Graphical Representations of Ising and Potts Models

Total Page:16

File Type:pdf, Size:1020Kb

Graphical Representations of Ising and Potts Models Graphical representations of Ising and Potts models Stochastic geometry of the quantum Ising model and the space–time Potts model JAKOB ERIK BJÖRNBERG Doctoral Thesis Stockholm, Sweden 2009 TRITA-MAT-09-MA-13 ISSN 1401-2278 KTH Matematik ISRN KTH/MAT/DA 09/09-SE SE-100 44 Stockholm ISBN 978-91-7415-460-3 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i matematik onsdagen den 18 november 2009 klockan 13.30 i Kollegiesalen, F3, Kungl Tekniska högskolan, Lindstedtsvägen 26, Stockholm. © Jakob Erik Björnberg, oktober 2009 Tryck: Universitetsservice US AB iii Abstract Statistical physics seeks to explain macroscopic properties of matter in terms of microscopic interactions. Of particular interest is the phenomenon of phase transition: the sudden changes in macroscopic properties as external conditions are varied. Two models in particular are of great interest to math- ematicians, namely the Ising model of a magnet and the percolation model of a porous solid. These models in turn are part of the unifying framework of the random-cluster representation, a model for random graphs which was first studied by Fortuin and Kasteleyn in the 1970’s. The random-cluster representation has proved extremely useful in proving important facts about the Ising model and similar models. In this work we study the corresponding graphical framework for two related models. The first model is the transverse field quantum Ising model, an extension of the original Ising model which was introduced by Lieb, Schultz and Mattis in the 1960’s. The second model is the space–time percolation process, which is closely related to the contact model for the spread of disease. In Chapter 2 we define the appropriate space–time random-cluster model and explore a range of useful probabilistic techniques for studying it. The space– time Potts model emerges as a natural generalization of the quantum Ising model. The basic properties of the phase transitions in these models are treated in this chapter, such as the fact that there is at most one unbounded fk-cluster, and the resulting lower bound on the critical value in Z. In Chapter 3 we develop an alternative graphical representation of the quantum Ising model, called the random-parity representation. This repre- sentation is based on the random-current representation of the classical Ising model, and allows us to study in much greater detail the phase transition and critical behaviour. A major aim of this chapter is to prove sharpness of the phase transition in the quantum Ising model—a central issue in the theory— and to establish bounds on some critical exponents. We address these issues by using the random-parity representation to establish certain differential in- equalities, integration of which gives the results. In Chapter 4 we explore some consequences and possible extensions of the results established in Chapters 2 and 3. For example, we determine the critical point for the quantum Ising model in Z and in ‘star-like’ geometries. iv Sammanfattning Statistisk fysik syftar till att förklara ett materials makroskopiska egen- skaper i termer av dess mikroskopiska struktur. En särskilt intressant egen- skap är är fenomenet fasövergång, det vill säga en plötslig förändring i de makroskopiska egenskaperna när externa förutsättningar varieras. Två mo- deller är särskilt intressanta för en matematiker, nämligen Ising-modellen av en magnet och perkolationsmodellen av ett poröst material. Dessa två mo- deller sammanförs av den så-kallade fk-modellen, en slumpgrafsmodell som först studerades av Fortuin och Kasteleyn på 1970-talet. fk-modellen har se- dermera visat sig vara extremt användbar för att bevisa viktiga resultat om Ising-modellen och liknande modeller. I den här avhandlingen studeras den motsvarande grafiska strukturen hos två näraliggande modeller. Den första av dessa är den kvantteoretiska Ising- modellen med transverst fält, vilken är en utveckling av den klassiska Ising- modellen och först studerades av Lieb, Schultz och Mattis på 1960-talet. Den andra modellen är rumtid-perkolation, som är nära besläktad med kontakt- modellen av infektionsspridning. I Kapitel 2 definieras rumtid-fk-modellen, och flera probabilistiska verktyg utforskas