A Combinatorial Mechanism for Determining the Specificity of E2F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Cytogenetic Analysis for TFE3 Rearrangement In
Modern Pathology (2014) 27, 113–127 & 2014 USCAP, Inc. All rights reserved 0893-3952/14 $32.00 113 Molecular cytogenetic analysis for TFE3 rearrangement in Xp11.2 renal cell carcinoma and alveolar soft part sarcoma: validation and clinical experience with 75 cases Jennelle C Hodge, Kathryn E Pearce, Xiaoke Wang, Anne E Wiktor, Andre M Oliveira and Patricia T Greipp Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA Renal cell carcinoma with TFE3 rearrangement at Xp11.2 is a distinct subtype manifesting an indolent clinical course in children, with recent reports suggesting a more aggressive entity in adults. This subtype is morphologically heterogeneous and can be misclassified as clear cell or papillary renal cell carcinoma. TFE3 is also rearranged in alveolar soft part sarcoma. To aid in diagnosis, a break-apart strategy fluorescence in situ hybridization (FISH) probe set specific for TFE3 rearrangement and a reflex dual-color, single-fusion strategy probe set involving the most common TFE3 partner gene, ASPSCR1, were validated on formalin-fixed, paraffin- embedded tissues from nine alveolar soft part sarcoma, two suspected Xp11.2 renal cell carcinoma, and nine tumors in the differential diagnosis. The impact of tissue cut artifact was reduced through inclusion of a chromosome X centromere control probe. Analysis of the UOK-109 renal carcinoma cell line confirmed the break-apart TFE3 probe set can distinguish the subtle TFE3/NONO fusion-associated inversion of chromosome X. Subsequent extensive clinical experience was gained through analysis of 75 cases with an indication of Xp11.2 renal cell carcinoma (n ¼ 54), alveolar soft part sarcoma (n ¼ 13), perivascular epithelioid cell neoplasms (n ¼ 2), chordoma (n ¼ 1), or unspecified (n ¼ 5). -
1W9c Lichtarge Lab 2006
Pages 1–7 1w9c Evolutionary trace report by report maker June 18, 2010 4.3.1 Alistat 7 4.3.2 CE 7 4.3.3 DSSP 7 4.3.4 HSSP 7 4.3.5 LaTex 7 4.3.6 Muscle 7 4.3.7 Pymol 7 4.4 Note about ET Viewer 7 4.5 Citing this work 7 4.6 About report maker 7 4.7 Attachments 7 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 1w9c): Title: Proteolytic fragment of crm1 spanning six c-terminal heat repeats Compound: Mol id: 1; molecule: crm1 protein; chain: a, b; frag- ment: c-terminal six heat repeats, residues 707-1027; synonym: exportin 1; engineered: yes Organism, scientific name: Homo Sapiens; 1w9c contains a single unique chain 1w9cA (321 residues long) CONTENTS and its homologue 1w9cB. 1 Introduction 1 2 CHAIN 1W9CA 2.1 O14980 overview 2 Chain 1w9cA 1 2.1 O14980 overview 1 From SwissProt, id O14980, 100% identical to 1w9cA: 2.2 Multiple sequence alignment for 1w9cA 1 Description: Exportin-1 (Chromosome region maintenance 1 protein 2.3 Residue ranking in 1w9cA 2 homolog). 2.4 Top ranking residues in 1w9cA and their position on Organism, scientific name: Homo sapiens (Human). the structure 2 Taxonomy: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 2.4.1 Clustering of residues at 25% coverage. 2 Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; 2.4.2 Overlap with known functional surfaces at Catarrhini; Hominidae; Homo. 25% coverage. 2 Function: Mediates the nuclear export of cellular proteins (cargoes) 2.4.3 Possible novel functional surfaces at 25% bearing a leucine-rich nuclear export signal (NES) and of RNAs. -
TGF-Β1 Signaling Targets Metastasis-Associated Protein 1, a New Effector in Epithelial Cells
Oncogene (2011) 30, 2230–2241 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE TGF-b1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells SB Pakala1, K Singh1,3, SDN Reddy1, K Ohshiro1, D-Q Li1, L Mishra2 and R Kumar1 1Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, DC, USA and 2Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA In spite of a large number of transforming growth factor b1 gene chromatin in response to upstream signals. The (TGF-b1)-regulated genes, the nature of its targets with TGF-b1-signaling is largely mediated by Smad proteins roles in transformation continues to be poorly understood. (Massague et al., 2005) where Smad2 and Smad3 are Here, we discovered that TGF-b1 stimulates transcription phosphorylated by TGF-b1-receptors and associate with of metastasis-associated protein 1 (MTA1), a dual master the common mediator Smad4, which translocates to the coregulator, in epithelial cells, and that MTA1 status is a nucleus to participate in the expression of TGF-b1-target determinant of TGF-b1-induced epithelial-to-mesenchymal genes (Deckers et al., 2006). Previous studies have shown transition (EMT) phenotypes. In addition, we found that that CUTL1, also known as CDP (CCAAT displacement MTA1/polymerase II/activator protein-1 (AP-1) co-activator protein), a target of TGF-b1, is needed for its short-term complex interacts with the FosB-gene chromatin and stimu- effects of TGF-b1 on cell motility involving Smad4- lates its transcription, and FosB in turn, utilizes FosB/histone dependent pathway (Michl et al.,2005). -
