO. OF PAbFS 22 PRICE Unclassified Unclassified I 20 NTIS PREFACE Since the publication of t& first Techid hiemomxitun (TM X-64947) on the Laser hotope Separation (LE)process in May 1975 [l], there bbeen a virtual explosion of available information on this process.
    [Show full text]
  • Extensive Interest in Nuclear Fuel Cycle Technologies
    Institute for Science and International Security ISIS REPORT March 19, 2012 Department 70 and the Physics Research Center: Extensive Interest in Nuclear Fuel Cycle Technologies By David Albright, Paul Brannan, Mark Gorwitz, and Andrew Ortendahl On February 23, 2012, ISIS released the report, The Physics Research Center and Iran’s Parallel Military Nuclear Program, in which ISIS evaluated a set of 1,600 telexes outlining a set of departments or buying centers of the former Physics Research Center (PHRC). These departments appeared to be purchasing a variety of goods for specific nuclear technologies, including gas centrifuges, uranium conversion, uranium exploration and perhaps mining, and heavy water production. Figure 1 is a list of the purposes of these departments. The telexes are evaluated in more depth in the February 23, 2012 ISIS report and support that, contrary to Iran’s statements to the International Atomic Energy Agency (IAEA), the PHRC ran a parallel military nuclear program in the 1990s. In the telexes, ISIS identified a department called Department 70 that is linked to the PHRC. This department tried to procure or obtained technical publications and reports from a document center, relevant know-how from suppliers, catalogues from suppliers about particular goods, and a mini- computer from the Digital Equipment Corporation. Department 70 appears to have had personnel highly knowledgeable about the existing literature on a variety of fuel cycle technologies, particularly gas centrifuges. Orders to a British document center reveal many technical publications about gas centrifuges, atomic laser isotope enrichment, the production of uranium compounds including uranium tetrafluoride and uranium hexafluoride (and precursors such as hydrofluoric acid), nuclear grade graphite, and the production of heavy water.
    [Show full text]
  • High Accuracy Measurement of Isotope Ratios of Molybdenum in Some Terrestrial Molybdenites
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLES High Accuracy Measurement of Isotope Ratios of Molybdenum in Some Terrestrial Molybdenites Qi-Lu* and Akimasa Masuda Department of Chemistry, Faculty of Science, The University of Tokyo, Tokyo, Japan The isotope ratios of molybdenum in molybdenites were studied. A special triple filament technique was used to obtain stable and lasting signals for MO+. There are no differences bigger than ~0.4 parts per IO4 among four samples and the standard. CJ Am Sot Mass Spectrom 1992, 3, IO- 17) olybdenum is a very interesting element be- denum thus far, in spite of the potential importance cause its seven isotopes can reflect several of research in isotopic abundance of molybdenum. M effects related to nuclear physics. The nu- In this study we have established a method for clear phenomena that may affect the isotope ratios in securing stable and lasting current of MO+ and exam- question are (1) the synthesis of seven isotopes of MO ined the mass fractionation of MO isotopes during involving three processes (r, s, and p) in the standard measurement. Based on these studies, the isotope model of nucleosynthesis [I]; ($2 the nuclear hssion of ratios of MO were determined with high precision uranium-238, which produces MO, “MO, 98Mo, and for some molybdenites from a variety of locations ‘“MO; and (3) the double-beta decays of ‘“Zr and throughout the world. The present study will afford a lwMo leading to 96Mo and ‘“Ru. Another intriguing foundation for further precise studies of molybdenum property of this element is that the anomalous abun- isotopes involving meteorites and terrestrial rocks.