för att studera dess grundläggan- de egenskaper. Vi möter rumtid-Potts-modellen, som uppenbarar sig som en naturlig generalisering av den kvantteoretiska Ising-modellen. De viktigaste egenskaperna hos fasövergången i dessa modeller behandlas i detta kapitel, exempelvis det faktum att det i fk-modellen finns högst en obegränsad kom- ponent, samt den undre gräns för det kritiska värdet som detta innebär. I Kapitel 3 utvecklas en alternativ grafisk framställning av den kvantteore- tiska Ising-modellen, den så-kallade slumpparitetsframställningen. Denna är baserad på slumpflödesframställningen av den klassiska Ising-modellen, och är ett verktyg som låter oss studera fasövergången och gränsbeteendet myc- ket närmare. Huvudsyftet med detta kapitel är att bevisa att fasövergången är skarp—en central egenskap—samt att fastslå olikheter för vissa kritiska exponenter. Metoden består i att använda slumpparitetsframställningen för att härleda vissa differentialolikheter, vilka sedan kan integreras för att lägga fast att gränsen är skarp. I Kapitel 4 utforskas några konsekvenser, samt möjliga vidareutvecklingar, av resultaten i de tidigare kapitlen. Exempelvis bestäms det kritiska värdet hos den kvantteoretiska Ising-modellen på Z, samt i ‘stjärnliknankde’ geo- metrier. Acknowledgements I have had the great fortune to be able to share my time as a PhD student between KTH and Cambridge University, UK. I would like to thank my advisor Professor Anders Björner for making this possible, as well as for extremely generous guidance and advice throughout my studies. I would also like to thank my Cambridge advisor Professor Geoffrey Grimmett for providing me with many interesting mathematical problems and stimulating discussions, as well as invaluable advice and suggestions. Chapter 3 and Section 4.1 were done in collaboration with Geoffrey Grimmett, and has appeared in a journal as a joint publication [15]. Section 4.2 has been published in a journal [14]. Riddarhuset (the House of Knights) in Stockholm, Sweden, has supported me extremely generously throughout my studies. I have received further generous sup- port from the Engineering and Physical Sciences Research Council under a Doc- toral Training Award to the University of Cambridge. Thanks to grants from Rid- darhuset I was able to spend a month at UCLA, and to attend two workshops at the Oberwolfach Institute. Grants from the Department of Pure Mathematics and Mathematical Statistics in Cambridge and from the Park City Mathematics Institute made it possible for me to attend a summer school in Park City; grants from Gonville & Caius College and the Institut Henri Poincaré in Paris made it possible for me to attend a workshop at the latter. Large parts of the writing of this thesis took place during a very stimulating stay at the Mittag-Leffler Institute for Research in Mathematics, Djursholm, Sweden, during the spring of 2009. I am very grateful to the those who have supported me. Finally I would like to express my deep appreciation of my family, my friends, and my colleagues at KTH and Cambridge for their support and encouragement. Professor Moritz Diehl helped kickstart my research career. Becky was always there to scatter my doubts. When I haven’t been working, I have mostly been rowing; while I have been working, I have constantly been listening to music. Also thanks, therefore, to all my rowing buddies, and to all the artists on my playlist. v Contents Acknowledgements v Contents vi 1 Introduction and background 1 1.1 Classicalmodels ............................. 2 1.2 Quantummodelsandspace–timemodels. 6 1.3 Outline .................................. 8 2 Space–time models 11 2.1 Definitionsandbasicfacts . 11 2.2 Stochasticcomparison . 24 2.3 Infinite-volume random-cluster measures . .... 39 2.4 Duality in Z R ............................. 52 2.5 Infinite-volumePottsmeasures× . 56 3 The quantum Ising model 65 3.1 ClassicalandquantumIsingmodels . 65 3.2 Therandom-parityrepresentation . 70 3.3 Theswitchinglemma........................... 80 3.4 Proof of the main differential inequality . ... 95 3.5 Consequencesoftheinequalities . 100 4 Applications and extensions 107 4.1 Inonedimension ............................. 107 4.2 Onstar-likegraphs. .. .. .. .. .. .. .. .. .. .. .. 110 4.3 Reflectionpositivity . 118 4.4 RandomcurrentsinthePottsmodel . 