UNIVERSITY of CALIFORNIA, SAN DIEGO Functional Analysis of Sall4
UNIVERSITY OF CALIFORNIA, SAN DIEGO Functional analysis of Sall4 in modulating embryonic stem cell fate A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular Pathology by Pei Jen A. Lee Committee in charge: Professor Steven Briggs, Chair Professor Geoff Rosenfeld, Co-Chair Professor Alexander Hoffmann Professor Randall Johnson Professor Mark Mercola 2009 Copyright Pei Jen A. Lee, 2009 All rights reserved. The dissertation of Pei Jen A. Lee is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ Co-Chair ______________________________________________________________ Chair University of California, San Diego 2009 iii Dedicated to my parents, my brother ,and my husband for their love and support iv Table of Contents Signature Page……………………………………………………………………….…iii Dedication…...…………………………………………………………………………..iv Table of Contents……………………………………………………………………….v List of Figures…………………………………………………………………………...vi List of Tables………………………………………………….………………………...ix Curriculum vitae…………………………………………………………………………x Acknowledgement………………………………………………….……….……..…...xi Abstract………………………………………………………………..…………….....xiii Chapter 1 Introduction ..…………………………………………………………………………….1 Chapter 2 Materials and Methods……………………………………………………………..…12 -
The Role of E2F7 and E2F8 in Squamous Differentiation, UV- and Chemotherapy-Induced Responses in Keratinocytes
The role of E2F7 and E2F8 in squamous differentiation, UV- and chemotherapy-induced responses in keratinocytes Mehlika Hazar Rethinam MScBiotech (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 UQ Diamantina Institute i Abstract Among keratinocyte-derived squamous cell carcinoma (SCC), cutaneous SCC (CSCC) is the second most common cutaneous cancer type and the most common of the potentially fatal skin cancers. Approximately 90% of head and neck cancers are SCC (HNSCC) and HNSCC worldwide is the sixth most common cancer type afflicting mankind. While resectable disease may be treated by surgery with radiation or chemoradiation, there are still no curative options for advanced, unresectable disease. However, chemotherapy alone may offer a hope for unresectable, disseminated SCC, where 50-60% of patients have disease recurrence within 2 years and approximately 30% of these develop metastatic disease. The mainstay of chemotherapeutic treatment in SCC is the platinum-based drug, cisplatin, 5-fluorouracil (5- FU), taxanes, and anti-EGFR monoclonal antibody such as Cetuximab. Nonetheless, despite advances in treatment techniques, the 5-year survival rate still remains at around 55%. Therefore, there remains a lack of options for recurrent or metastatic disease. The E2F family of transcription factors has emerged as key regulators of proliferation, differentiation and response to stress and apoptotic stimuli in keratinocytes. Consistent with these roles, dysregulation of E2F expression/activity is a common occurrence in cancer and SCC in particular. Thus, better understanding of the E2F family of proteins is essential to establish how these processes are disrupted during SCC genesis. -
By Submitted in Partial Satisfaction of the Requirements for Degree of in In
Developments of Two Imaging based Technologies for Cell Biology Researches by Xiaowei Yan DISSERTATION Submitted in partial satisfaction of the requirements for degree of DOCTOR OF PHILOSOPHY in Biochemistry and Molecular Biology in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO Approved: ______________________________________________________________________________Ronald Vale Chair ______________________________________________________________________________Jonathan Weissman ______________________________________________________________________________Orion Weiner ______________________________________________________________________________ ______________________________________________________________________________ Committee Members Copyright 2021 By Xiaowei Yan ii DEDICATION Everything happens for the best. To my family, who supported me with all their love. iii ACKNOWLEDGEMENTS The greatest joy of my PhD has been joining UCSF, working and learning with such a fantastic group of scientists. I am extremely