Explore Your Shore!

Total Page:16

File Type:pdf, Size:1020Kb

Explore Your Shore! Online edition: ew 2009-0900 Print edition: ISSN 2009-8464 ISSUE 19 | AUTUMN/WINTER 2019 Explore Your Shore! Take part in our survey of coastal biodiversity Bivalves of Ireland Poster Get to know your Piddock from your Pod Razor Shell Biodiversity Tales News from recording schemes for butterflies, birds, and bryophytes Contents Biodiversity Ireland Issue 19 Autumn/Winter 2019’ Biodiversity Ireland is published by the National NEWS ......................................................................................................................................................3 Biodiversity Data Centre. Enquiries should be sent to the editor, Juanita Browne, [email protected] Alert System for Invasive Alien Species .............................................................................6 The National Biodiversity Data Centre, Colette O’Flynn introduces the Data Centre’s alert system Beechfield House, WIT West Campus, Carriganore, Waterford. GALLERY: Recorder Workshops 2019 .................................................................................8 Tel: +353 (0)51 306240 Email: [email protected] A selection of images from our workshop programme Web: www.biodiversityireland.ie Explore Your Shore! .................................................................................................................... 10 Management Board Dave Wall introduces this exciting citizen science project The National Biodiversity Data Centre is overseen by a Management Board, established by the Heritage BIODIVERSITY TALES ...........................................................................................................16 Council. The Management Board is responsible for Updates on birds, whales, plants and more setting the strategic direction of the work of the National Biodiversity Data Centre and for ensuring proper corporate governance. The composition of the Management Board: Rachel Kenny Chair of Board & Director of Planning, An Board Pleanála Staff of the National Biodiversity Data Centre Bernadette Guest Heritage Officer, Waterford City and County Council Dr Matthew Jebb Director, National Botanic Gardens Juanita Browne, other organisations. He is an active recorder and helps Pollinator Plan Community and with the delivery of the Data Centre’s work programme Rachel Kenny Director of Planning, An Bord Pleanála Engagement Officer (part-time), on butterflies, birds and mammals. He also serves as is responsible for engaging with Head of Delegation for Ireland to the Global Biodiversity Dr. Micheál Lehane Director, partner organisations to assist Information Facility (GBIF). Environmental Protection Agency implementation of the All-Ireland Pollinator Plan and Ben Malone, Dr Peter McLoughlin Head of School of Science to promote the conservation of Ireland’s pollinators. She and Computing Administrative & Engagement also contributes to communications activities of the Department, Waterford Officer, is responsible for day- Institute of Technology Data Centre. to-day office management at the Nigel Monaghan Keeper, National Museum of Ireland – Natural History Division Dr. Úna Fitzpatrick, Centre. He also has developed and Senior Ecologist, is responsible for is coordinating the Centre’s engagement and outreach Jack Nolan Head of Nitrates, Biodiversity and Engineering Division, Department the development of, and oversees programme, including organising the capacity-building of Agriculture, Food and the Marine delivery of, the All-Ireland Pollinator recorder workshops. Plan 2015-2020, and is responsible Dr Ciaran O’Keeffe Director, National Parks Colette O’Flynn, and Wildlife Service for the plant and vegetation work programmes of the Data Centre. This includes management of the National Invasive Species Officer, is Declan Quigley Senior Port Office, Sea Fisheries responsible for the Invasive Protection Authority Vegetation Database and contributing to development of the Irish Vegetation Classification System. Species work programmes of Virginia Teehan Chief Executive, the Data Centre. She manages The Heritage Council Gemma Hughes, the National Invasive Species Database, provides The National Biodiversity Data Centre is an initiative of Pollinator Plan Agri-business coordination of invasive