122 A The Skorokhod metric and tightness 129 B Proof of Proposition 2.1.4 133 Bibliography 135 vi List of notation Conjugate transpose, page 7 h·| Expectation under Ising measure, page 23 h·i ± Ising measure with boundary condition, page 59 h·i ± Basis of C2, page 7 |±i σ Basis vector in , page 6 | i H α Part of Potts boundary condition, page 20 B Edge set of H, page 111 (K) Borel σ-algebra, page 13 B B Process of bridges, page 15 b Boundary condition, page 17 χ Magnetic susceptibility, page 101 ∂ˆΛ (Inner)boundary,page13 ∆ Processofcuts,page81 δ Intensity of D, page 14 d(v) Number of deaths in Kv, page 76 Dv Deaths in Kv, page 76 ∂Λ Outerboundary,page13 ∂ψ Weight of colouring ψ, page 72 D Process of deaths, page 15 E Edge set of L, page 11 vii viii List of notation ev(ψ) Set of ‘even’ points in ψ, page 72 E Edge set of L, page 12 E(D) Edgesetofthegraph G(D), page 73 Skorokhod σ-algebra on Ω, page 15 F Restricted
Recommended publications
  • Image Segmentation Combining Markov Random Fields and Dirichlet Processes
    ANR meeting Image segmentation combining Markov Random Fields and Dirichlet Processes Jessica SODJO IMS, Groupe Signal Image, Talence Encadrants : A. Giremus, J.-F. Giovannelli, F. Caron, N. Dobigeon Jessica SODJO ANR meeting 1 / 28 ANR meeting Plan 1 Introduction 2 Segmentation using DP models Mixed MRF / DP model Inference : Swendsen-Wang algorithm 3 Hierarchical segmentation with shared classes Principle HDP theory 4 Conclusion and perspective Jessica SODJO ANR meeting 2 / 28 ANR meeting Introduction Segmentation – partition of an image in K homogeneous regions called classes – label the pixels : pixel i $ zi 2 f1;:::; K g Bayesian approach – prior on the distribution of the pixels – all the pixels in a class have the same distribution characterized by a parameter vector Uk – Markov Random Fields (MRF) : exploit the similarity of pixels in the same neighbourhood Constraint : K must be fixed a priori Idea : use the BNP models to directly estimate K Jessica SODJO ANR meeting 3 / 28 ANR meeting Segmentation using DP models Plan 1 Introduction 2 Segmentation using DP models Mixed MRF / DP model Inference : Swendsen-Wang algorithm 3 Hierarchical segmentation with shared classes Principle HDP theory 4 Conclusion and perspective Jessica SODJO ANR meeting 4 / 28 ANR meeting Segmentation using DP models Notations – N is the number of pixels – Y is the observed image – Z = fz1;:::; zN g – Π = fA1;:::; AK g is a partition and m = fm1;:::; mK g with mk = jAk j A1 A2 m1 = 1 m2 = 5 A3 m3 = 6 mK = 4 AK FIGURE: Example of partition Jessica SODJO ANR
    [Show full text]
  • Lecturenotes 4 MCMC I – Contents
    Lecturenotes 4 MCMC I – Contents 1. Statistical Physics and Potts Models 2. Sampling and Re-weighting 3. Importance Sampling and Markov Chain Monte Carlo 4. The Metropolis Algorithm 5. The Heatbath Algorithm (Gibbs Sampler) 6. Start and Equilibration 7. Energy Checks 8. Specific Heat 1 Statistical Physics and Potts Model MC simulations of systems described by the Gibbs canonical ensemble aim at calculating estimators of physical observables at a temperature T . In the following we choose units so that β = 1/T and consider the calculation of the expectation value of an observable O. Mathematically all systems on a computer are discrete, because a finite word length has to be used. Hence, K X (k) Ob = Ob(β) = hOi = Z−1 O(k) e−β E (1) k=1 K X (k) where Z = Z(β) = e−β E (2) k=1 is the partition function. The index k = 1,...,K labels all configurations (or microstates) of the system, and E(k) is the (internal) energy of configuration k. To distinguish the configuration index from other indices, it is put in parenthesis. 2 We introduce generalized Potts models in an external magnetic field on d- dimensional hypercubic lattices with periodic boundary conditions. Without being overly complicated, these models are general enough to illustrate the essential features we are interested in. In addition, various subcases of these models are by themselves of physical interest. Generalizations of the algorithmic concepts to other models are straightforward, although technical complications may arise. We define the energy function of the system by (k) (k) (k) −β E = −β E0 + HM (3) where (k) X (k) (k) (k) (k) 2 d N E = −2 J (q , q ) δ(q , q ) + (4) 0 ij i j i j q hiji N 1 for qi = qj (k) X (k) with δ(qi, qj) = and M = 2 δ(1, qi ) .