    [Show full text]
  • Ichtj Annual Report 2002
    NUCLEAR TECHNOLOGIES AND METHODS 121 PROCESS ENGINEERING CERAMIC MEMBRANES APPLIED FOR RADIOACTIVE WASTES PROCESSING Grażyna Zakrzewska-Trznadel, Marian Harasimowicz, Bogdan Tymiński, Andrzej G. Chmielewski Ceramic membranes (MEMBRALOX® and CeRAM use of different complexing agents are shown in INSIDE®) were used for filtration of liquid radio- Fig.1. Best removal of cobalt, europium and am- active wastes. The experimental runs with samples ericium was observed when chelating polymers of original radioactive wastes were carried out. The NaPAA or PEI were applied. Complexing with poly- waste was characterized by a relatively low salinity acrylic acid of molecular weight 1200 and 8000 did (<1 g/dm3), however, the specific radioactivity not result in sufficient increase of decontamina- was in the medium-level liquid waste range (~150 tion factor. For the membrane of 15 nm pore size, kBq/dm3). The main activity came from radioac- which was used in experiments, the proper molecu- tive cobalt and caesium, but also a significant lar weight of NaPAA was 15 000 or 30 000. In most amount of lanthanides and actinides was present. of experiments the removal of Eu-154 and Am-241 To enhance the separation, membrane filtration was complete (specific activity below the detection was combined with complexation (sole ultrafiltra- limit). Binding the caesium ions with all tested poly- tion gave decontamination factors in the range of mers gave rather poor results. The best complexing 1.1-1.7). Soluble polymers like polyacrylic acid agent for caesium was cobalt hexacyanoferrate, (PAA) derivatives of different average molecular which gave decontamination factors higher than weight, polyethylenimine (PEI) and cyanoferrates 100.
    [Show full text]
  • Development of a Viable Route for Lithium-6 Supply of DEMO and Future Fusion Power Plants T
    Fusion Engineering and Design 149 (2019) 111339 Contents lists available at ScienceDirect Fusion Engineering and Design journal homepage: www.elsevier.com/locate/fusengdes Development of a viable route for lithium-6 supply of DEMO and future fusion power plants T T. Giegerich⁎, K. Battes, J.C. Schwenzer, C. Day Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany ARTICLE INFO ABSTRACT Keywords: In the European DEMO program, the design development of a demonstration power plant (DEMO) is currently in DEMO its pre-conceptual phase. In DEMO, breeding blankets will use large quantities of lithium, enriched in the isotope Lithium-6 lithium-6 (6Li), for breeding the tritium needed to feed the DT fusion reaction. Unfortunately, enriched lithium is Lithium enrichment commercially not available in the required quantities, which is threatening the success of future power plant ICOMAX process applications of nuclear fusion. Even if the manufacturing of the breeding blankets is still two decades ahead of Mercury us, it is now mandatory to address the topic of lithium-6 supply and to make sure that a viable supply (and HgLab reprocessing) route is available when needed. This paper presents an unbiased systems engineering approach assessing a number of available lithium iso- tope separation methods by defining requirements, rating them systematically and finally calculating a ranking number expressing the value of different methods. As a result, we suggest using a chemical exchange method based on a lithium amalgam system, but including some important improvements leading to a more efficient and ‘clean’ process (the ICOMAX process) in comparison with the formerly used COLEX process.
    [Show full text]
  • Calcium Isotopes in Natural and Experimental Carbonated Silicate Melts
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 2-27-2018 2:30 PM Calcium Isotopes in Natural and Experimental Carbonated Silicate Melts Matthew Maloney The University of Western Ontario Supervisor Bouvier, Audrey The University of Western Ontario Co-Supervisor Withers, Tony The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Matthew Maloney 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geochemistry Commons Recommended Citation Maloney, Matthew, "Calcium Isotopes in Natural and Experimental Carbonated Silicate Melts" (2018). Electronic Thesis and Dissertation Repository. 5256. https://ir.lib.uwo.ca/etd/5256 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The calcium stable isotopic compositions of mantle-sourced rocks and minerals were investigated to better understand the carbon cycle in the Earth’s mantle. Bulk carbonatites and kimberlites were analyzed to identify a geochemical signature of carbonatite magmatism, while inter-mineral fractionation was measured in co-existing Ca-bearing carbonate and silicate minerals. Bulk samples show a range of composition deviating from the bulk silicate Earth δ44/40Ca composition indicating signatures of magmatic processes or marine carbonate addition 44/40 to source materials. Δ Cacarbonate-silicate values range from -0.55‰ to +1.82‰ and positively correlate with Ca/Mg ratios in pyroxenes.