species data and information, the Heritage Council and is operated under a service level agreement by Compass Informatics. The Centre Officer (part-time), is and contributes advice and policy support at the is funded by the Department of Culture, Heritage and responsible for engaging with national and European level. the Gaeltacht. the agri-business sector to assist Barry O’Neill, implementation of the All-Ireland Pollinator Plan and Data and ICT Manager, Cover: Hermit Crab and Anemones to promote the conservation of Ireland’s pollinators. ©Mark William Kirkland (Shutterstock) is responsible for the IT Dr Saorla Kavanagh, infrastructure and database Farmland Pollinator Officer is the management activities of the Project Manager of the Protecting Data Centre. He developed the Citizen Science Data Farmland Pollinators project Portal and other online data capture systems that are which seeks to test evidence- provided as shared services to partner organisations. based actions to make farmland more pollinator- Dave Wall friendly. This is a five-year project funded under the Citizen Science Officer is European Innovative Partnership programme. responsible for the Explore Your Dr Liam Lysaght, Shore! and Dragonfly Ireland Centre Director, is responsible 2019-2024 citizen science for setting the strategic direction projects. He also takes the lead on developing the of the Data Centre, overall Data Centre’s work programme on citizen science and management of the operations all marine biodiversity activities. and work programme, and building of partnerships with Director’s Comment This autumn 2019 issue the staff complement this year. Dave Wall joined the of Biodiversity Ireland staff at the start of the year as Citizen Science Officer, showcases some of the bringing valuable expertise on marine biodiversity. exciting recording activity The strong marine theme of this issue of the newsletter and survey work that demonstrates the increased capacity in this area. Colette is currently ongoing in O’Flynn, Invasive Species Officer, has been assigned Ireland, both by the Data additional responsibilities supporting the work of NPWS Centre and many of its to report under the EU Invasive Species Regulations partner organisations. The and to provide national coordination of species alerts. ‘Biodiversity Tales’ section provides a good overview And Saorla Kavanagh has joined the team to spearhead of some of the main findings and expansion in knowledge the Protecting Farmland Pollinators EIP project, which on different taxonomic groups since the start of the will test practical, evidence-based solutions for making year, reported by national experts and conservation farmland more pollinator friendly. NGOs. Most of this has resulted from targeted surveys or fieldwork undertaken by highly skilled and highly ‘We feel it is important to showcase this work as motivated volunteers and professionals. We feel it these are the building blocks of evidence used to is important to showcase this work as these are the better understand Ireland’s biodiversity and how building blocks of evidence used to better understand it is changing.’ Ireland’s biodiversity and how it is changing. This need for evidence has taken on a new emphasis On the flip side, after six years, we are losing Dr. in 2019. In May, Dáil Éireann declared a Climate and Tomás Murray. Everyone will know the tremendous Biodiversity Emergency, making Ireland only the second work that Tomás did in building the insect monitoring country in the world to make such a declaration. This programmes and developing the analytical capacity of was a significant development, not because it will the Data Centre over that time. His skill set will be sorely necessarily lead to the transformative changes that the missed at the Data Centre; I wish him the very best in Intergovernmental Panel on Biodiversity and Ecosystem his new career path. Services (IPBES) said needed to happen if biodiversity For the core contract staff of the Data Centre, 2019 loss is to be tackled, but because it is proof that the has presented personal and professional challenges evidence around biodiversity decline is finally being because of the uncertainty around the future of the heard. This attention was probably due to international National Biodiversity Data Centre. The Heritage Council