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Scaling Limits in Models of Statistical Mechanics
    Mathematisches Forschungsinstitut Oberwolfach Report No. 41/2018 DOI: 10.4171/OWR/2018/41 Scaling Limits in Models of Statistical Mechanics Organised by Dmitry Ioffe, Haifa Gady Kozma, Rehovot Fabio Toninelli, Lyon 9 September – 15 September 2018 Abstract. This conference (part of a long running series) aims to cover the interplay between probability and mathematical statistical mechanics. Specific topics addressed during the 22 talks include: Universality and critical phenomena, disordered models, Gaussian free field (GFF), random planar graphs and unimodular planar maps, reinforced random walks and non-linear σ-models, non-equilibrium dynamics. Less stress is given to topics which have running series of Oberwolfach conferences devoted to them specifically, such as random matrices or integrable models and KPZ universality class. There were 50 participants, including 9 postdocs and graduate students, working in diverse intertwining areas of probability, statistical mechanics and mathematical physics. Subject classification: MSC: 60,82; IMU: 10,13. Introduction by the Organisers This workshop was a sequel to a MFO conference, by the same organizers, which took place in 2015. More broadly, it is a sequel to MFO conferences in 2006, 2009 and 2012, organised by Ken Alexander, Marek Biskup, Remco van der Hofstad and Vladas Sidoravicius. The main focus of the conference remained on probabilistic and analytic methods of non-integrable statistical mechanics. With respect to the previous editions, greater emphasis was put on statistical mechanics models on groups and general graphs, as a lot has happened in this arena recently. The list of 50 participants reflects our attempts to maintain an optimal balance between diverse fields, leading experts and promising young researchers.
    [Show full text]
  • The Ising Model
    The Ising Model Today we will switch topics and discuss one of the most studied models in statistical physics the Ising Model • Some applications: – Magnetism (the original application) – Liquid-gas transition – Binary alloys (can be generalized to multiple components) • Onsager solved the 2D square lattice (1D is easy!) • Used to develop renormalization group theory of phase transitions in 1970’s. • Critical slowing down and “cluster methods”. Figures from Landau and Binder (LB), MC Simulations in Statistical Physics, 2000. Atomic Scale Simulation 1 The Model • Consider a lattice with L2 sites and their connectivity (e.g. a square lattice). • Each lattice site has a single spin variable: si = ±1. • With magnetic field h, the energy is: N −β H H = −∑ Jijsis j − ∑ hisi and Z = ∑ e ( i, j ) i=1 • J is the nearest neighbors (i,j) coupling: – J > 0 ferromagnetic. – J < 0 antiferromagnetic. • Picture of spins at the critical temperature Tc. (Note that connected (percolated) clusters.) Atomic Scale Simulation 2 Mapping liquid-gas to Ising • For liquid-gas transition let n(r) be the density at lattice site r and have two values n(r)=(0,1). E = ∑ vijnin j + µ∑ni (i, j) i • Let’s map this into the Ising model spin variables: 1 s = 2n − 1 or n = s + 1 2 ( ) v v + µ H s s ( ) s c = ∑ i j + ∑ i + 4 (i, j) 2 i J = −v / 4 h = −(v + µ) / 2 1 1 1 M = s n = n = M + 1 N ∑ i N ∑ i 2 ( ) i i Atomic Scale Simulation 3 JAVA Ising applet http://physics.weber.edu/schroeder/software/demos/IsingModel.html Dynamically runs using heat bath algorithm.