    [Show full text]
  • Use of Stable Isotopes and Mathematical Modelling to Investigate Human Mineral Metabolism
    Nutrition Research Reviews (2001), 14, 295–315 DOI: 10.1079/NRR200124 © The Author 2001 Use of stable isotopes and mathematical modelling to investigate human mineral metabolism Jack R. Dainty Institute of Food Research, Norwich NR4 7UA, UK Individuals have varying needs for minerals that are dependent, amongst other things, on their lifestyle, age and genetic makeup. Knowledge of exact individual nutritional requirements should lead to better health, increased quality of life and reduced need for expensive medical care. Bioavailability, nutrient–gene interactions and whole-body metabolism all need to be investigated further if we are to progress towards the goal of defining optimal health and nutritional status. The discussion which fol- lows will critically review the latest developments in the area of metabo- lism for several of the minerals that are essential for human health: Ca, Zn, Cu and Se. Stable-isotope tracers and mathematical modelling are some of the tools being used to facilitate the greater understanding in uptake, utilisation and excretion of these minerals. Stable isotopes, admin- istered in physiological doses, present little or no risk to volunteers and allow metabolic studies to be carried out in vulnerable population groups such as children and pregnant women. Intrinsic labelling of foodstuffs ensures that the tracer and the native mineral will behave similarly once inside the body. Advances in computing power and software dedicated to solving nutritional problems have made it possible for investigators to use mathematical modelling in their experimental work. Mineral metabolism is ideally suited to a form of modelling known as compartmental analysis, which allows rates of mineral transfer and sizes of mineral stores to be calculated accurately without the need for invasive sampling of body tissues.
    [Show full text]
  • Atomic Energy Je^K L'energie Atomique of Canada Umited Ksv Du Canada Li Mite E
    AECL-7416 ATOMIC ENERGY JE^K L'ENERGIE ATOMIQUE OF CANADA UMITED KSV DU CANADA LI MITE E PROGRESS REPORT CHEMISTRY AND MATERIALS DIVISION 1 April -30 June, 1981 PR-CMa-57 Chalk River Nuclear Laboratories Chalk River, Ontario August 1981 PREVIOUS REPORTS IN THIS SERIES PR-CMa-56 January 1 to March 31, 1981 AECL-7332 PR-CMa-55 October 1 to December 31, 1980 AECL-7242 PR-CHa-54 July 1 to September 30, 1980 AECL-7156 PR-CMa-53 April 1 to June 30, 1980 AECL-7094 PR-CMa-57 ATOMIC ENERGY OF CANADA LIMITED PROGRESS REPORT April 1, 1981 - June 30, 1981 CHEMISTRY AND MATERIALS DIVISION The results and conclusions given here are not classified or restricted in any way; however, some of the information is of a preliminary nature. Readers interested in using the information in their own research are invited to consult with the contributors for further details. Copies of the AECL publications referred to in this report may be obtained by writing to the Scientific Document Distribution Offfee, Chalk River Nuclear Laboratories, Chalk River, Ontario, KOJ 1J0. Chalk River Nuclear Laboratories Chalk River, Ontario 1981 August AECL-7416 PROGRESS REPORT April 1, 1981 - June 30, 1981 CHEMISTRY AND MATERIALS DIVISION Director - T. A. Eastwood Secretary - Ms. A. E. Goodale Contents Page HIGHLIGHTS T.A. Eastwood (i) 1. SOLID STATE SCIENCE BRANCH I.V. Mitchell 1 2. GENERAL CHEMISTRY BRANCH I.H. Crocker 27 3. PHYSICAL CHEMISTRY BRANCH D.R. Smith 53 4. MATERIALS SCIENCE BRANCH B. Cox 71 (i) CHEMISTRY AND MATERIALS DIVISION HIGHLIGHTS T.