media coverage of the first global synthesis of insect is currently undertaking a review of the governance, declines published in April and the IPBES global operational and funding structure most appropriate for biodiversity assessment published in May. Both these the running of the Data Centre. Everyone associated reports presented alarming evidence of biodiversity loss with the Data Centre hopes that this will result in right across the world. And because of the increasing decisive action to place the Data Centre on a more secure amount of surveying and monitoring happening in footing to better enable it to support the efforts by the Ireland, we now have the evidence that we are also Government of Ireland to address the Biodiversity Crisis experiencing a biodiversity crisis in Ireland. we currently face. It has been a year of mixed fortunes for the Data Centre. Thanks to external funding, we have grown records 00 ,0 0 Recording goes from
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • 345 Fieldfare Put Your Logo Here
    Javier Blasco-Zumeta & Gerd-Michael Heinze Sponsor is needed. Write your name here Put your logo here 345 Fieldfare Fieldfare. Adult. Male (09-I). Song Thrush FIELDFARE (Turdus pilaris ) IDENTIFICATION 25-26 cm. Grey head; red-brown back; grey rump and dark tail; pale underparts; pale flanks spotted black; white underwing coverts; yellow bill with ochre tip. Redwing Fieldfare. Pattern of head, underwing co- verts and flank. SIMILAR SPECIES Song Thrush has orange underwing coverts; Redwing has reddish underwing coverts; Mistle Thrush has white underwing coverts, but lacks pale supercilium and its rump isn’t grey. Mistle Thrush http://blascozumeta.com Write your website here Page 1 Javier Blasco-Zumeta & Gerd-Michael Heinze Sponsor is needed. Write your name here Put your logo here 345 Fieldfare SEXING Male with dark or black tail feathers; red- dish feathers on back with blackish center; most have a broad mark on crown feathers. Female with dark brown tail feathers but not black; dull reddish feathers on back with dark centre (but not blackish); most have a thin mark on crown feathers. CAUTION: some birds of both sexes have similar pattern on crown feathers. Fieldfare. Sexing. Pattern of tail: left male; right fe- male. Fieldfare. Sexing. Pat- AGEING tern of Since this species doesn’t breed in Aragon, only crown feat- 2 age groups can be recognized: hers: top 1st year autumn/2nd year spring with moult male; bot- limit within moulted chestnut inner greater co- tom female. verts and retained juvenile outer greater coverts, shorter and duller with traces of white tips; pointed tail feathers.
    [Show full text]
  • Glycymeris Longior (Sowerby, 1832) Clam at the Southern Edge of Its Distribution (Argentine Sea) Lucas H
    Gimenez et al. Helgol Mar Res (2020) 74:2 https://doi.org/10.1186/s10152-020-0534-x Helgoland Marine Research ORIGINAL ARTICLE Open Access Age and growth of Glycymeris longior (Sowerby, 1832) clam at the southern edge of its distribution (Argentine Sea) Lucas H. Gimenez1,2†, María del Socorro Doldan1,3,4*† , Paula C. Zaidman1,3,4 and Enrique M. Morsan1,3 Abstract Even though Glycymeris longior is a clam widely distributed in the SW Atlantic Ocean, little is known about its biology and life history. The present study assessed the periodicity of the internal growth increments of G. longior using thin shell sections. Each internal growth increment was composed of two alternating bands: a translucent band (light- coloured when viewed with transmitted light) and an opaque band (dark-coloured). Annual formation for each pair of bands was demonstrated. The formation of the annual growth increments was synchronous among individuals. Growth was determined from live clams collected at El Sótano, Argentine Sea (age range 29 to 69 years). Accord- ing to the growth model, G. longior grows fast during the frst 5 years of life and then growth= becomes slower in later years; individuals reached 50% and 90% of maximum size at 5 and 13 years of age, respectively. High variability was found in shell height for the frst 10 years: diferences up to 5–7 mm among individuals were registered for the frst 2 years of age, and up to 11 mm between the ages of 3 and 9 years. The growth performance index phi-prime (φ′) and the index of growth performance (P) of G.