grateful for all the support and mentorship I received and would like to thank: My mentor, Ron Vale, who is such a great and generous person. Thank you for showing me that science is so much fun and thank you for always giving me the freedom in pursuing my interest. I am grateful for all the guidance from you and thank you for always supporting me whenever I needed. You are a person full of wisdom, and I have been learning so much from you and your attitude to science, science community and even life will continue inspire me. Thank you for being my mentor and thank you for being such a great mentor. Everyone else in Vale lab, past and present, for making our lab a sweet home. I would like to give my special thank to Marvin (Marvin Tanenbaum) and Nico (Nico Stuurman), two other mentors for me in the lab. I would like to thank them for helping me adapt to our lab, for all the valuable advice and for all the happiness during the time that we work together. -
Renal Cell Carcinoma – Detection of PRCC-TFE3 and Alpha-TFEB Gene Fusions Using RT-PCR on Tissues (Odes 60153 and 60154) Notice of Assessment
Renal Cell Carcinoma – Detection of PRCC-TFE3 and Alpha-TFEB Gene Fusions Using RT-PCR on Tissues (odes 60153 and 60154) Notice of Assessment June 2013 DISCLAIMER: This document was originally drafted in French by the Institut national d'excellence en santé et en services sociaux (INESSS), and that version can be consulted at http://www.inesss.qc.ca/fileadmin/doc/INESSS/Analyse_biomedicale/Juin_2013/INESSS_Analyse_15.pdf http://www.inesss.qc.ca/fileadmin/doc/INESSS/Analyse_biomedicale/Juin_2013/INESSS_Analyse_16.pdf It was translated into English by the Canadian Agency for Drugs and Technologies in Health (CADTH) with INESSS’s permission. INESSS assumes no responsibility with regard to the quality or accuracy of the translation. While CADTH has taken care in the translation of the document to ensure it accurately represents the content of the original document, CADTH does not make any guarantee to that effect. CADTH is not responsible for any errors or omissions or injury, loss, or damage arising from or relating to the use (or misuse) of any information, statements, or conclusions contained in or implied by the information in this document, the original document, or in any of the source documentation. 1 GENERAL INFORMATION 1.1 Requestor: Centre hospitalier universitaire de Québec (CHUQ). 1.2 Application Submitted: August 1, 2012. 1.3 Notice Issued: April 12, 2013. Note: This notice is based on the scientific and commercial information (submitted by the requestor[s]) and on a complementary review of the literature according to the data available at the time that this test was assessed by INESSS. 2 TECHNOLOGY, COMPANY, AND LICENCE(S) 2.1 Name of the Technology Reverse transcription of messenger RNA and amplification (RT-PCR). -
Mouse Casp8ap2 Conditional Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Casp8ap2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Casp8ap2 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Casp8ap2 gene (NCBI Reference Sequence: NM_011997 ; Ensembl: ENSMUSG00000028282 ) is located on Mouse chromosome 4. 11 exons are identified, with the ATG start codon in exon 2 and the TAG stop codon in exon 10 (Transcript: ENSMUST00000029950). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Casp8ap2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-75H14 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for disruption of this gene die before implantation. Exon 4 starts from about 2.12% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 819 bp, and the size of intron 4 for 3'-loxP site insertion: 639 bp. The size of effective cKO region: ~601 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 3 4 5 11 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Casp8ap2 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Differences for Ectopic Versus Eutopic Cells
556 RBMO VOLUME 39 ISSUE 4 2019 ARTICLE Chemosensitivity and chemoresistance in endometriosis – differences for ectopic versus eutopic cells BIOGRAPHY Andres Salumets is Professor of Reproductive Medicine at the University of Tartu, and Scientific Head at the Competence Centre on Health Technologies, Tartu, Estonia. He has been involved in assisted reproduction for 20 years, first as an embryologist and later as a researcher. His major interests are endometriosis, endometrial biology and implantation. Darja Lavogina1,2,*, Külli Samuel1, Arina Lavrits1,3, Alvin Meltsov1, Deniss Sõritsa1,4,5, Ülle Kadastik6, Maire Peters1,4, Ago Rinken2, Andres Salumets1,4,7, 8 KEY MESSAGE Akt/PKB inhibitor GSK690693, CK2 inhibitor ARC-775, MAPK pathway