    [Show full text]
  • Sulfur and Lead Isotope Characteristics of the Greens Creek Polymetallic Massive Sulfide Deposit, Admiralty Island, Southeastern Alaska
    Sulfur and Lead Isotope Characteristics of the Greens Creek Polymetallic Massive Sulfide Deposit, Admiralty Island, Southeastern Alaska By Cliff D. Taylor, Wayne R. Premo, and Craig A. Johnson Chapter 10 of Geology, Geochemistry, and Genesis of the Greens Creek Massive Sulfide Deposit, Admiralty Island, Southeastern Alaska Edited by Cliff D. Taylor and Craig A. Johnson Professional Paper 1763 U.S. Department of the Interior U.S. Geological Survey Contents Abstract .......................................................................................................................................................241 Introduction.................................................................................................................................................241 Regional and District Setting ...................................................................................................................242 Terrane Relationships ......................................................................................................................242 District Geology ..........................................................................................................................................242 Deposit Geology .........................................................................................................................................243 Mine Sequence Nomenclature and Stratigraphy .......................................................................243 Ore Types and Ore Mineralogy ................................................................................................................244
    [Show full text]
  • Pathways for Neoarchean Pyrite Formation Constrained by Mass
    Pathways for Neoarchean pyrite formation constrained SPECIAL FEATURE by mass-independent sulfur isotopes James Farquhara,b,1, John Cliffb, Aubrey L. Zerklec, Alexey Kamyshnyd, Simon W. Poultone, Mark Clairef, David Adamsb, and Brian Harmsa aDepartment of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742; bCentre for Microscopy and Microanalysis, University of Western Australia, Perth, WA 6009, Australia; cSchool of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; dDepartment of Geological and Environmental Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; eSchool of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom; and fSchool of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved December 28, 2012 (received for review November 1, 2012) It is generally thought that the sulfate reduction metabolism is range of variability for Δ33S is significantly greater in samples older ancient and would have been established well before the Neo- than ∼2.4 Ga than in younger samples (e.g., compilation in refs. archean. It is puzzling, therefore, that the sulfur isotope record of 4 and 5). This observation has been linked to the production, the Neoarchean is characterized by a signal of atmospheric mass- transfer, and preservation of mass-independent sulfur isotope independent chemistry rather than a strong overprint by sulfate signals (presumably of atmospheric origin) early in Earth history. reducers. Here, we present a study of the four sulfur isotopes The production of this signal in the atmosphere and its subsequent obtained using secondary ion MS that seeks to reconcile a number transfer to the Earth surface is sensitive to atmospheric O2 levels of features seen in the Neoarchean sulfur isotope record.
    [Show full text]
  • Lithium Isotope Separation a Review of Possible Techniques
    Canadian Fusion Fuels Technology Project Lithium Isotope Separation A Review of Possible Techniques Authors E.A. Symons Atomic Energy of Canada Limited CFFTP GENERAL CFFTP Report Number s Cross R< Report Number February 1985 CFFTP-G-85036 f AECL-8 The Canadian Fusion Fuels Technology Project represents part of Canada's overall effort in fusion development. The focus for CFFTP is tritium and tritium technology. The project is funded by the governments of Canada and Ontario, and by Ontario Hydro. The Project is managed by Ontario Hydro. CFFTP will sponsor research, development and studies to extend existing experience and capability gained in handling tritium as part of the CANDU fission program. It is planned that this work will be in full collaboration and serve the needs of international fusion programs. LITHIUM ISOTOPE SEPARATION: A REVIEW OF POSSIBLE TECHNIQUES Report No. CFFTP-G-85036 Cross Ref. Report No. AECL-8708 February, 1985 by E.A. Symons CFFTP GENERAL •C - Copyright Ontario Hydro, Canada - (1985) Enquiries about Copyright and reproduction should be addressed to: Program Manager, CFFTP 2700 Lakeshore Road West Mississauga, Ontario L5J 1K3 LITHIUM ISOTOPE SEPARATION: A REVIEW OF POSSIBLE TECHNIQUES Report No. OFFTP-G-85036 Cross-Ref Report No. AECL-87O8 February, 1985 by E.A. Symons (x. Prepared by: 0 E.A. Symons Physical Chemistry Branch Chemistry and Materials Division Atomic Energy of Canada Limited Reviewed by: D.P. Dautovich Manager - Technology Development Canadian Fusion Fuels Technology Project Approved by: T.S. Drolet Project Manager Canadian Fusion Fuels Technology Project ii ACKNOWLEDGEMENT This report has been prepared under Element 4 (Lithium Compound Chemistry) of the Fusion Breeder Blanket Program, which is jointly funded by AECL and CFFTP.
    [Show full text]