    [Show full text]
  • Phleum Alpinum L
    Phleum alpinum L. Alpine Cat’s-tail A scarce alpine grass with distinctive purplish flower heads, long bristly awns and short, broad and glabrous leaves. It is associated with base- rich flushes and mires, more rarely with rocky habitats, and occasionally with weakly acid substrates enriched by flushing with base-rich water. In Britain it is more or less confined to above 610 m northern and central Scotland with two southern outliers in the North Pennines. It is assessed as of Least Concern in Great Britain, but in England it is assessed as Critically Endangered, due to very restricted numbers and recent decline. ©Pete Stroh IDENTIFICATION limit for both these species (540 m) is well below the lower limit for P. alpinum in Britain (610 m). However, P. pratense Phleum alpinum is a shortly rhizomatous, loosely tufted has been recorded as an introduction at 845 m near to the P. perennial alpine grass with short, broad, glabrous leaves (-6 alpinum on Great Dun Fell (Pearman & Corner 2004). mm) and short, blunt ligules (0.5–2 mm; Cope & Gray 2009). The uppermost leaf sheath is inflated. Alopecurus magellanicus, with which it often grows, has hairy, awnless glumes and ‘thunder-cloud’ coloured flower- The inflorescences are dark-blue or brownish purple, oval to heads (red-purple in P. alpinum; Raven & Walters 1956). oblong shaped (10-50 mm). The spikelets are purplish with long awns (2-3 mm) and the keels are fringed with stiff white bristles. HABITATS Phleum alpinum is a montane grass of open, rocky habitats or SIMILAR SPECIES of closed swards on base-rich substrates, or occasionally on more acidic materials enriched by flushing or down-washed Phleum alpinum is told from P.
    [Show full text]
  • Clams, Cockles, Arkshells Aquaculture Production by Species and Country
    120 Clams, cockles, arkshells Aquaculture production by species and country or area B-56 Clams, coques, arches Production de l'aquaculture par espèce et pays ou zone Q = t Almejas, berberechos, arcas Producción de acuicultura por especie y país o área V = USD 1 000 Species, country Espèce, pays 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Especie, país t t t t t t t t t t Inflated ark ...B ...C Scapharca broughtonii 3,16(04)005,07 ACB Korea Rep 2 548 2 064 3 015 1 903 1 714 1 560 2 110 1 872 2 227 2 921 Species total Q 2 548 2 064 3 015 1 903 1 714 1 560 2 110 1 872 2 227 2 921 V 19 689 18 393 19 277 15 395 13 114 20 839 20 248 18 761 15 995 16 770 Blood cockle Arche granuleuse Arca del Pacífico occidental Anadara granosa 3,16(04)071,01 BLC Cambodia ... ... ... 495 600 F 700 F 800 900 F 1 000 F 1 300 F China 265 673 F 277 768 279 510 290 177 276 742 310 380 293 200 278 058 336 870 353 388 China,Taiwan - - - - - - - - - ... Korea Rep 3 226 5 063 28 372 1 637 2 966 1 155 1 616 2 232 1 590 954 Malaysia 59 521 45 674 49 620 61 138 64 938 78 025 57 544 42 132 F 40 172 F 40 454 Thailand 56 853 65 666 55 671 65 852 81 959 75 611 51 736 66 528 71 325 65 350 Species total Q 385 273 394 171 413 173 419 299 427 205 465 871 404 896 389 850 450 957 461 446 V 386 053 420 311 454 264 466 540 462 657 510 901 483 602 478 526 566 523 580 260 Grand ark Arche pied d'âne Arca casco de burro Anadara grandis 3,16(04)071,07 NDN El Salvador ..
    [Show full text]
  • Impact of Windfarm OWEZ on the Local Macrobenthos Communiy
    Impact of windfarm OWEZ on the local macrobenthos community report OWEZ_R_261_T1_20090305 R. Daan, M. Mulder, M.J.N. Bergman Koninklijk Nederlands Instituut voor Zeeonderzoek (NIOZ) This project is carried out on behalf of NoordzeeWind, through a sub contract with Wageningen-Imares Contents Summary and conclusions 3 Introduction 5 Methods 6 Results boxcore 11 Results Triple-D dredge 13 Discussion 16 References 19 Tables 21 Figures 33 Appendix 1 44 Appendix 2 69 Appendix 3 72 Photo’s by Hendricus Kooi 2 Summary and conclusions In this report the results are presented of a study on possible short‐term effects of the construction of Offshore Windfarm Egmond aan Zee (OWEZ) on the composition of the local benthic fauna living in or on top of the sediment. The study is based on a benthic survey carried out in spring 2007, a few months after completion of the wind farm. During this survey the benthic fauna was sampled within the wind farm itself and in 6 reference areas lying north and south of it. Sampling took place mainly with a boxcorer, but there was also a limited programme with a Triple‐D dredge. The occurrence of possible effects was analyzed by comparing characteristics of the macrobenthos within the wind farm with those in the reference areas. A quantitative comparison of these characteristics with those observed during a baseline survey carried out 4 years before was hampered by a difference in sampling design and methodological differences. The conclusions of this study can be summarized as follows: 1. Based on the Bray‐Curtis index for percentage similarity there appeared to be great to very great similarity in the fauna composition of OWEZ and the majority of the reference areas.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Jordan Beans RA RMO Dir
    Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation.