    [Show full text]
  • Arxiv:1511.03031V2
    submitted to acta physica slovaca 1– 133 A BRIEF ACCOUNT OF THE ISING AND ISING-LIKE MODELS: MEAN-FIELD, EFFECTIVE-FIELD AND EXACT RESULTS Jozef Streckaˇ 1, Michal Jasˇcurˇ 2 Department of Theoretical Physics and Astrophysics, Faculty of Science, P. J. Saf´arikˇ University, Park Angelinum 9, 040 01 Koˇsice, Slovakia The present article provides a tutorial review on how to treat the Ising and Ising-like models within the mean-field, effective-field and exact methods. The mean-field approach is illus- trated on four particular examples of the lattice-statistical models: the spin-1/2 Ising model in a longitudinal field, the spin-1 Blume-Capel model in a longitudinal field, the mixed-spin Ising model in a longitudinal field and the spin-S Ising model in a transverse field. The mean- field solutions of the spin-1 Blume-Capel model and the mixed-spin Ising model demonstrate a change of continuous phase transitions to discontinuous ones at a tricritical point. A con- tinuous quantum phase transition of the spin-S Ising model driven by a transverse magnetic field is also explored within the mean-field method. The effective-field theory is elaborated within a single- and two-spin cluster approach in order to demonstrate an efficiency of this ap- proximate method, which affords superior approximate results with respect to the mean-field results. The long-standing problem of this method concerned with a self-consistent deter- mination of the free energy is also addressed in detail. More specifically, the effective-field theory is adapted for the spin-1/2 Ising model in a longitudinal field, the spin-S Blume-Capel model in a longitudinal field and the spin-1/2 Ising model in a transverse field.
    [Show full text]
  • Random and Out-Of-Equilibrium Potts Models Christophe Chatelain
    Random and Out-of-Equilibrium Potts models Christophe Chatelain To cite this version: Christophe Chatelain. Random and Out-of-Equilibrium Potts models. Statistical Mechanics [cond- mat.stat-mech]. Université de Lorraine, 2012. tel-00959733 HAL Id: tel-00959733 https://tel.archives-ouvertes.fr/tel-00959733 Submitted on 15 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Habilitation `aDiriger des Recherches Mod`eles de Potts d´esordonn´eset hors de l’´equilibre Christophe Chatelain Soutenance publique pr´evue le 17 d´ecembre 2012 Membres du jury : Rapporteurs : Werner Krauth Ecole´ Normale Sup´erieure, Paris Marco Picco Universit´ePierre et Marie Curie, Paris 6 Heiko Rieger Universit´ede Saarbr¨ucken, Allemagne Examinateurs : Dominique Mouhanna Universit´ePierre et Marie Curie, Paris 6 Wolfhard Janke Universit´ede Leipzig, Allemagne Bertrand Berche Universit´ede Lorraine Institut Jean Lamour Facult´edes Sciences - 54500 Vandœuvre-l`es-Nancy Table of contents 1. Random and Out-of-Equililibrium Potts models 4 1.1.Introduction................................. 4 1.2.RandomPottsmodels .......................... 6 1.2.1.ThepurePottsmodel ......................... 6 1.2.1.1. Fortuin-Kasteleyn representation . 7 1.2.1.2. From loop and vertex models to the Coulomb gas .
    [Show full text]
  • Statistical Field Theory University of Cambridge Part III Mathematical Tripos
    Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2017 Statistical Field Theory University of Cambridge Part III Mathematical Tripos David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/sft.html [email protected] –1– Recommended Books and Resources There are a large number of books which cover the material in these lectures, although often from very di↵erent perspectives. They have titles like “Critical Phenomena”, “Phase Transitions”, “Renormalisation Group” or, less helpfully, “Advanced Statistical Mechanics”. Here are some that I particularly like Nigel Goldenfeld, Phase Transitions and the Renormalization Group • Agreatbook,coveringthebasicmaterialthatwe’llneedanddelvingdeeperinplaces. Mehran Kardar, Statistical Physics of Fields • The second of two volumes on statistical mechanics. It cuts a concise path through the subject, at the expense of being a little telegraphic in places. It is based on lecture notes which you can find on the web; a link is given on the course website. John Cardy, Scaling and Renormalisation in Statistical Physics • Abeautifullittlebookfromoneofthemastersofconformalfieldtheory.Itcoversthe material from a slightly di↵erent perspective than these lectures, with more focus on renormalisation in real space. Chaikin and Lubensky, Principles of Condensed Matter Physics • Shankar, Quantum Field Theory and Condensed Matter • Both of these are more all-round condensed matter books, but with substantial sections on critical phenomena and the renormalisation group. Chaikin and Lubensky is more traditional, and packed full of content. Shankar covers modern methods of QFT, with an easygoing style suitable for bedtime reading. Anumberofexcellentlecturenotesareavailableontheweb.Linkscanbefoundon the course webpage: http://www.damtp.cam.ac.uk/user/tong/sft.html.