inhibitor sorafenib, proteasome inhibitor bortezomib, and microtubule-depolymerizing toxin MMAE showed higher cytotoxicity in eutopic cells. In contrast, 10 µmol/l of the anthracycline toxin doxorubicin caused cellular death in ectopic cells more effectively than in eutopic cells, underlining the potential of doxorubicin in endometriosis research. ABSTRACT Research question: Endometriosis is a common gynaecological disease defined by the presence of endometrium-like tissue outside the uterus. This complex disease, often accompanied by severe pain and infertility, causes a significant medical and socioeconomic burden; hence, novel strategies are being sought for the treatment of endometriosis. Here, we set out to explore the cytotoxic effects of a panel of compounds to find toxins with different efficiency in eutopic versus ectopic cells, thus highlighting alterations in the corresponding molecular pathways. Design: The effect on cellular viability of 14 compounds was established in a cohort of paired eutopic and ectopic endometrial stromal cell samples from 11 patients. -
E2f8 Mediates Tumor Suppression in Postnatal Liver Development
Downloaded from http://www.jci.org on January 18, 2017. https://doi.org/10.1172/JCI85506 The Journal of Clinical Investigation RESEARCH ARTICLE E2f8 mediates tumor suppression in postnatal liver development Lindsey N. Kent,1,2,3 Jessica B. Rakijas,1,2,3 Shusil K. Pandit,4 Bart Westendorp,4 Hui-Zi Chen,1,2,3,5 Justin T. Huntington,1,2,3,6 Xing Tang,1,2,3 Sooin Bae,1,2,3 Arunima Srivastava,1,2,3,7 Shantibhusan Senapati,1,2,3 Christopher Koivisto,1,2,3 Chelsea K. Martin,1,2,3 Maria C. Cuitino,1,2,3 Miguel Perez,1,2,3 Julian M. Clouse,1,2,3 Veda Chokshi,1,2,3 Neelam Shinde,1,2,3 Raleigh Kladney,1,2,3 Daokun Sun,1,2,3 Antonio Perez-Castro,1,2,3 Ramadhan B. Matondo,4 Sathidpak Nantasanti,4 Michal Mokry,8 Kun Huang,9 Raghu Machiraju,7 Soledad Fernandez,9 Thomas J. Rosol,10 Vincenzo Coppola,1,3 Kamal S. Pohar,11 James M. Pipas,12 Carl R. Schmidt,6 Alain de Bruin,4,13 and Gustavo Leone1,2,3 1Department of Cancer Biology and Genetics, College of Medicine, 2Department of Molecular Genetics, College of Biological Sciences, and 3Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA. 4Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands. 5Division of Medical Oncology, Department of Internal Medicine, 6Department of Surgery, College of Medicine, and 7Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA. 8Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands. -
DNA Methylation Changes in Down Syndrome Derived Neural Ipscs Uncover Co-Dysregulation of ZNF and HOX3 Families of Transcription
Laan et al. Clinical Epigenetics (2020) 12:9 https://doi.org/10.1186/s13148-019-0803-1 RESEARCH Open Access DNA methylation changes in Down syndrome derived neural iPSCs uncover co- dysregulation of ZNF and HOX3 families of transcription factors Loora Laan1†, Joakim Klar1†, Maria Sobol1, Jan Hoeber1, Mansoureh Shahsavani2, Malin Kele2, Ambrin Fatima1, Muhammad Zakaria1, Göran Annerén1, Anna Falk2, Jens Schuster1 and Niklas Dahl1* Abstract Background: Down syndrome (DS) is characterized by neurodevelopmental abnormalities caused by partial or complete trisomy of human chromosome 21 (T21). Analysis of Down syndrome brain specimens has shown global epigenetic and transcriptional changes but their interplay during early neurogenesis remains largely unknown. We differentiated induced pluripotent stem cells (iPSCs) established from two DS patients with complete T21 and matched euploid donors into two distinct neural stages corresponding to early- and mid-gestational ages. Results: Using the Illumina Infinium 450K array, we assessed the DNA methylation pattern of known CpG regions and promoters across the genome in trisomic neural iPSC derivatives, and we identified a total of 500 stably and differentially methylated CpGs that were annotated to CpG islands of 151 genes. The genes were enriched within the DNA binding category, uncovering 37 factors of importance for transcriptional regulation and chromatin structure. In particular, we observed regional epigenetic changes of the transcription factor genes ZNF69, ZNF700 and ZNF763 as well as the HOXA3, HOXB3 and HOXD3 genes. A similar clustering of differential methylation was found in the CpG islands of the HIST1 genes suggesting effects on chromatin remodeling. Conclusions: The study shows that early established differential methylation in neural iPSC derivatives with T21 are associated with a set of genes relevant for DS brain development, providing a novel framework for further studies on epigenetic changes and transcriptional dysregulation during T21 neurogenesis.