    [Show full text]
  • The Impact of Hydraulic Blade Dredging on a Benthic Megafaunal Community in the Clyde Sea Area, Scotland
    Journal of Sea Research 50 (2003) 45–56 www.elsevier.com/locate/seares The impact of hydraulic blade dredging on a benthic megafaunal community in the Clyde Sea area, Scotland C. Hauton*, R.J.A. Atkinson, P.G. Moore University Marine Biological Station Millport (UMBSM), Isle of Cumbrae, Scotland, KA28 0EG, UK Received 4 December 2002; accepted 13 February 2003 Abstract A study was made of the impacts on a benthic megafaunal community of a hydraulic blade dredge fishing for razor clams Ensis spp. within the Clyde Sea area. Damage caused to the target species and the discard collected by the dredge as well as the fauna dislodged by the dredge but left exposed at the surface of the seabed was quantified. The dredge contents and the dislodged fauna were dominated by the burrowing heart urchin Echinocardium cordatum, approximately 60–70% of which survived the fishing process intact. The next most dominant species, the target razor clam species Ensis siliqua and E. arcuatus as well as the common otter shell Lutraria lutraria, did not survive the fishing process as well as E. cordatum, with between 20 and 100% of individuals suffering severe damage in any one dredge haul. Additional experiments were conducted to quantify the reburial capacity of dredged fauna that was returned to the seabed as discard. Approximately 85% of razor clams retained the ability to rapidly rebury into both undredged and dredged sand, as did the majority of those heart urchins Echinocardium cordatum which did not suffer aerial exposure. Individual E. cordatum which were brought to surface in the dredge collecting cage were unable to successfully rebury within three hours of being returned to the seabed.
    [Show full text]
  • 0854 BC Annual Review 04
    ann ual review for 2010/11 Saving butte rflies, moths and our environment Highlights of the year Overview by Chairman and Chief Executive In this Annual Review, we celebrate our achievements over the last year and look Several of our most threatened butterflies and moths Secured a core funding grant for Butterfly Conservation ahead to explain our ambitious “2020 vision” for the current decade and beyond. began to recover thanks to our landscape scale projects. Europe from the EU, which enabled the employment of staff for the first time. Successes include the Pearl- bordered Fritillary, Undoubtedly, the most significant success during 2010 is that several of our During the year, we have successfully concluded two of our biggest ever High Brown Fritillary, Duke of Burgundy, Wood White, most threatened species showed signs of recovery directly due to management projects (Moths Count and the South-East Woodlands project) and taken out Small Blue, Grey Carpet and Forester moths. Raised funds to continue our work to save threatened carried out as part of our landscape scale initiatives. Against the background leases on three important new reserves. Our success has been demonstrated species in Scotland, Wales and N. Ireland and for major of decades of decline and habitat loss, these increases show that our by a growth in membership to almost 16,000 and by the continuing support Acquired three new reserves which support important new landscape projects to save the Duke of Burgundy conservation strategy is working. of those members who have responded generously to our appeals and populations of threatened species: Myers Allotment on the South Downs and the Large Blue in Somerset.
