Design Automation for Integrated Optics
Total Page:16
File Type:pdf, Size:1020Kb
DESIGN AUTOMATION FOR INTEGRATED OPTICS by Christopher Condrat A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Electrical and Computer Engineering The University of Utah August 2014 Copyright © Christopher Condrat 2014 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Christopher Condrat has been approved by the following supervisory committee members: Priyank Kalla , Chair 12 / 18 / 2013 Date Approved Steven Blair , Member 12 / 18 / 2013 Date Approved Chris Myers , Member 12 / 18 / 2013 Date Approved Kenneth Stevens , Member 12 / 18 / 2013 Date Approved Erik Brunvand , Member 12 / 18 / 2013 Date Approved and by Gianluca Lazzi , Chair/Dean of the Department/College/School of Electrical and Computer Engineering and by David B. Kieda, Dean of The Graduate School. ABSTRACT Recent breakthroughs in silicon photonics technology are enabling the integration of optical devices into silicon-based semiconductor processes. Photonics technology enables high-speed, high-bandwidth, and high-fidelity communications on the chip-scale—an important development in an increasingly communications-oriented semiconductor world. Significant developments in silicon photonic manufacturing and integration are also enabling investigations into applications beyond that of traditional telecom: sensing, filtering, signal processing, quantum technology—and even optical computing. In effect, we are now seeing a convergence of communications and computation, where the traditional roles of optics and microelectronics are becoming blurred. As the applications for opto-electronic integrated circuits (OEICs) are developed, and manufac- turing capabilities expand, design support is necessary to fully exploit the potential of this optics technology. Such design support for moving beyond custom-design to automated synthesis and opti- mization is not well developed. Scalability requires abstractions, which in turn enables and requires the use of optimization algorithms and design methodology flows. Design automation represents an opportunity to take OEIC design to a larger scale, facilitating design-space exploration, and laying the foundation for current and future optical applications—thus fully realizing the potential of this technology. This dissertation proposes design automation for integrated optic system design. Using a building- block model for optical devices, we provide an EDA-inspired design flow and methodologies for op- tical design automation. Underlying these flows and methodologies are new supporting techniques in behavioral and physical synthesis, as well as device-resynthesis techniques for thermal-aware system integration. We also provide modeling for optical devices and determine optimization and constraint parameters that guide the automation techniques. Our techniques and methodologies are then applied to the design and optimization of optical circuits and devices. Experimental results are analyzed to evaluate their efficacy. We conclude with discussions on the contributions and limitations of the approaches in the context of optical design automation, and describe the tremendous opportunities for future research in design automation for integrated optics. This work is dedicated to my parents. CONTENTS ABSTRACT .......................................................... iii ACKNOWLEDGEMENTS .............................................. viii CHAPTERS 1. INTRODUCTION .................................................. 1 1.1 Developments in CMOS and Microphotonics . ........................... 2 1.2 ElectronicDesignAutomation......................................... 5 1.2.1 BehavioralSynthesis............................................ 5 1.2.2 PhysicalSynthesis............................................. 6 1.3 Proposed Design Flow . ............................................. 7 1.3.1 Thermal-AwareResynthesis...................................... 8 1.4 ContributionsofThisDissertation...................................... 9 1.4.1 ThesisOrganization............................................ 10 2. INTEGRATED OPTICS PRELIMINARIES .............................. 15 2.1 PropagationofLightinWaveguides..................................... 15 2.2 IntegratedOpticSystems............................................. 17 2.3 Conclusion....................................................... 18 3. BEHAVIORAL SYNTHESIS ......................................... 22 3.1 Modeling Mach–Zehnder Interferometers . ........................... 22 3.2 OurDeviceModel.................................................. 23 3.3 PreviousWorkinIntegratedPhotonicLogic............................... 23 3.4 FirstAttemptsandCrossbarLogicForms ................................ 24 3.5 BDD-BasedDesign................................................. 26 3.5.1 SalientFeatures............................................... 26 3.6 VirtualGate-BasedDesign............................................ 27 3.6.1 SalientFeatures............................................... 28 3.6.2 ExpressionSharing............................................. 28 3.7 XOR-BasedCommonSubexpressionExtraction........................... 29 3.7.1 XOR-BasedExpressionSharing................................... 29 3.7.2 MotivatingExample............................................ 30 3.7.3 Limitations of Contemporary XOR-Based Synthesis Techniques . ......... 30 3.8 Multi-Output Expression Sharing . .................................. 31 3.9 ExperimentalResults................................................ 32 3.9.1 Limitations . ............................................. 33 3.10ApplicationtoaFabricatedDesign ..................................... 33 3.11ConclusionandFutureWork.......................................... 33 4. PHYSICAL SYNTHESIS METHODOLOGY FOR INTEGRATED OPTICS ..... 44 4.1 PreviousWork..................................................... 44 4.1.1 Motivation................................................... 45 4.2 DesignConstraints ................................................. 45 4.2.1 SignalPower ................................................. 46 4.2.2 SOIWaveguides............................................... 46 4.2.3 Area........................................................ 46 4.3 Methodology . .................................................... 47 4.4 Device Placement . ............................................. 47 4.5 WaveguideRouting................................................. 48 4.5.1 GlobalRouting................................................ 48 4.5.2 ChannelRouting............................................... 48 4.6 DesignRules:RoutingGridRealization ................................. 48 4.6.1 MappingRoutingGridstoWaveguides.............................. 48 4.7 Conclusion....................................................... 49 5. GLOBAL ROUTING FOR INTEGRATED OPTICS ....................... 53 5.1 GlobalRoutingProblemFormulation ................................... 53 5.2 PreviousandContemporaryWork...................................... 54 5.3 Routing Using Mixed Integer Linear Programming . ....................... 54 5.3.1 MILP Formulation ............................................. 55 5.3.2 Grid-EdgeCapacityConstraints................................... 55 5.3.3 RouteCostConstraints.......................................... 55 5.3.4 MinimizationFunction.......................................... 56 5.3.5 RoutePre-Analysis............................................. 56 5.3.6 InterrouteLosses .............................................. 57 5.4 Results.......................................................... 59 5.4.1 Global Routing in a Full Adder Design . ........................... 59 5.5 Conclusion....................................................... 59 6. CHANNEL ROUTING FOR INTEGRATED OPTICS ...................... 64 6.1 ProblemFormulation................................................ 64 6.1.1 Optimization Objective . ......................................... 65 6.1.2 ContributionsofThisWork....................................... 65 6.1.3 PreviousWork................................................ 66 6.2 Non-ManhattanGrid,Sorting-BasedRouting.............................. 66 6.2.1 Crossing Minimality . ......................................... 67 6.2.2 Sorting-BasedChannelRouting................................... 67 6.2.3 EncodingSide-OnlyNets........................................ 68 6.2.4 B-netEncoding................................................ 68 6.2.5 T-netEncoding................................................ 68 6.2.6 Limitations of Swap Router . .................................. 69 6.2.7 GapsintheSortingProblem...................................... 69 6.2.8 T-netEncoding................................................ 69 6.2.9 Postprocessing................................................ 70 6.3 2-SidedSwapRouting(2Swap)........................................ 70 6.3.1 GapCrossing................................................. 70 6.3.2 Two-SidedSwap-Routing........................................ 71 6.3.3 PostsortRouting............................................... 71 vi 6.3.4 Solution Quality . ............................................. 72 6.4 Constrained2-SidedSwapRouting..................................... 72 6.4.1 ConvergenceConstraintandSwappingRestrictions..................... 73 6.4.2 HorizontalSpansandCrossings................................... 73 6.4.3