    [Show full text]
  • Theory of Continuum Percolation I. General Formalism
    Theory of continuum percolation I. General formalism Alon Drory Dipartimento di Fisica, Universit´a La Sapienza Piazzale Aldo Moro 2, Roma 00187, Italy Abstract The theoretical basis of continuum percolation has changed greatly since its beginning as little more than an analogy with lattice systems. Nevertheless, there is yet no comprehensive theory of this field. A ba- sis for such a theory is provided here with the introduction of the Potts fluid, a system of interacting s-state spins which are free to move in the continuum. In the s → 1 limit, the Potts magnetization, suscepti- bility and correlation functions are directly related to the percolation probability, the mean cluster size and the pair-connectedness, respec- tively. Through the Hamiltonian formulation of the Potts fluid, the standard methods of statistical mechanics can therefore be used in the continuum percolation problem. arXiv:cond-mat/9606195v1 26 Jun 1996 1 1 Introduction The theoretical basis of continuum percolation [1] changed drastically during the 1970’s. In their seminal 1970 paper, Scher and Zallen [2] considered continuum percolation as an extension of lattice models. Noting that the critical volume φc is approximately universal, i. e., essentially independent of the lattice structure, they suggested it might be carried over into continuum systems. Such a view of the continuum as the representation of what is lattice- independent sits well with the ideas of the renormalization group where the continuum often represents merely a scale at which the underlying lattice blurs and vanishes. Yet continuum percolation turned out to be much richer than suggested by this conception.
    [Show full text]
  • Lecture 8: the Ising Model Introduction
    Lecture 8: The Ising model Introduction I Up to now: Toy systems with interesting properties (random walkers, cluster growth, percolation) I Common to them: No interactions I Add interactions now, with significant role I Immediate consequence: much richer structure in model, in particular: phase transitions I Simulate interactions with RNG (Monte Carlo method) I Include the impact of temperature: ideas from thermodynamics and statistical mechanics important I Simple system as example: coupled spins (see below), will use the canonical ensemble for its description The Ising model I A very interesting model for understanding some properties of magnetic materials, especially the phase transition ferromagnetic ! paramagnetic I Intrinsically, magnetism is a quantum effect, triggered by the spins of particles aligning with each other I Ising model a superb toy model to understand this dynamics I Has been invented in the 1920's by E.Ising I Ever since treated as a first, paradigmatic model The model (in 2 dimensions) I Consider a square lattice with spins at each lattice site I Spins can have two values: si = ±1 I Take into account only nearest neighbour interactions (good approximation, dipole strength falls off as 1=r 3) I Energy of the system: P E = −J si sj hiji I Here: exchange constant J > 0 (for ferromagnets), and hiji denotes pairs of nearest neighbours. I (Micro-)states α characterised by the configuration of each spin, the more aligned the spins in a state α, the smaller the respective energy Eα. I Emergence of spontaneous magnetisation (without external field): sufficiently many spins parallel Adding temperature I Without temperature T : Story over.
    [Show full text]
  • Arxiv:1504.02898V2 [Cond-Mat.Stat-Mech] 7 Jun 2015 Keywords: Percolation, Explosive Percolation, SLE, Ising Model, Earth Topography
    Recent advances in percolation theory and its applications Abbas Ali Saberi aDepartment of Physics, University of Tehran, P.O. Box 14395-547,Tehran, Iran bSchool of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5531, Tehran, Iran Abstract Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, di- mensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive per- colation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic L¨ownerevolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals.