    [Show full text]
  • The Rock Garden 136 the Ro
    January 2016 January 2016 THE ROCK GARDEN 136 THE ROCK GARDEN 136 January 2016 THE ROCK GARDEN Volume XXXIV Part 3 - 136 January 2016 THE ROCK GARDEN Volume XXXIV Part 3 - 136 PostalPostal Subscriptions Subscriptions from from 1st October, 1st October, 2015 2015 Postal subscriptionsPostal subscriptions are payable are payable annually annually by October by October and provide and provide membership membership of the of the SRGC untilSRGC 30 thuntil September 30th September of the following of the following year. year. SubscriptionSubscription Rates Rates UK UK OverseasOverseas Single annualSingle annual £18 £18 £23 £23 Junior Junior £3 £3 £7 £7 (under 18(under on 1 18st Oct) on 1st Oct) Family Family £21 £21 £25 £25 (Two adults(Two andadults up and to two up childrento two children under 18 under on 1 18st Oct) on 1st Oct) Three yearThree subscriptions year subscriptions are available are available at three at times three the times above the aboveannual annualrates. Renewals rates. Renewals for threefor year three subscriptions year subscriptions may only may be only made be atmade the end at the of endthe three of the year three period. year period. All subscriptionAll subscription payments payments to the club to the must club be must made be inmade GB Pounds in GB Pounds Sterling. Sterling. ChequesCheques should shouldbe made be payablemade payable to ‘The Scottishto ‘The Scottish Rock Garden Rock Garden Club’ and Club’ must and be must be drawn ondrawn a UK on bank. a UK bank. SubscriptionSubscription payments payments may be may made be throughmade through the post the by post Visa byor MastercardVisa or Mastercard providingproviding the following the following information information is sent: is sent: The longThe number long number on the cardon the card The nameThe ofname the cardholder of the cardholder as shown as onshown the cardon the card The cardThe expiry card date expiry date The cv2The 3 digit cv2 number3 digit number (from back (from of back the card) of the card) The cardholder’sThe cardholder’s signature.
    [Show full text]
  • Die Raupenfliegen (Diptera: Tachinidae) Mitteleuropas: Bestimmungstabellen Und Angaben Zur Verbreitung Und Ökologie Der Einzelnen Arten
    5 download Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Stuttgarter Beiträge zur Naturkunde Serie A (Biologie) Herausgeber: 4fr für Naturkunde, RosensteinV 70 19 l; , Staatliches Museum 1, D- r Stuttgart Stuttgarter Beitr. Naturk. Ser. A Nr. 506 170 S ,4. 9. 19.94 Professor Dr. Bernhard Ziegler zum 65. Geburtstag Die Raupenfliegen (Diptera: Tachinidae) Mitteleuropas: Bestimmungstabellen und Angaben zur Verbreitung und Ökologie der einzelnen Arten The Tachinids (Diptera: Tachinidae) of Central Europe: Identification Keys for the Species and Data on Distribution and Ecology Von Hans-Peter Tschorsnig und Benno Herting, Stuttgart Mit 291 Abbildungen Summary Keys are given for all central and northern European species of Tachinidae (Diptera). The most important data on distribution and ecology (mainly habitat, phenology, and host-range) are listed for the central European species. Zuammenfassung Es werden Bestimmungsschlüssel für alle in Mittel- und Nordeuropa vorkommenden Arten der Tachinidae (Diptera) gegeben. Für jede mitteleuropäische Art werden die wichtigsten Kenndaten zur Verbreitung und Ökologie (vor allem Habitat, Flugzeit und Wirtskreis) aufge- listet. Inhalt 1. Einleitung 2 2. Beg'iff.c erklärungen 4 2.1. Allgemeines 4 2.2. Kopf 5 2.3. Thorax 7 2.4. Flügel 8 2.5. Beine 9 2.6. Abdomen 10 2.7. Bereifung 11 2.8. Färbung . 11 download Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ 2 STUTTGARTER BEITRÄGE ZUR NATURKUNDE Ser. A, Nr. 506 2.9. Körpergröße 11 2.10. Abkürzungen 11 3. Schlüssel für die Gattungen 12 4. Schlüssel für die Arten . 42 4.1. Subfamilie Exoristinae 42 4.2. Subfamilie Tachininae 63 4.3. Subfamilie Dexiinae 79 4.4.
    [Show full text]