    [Show full text]
  • Multiple Schramm-Loewner Evolutions and Statistical Mechanics Martingales
    Multiple Schramm-Loewner Evolutions and Statistical Mechanics Martingales Michel Bauer a, Denis Bernard a 1, Kalle Kyt¨ol¨a b [email protected]; [email protected]; [email protected] a Service de Physique Th´eorique de Saclay CEA/DSM/SPhT, Unit´ede recherche associ´ee au CNRS CEA-Saclay, 91191 Gif-sur-Yvette, France. b Department of Mathematics, P.O. Box 68 FIN-00014 University of Helsinki, Finland. Abstract A statistical mechanics argument relating partition functions to martingales is used to get a condition under which random geometric processes can describe interfaces in 2d statistical mechanics at critical- ity. Requiring multiple SLEs to satisfy this condition leads to some natural processes, which we study in this note. We give examples of such multiple SLEs and discuss how a choice of conformal block is related to geometric configuration of the interfaces and what is the physical meaning of mixed conformal blocks. We illustrate the general arXiv:math-ph/0503024v2 21 Mar 2005 ideas on concrete computations, with applications to percolation and the Ising model. 1Member of C.N.R.S 1 Contents 1 Introduction 3 2 Basics of Schramm-L¨owner evolutions: Chordal SLE 6 3 A proposal for multiple SLEs 7 3.1 Thebasicequations ....................... 7 3.2 Archprobabilities......................... 8 4 First comments 10 4.1 Statistical mechanics interpretation . 10 4.2 SLEasaspecialcaseof2SLE. 10 4.3 Makingsense ........................... 12 4.4 A few martingales for nSLEs .................. 13 4.5 Classicallimit........................... 14 4.6 Relations with other work . 15 5 CFT background 16 6 Martingales from statistical mechanics 19 6.1 Tautological martingales .
    [Show full text]
  • CFT Interpretation of Merging Multiple SLE Traces
    CFT Interpretation of Merging Multiple SLE Traces Annekathrin Muller-Lohmann¨ ∗ Institut f¨ur theoretische Physik University of Hannover Appelstraße 2 D-30167 Hannover, Germany November 1, 2018 Abstract In this paper we give a physical interpretation of the probability of a Stochastic Lowner¨ Evolution (SLE) trace approaching a marked point in the upper half plane, e. g. on another trace. Our approach is based on the concept of fusion of boundary with bulk or other boundary fields in Conformal Field Theory (CFT). In this context we also state a proposal how the results can be extended to situations that happen not sufficiently far away from the boundary. Contents 1 Introduction 2 1.1 Motivation .............................. 2 1.2 Outline ................................ 3 2 Basic Definitions and Notations 3 2.1 SingleSLE .............................. 3 2.2 MultipleSLE ............................. 4 2.3 BoundaryCFTRevisited ...................... 5 2.4 SLE Martingales and Physical Quantities in BCFT . 7 2.5 FusionandtheOPEinCFT .................... 10 3 ProbabilitiesinBCFTandSLE 11 arXiv:0711.3165v1 [math-ph] 20 Nov 2007 3.1 Partition Functions and Probabilities in BCFT . 11 3.2 The SLE Probability of Intersecting a Disc . 12 4 TheEffectofFusionontheScalingProperties 13 4.1 TheL¨owner EquationDifferential Operators. 13 4.2 ThePurelyBoundaryDifferentialOperators. 14 5 Interpretation of Merging multiple SLE traces 15 5.1 SLE Traces Visiting a Point in the Upper Half Plane . 15 5.2 SLETracesMerging ......................... 17 5.3 TheAngularDependency . 18 ∗[email protected] 6 MultipleSLEasMartingaleWeightedSLE 19 6.1 The Associated Martingale Mt ................... 19 6.2 Probability Interpretation for Mt .................. 20 6.3 Fusion in the Associated Martingale . 21 7 Discussion 22 A Appendix: How to Compute “Fused” Differential Operators 23 1 Introduction 1.1 Motivation Stochastic Lowner¨ Evolutions (SLE) as introduced by O.
    [Show full text]