Ultrasound.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ultrasound Induced Cavitation and Resonance Amplification Using Adaptive Feedback Control System
Master's Thesis Electrical Engineering Ultrasound induced cavitation and resonance amplification using adaptive feedback Control System Vipul. Vijigiri Taraka Rama Krishna Pamidi This thesis is presented as part of Degree of Master of Science in Electrical Engineering with Emphasis on Signal Processing Blekinge Institute of Technology (BTH) September 2014 Blekinge Institute of Technology, Sweden School of Engineering Department of Electrical Engineering (AET) Supervisor: Dr. Torbjörn Löfqvist, PhD, LTU Co- Supervisor: Dr. Örjan Johansson, PhD, LTU Shadow Supervisor/Examiner: Dr. Sven Johansson, PhD, BTH Ultrasound induced cavitation and resonance amplification using adaptive feedback Control System Master`s thesis Vipul, Taraka, 2014 Performed in Electrical Engineering, EISlab, Dep’t of Computer Science, Electrical and Space Engineering, Acoustics Lab, dep’t of Acoustics at Lulea University of Technology ii | Page This thesis is submitted to the Department of Applied signal processing at Blekinge Institute of Technology in partial fulfilment of the requirements for the degree of Master of Science in Electrical Engineering with emphasis on Signal Processing. Contact Information: Authors: Vipul Vijigiri Taraka Rama Krishna Pamidi Dept. of Applied signal processing Blekinge Institute of Technology (BTH), Sweden E-mail: [email protected],[email protected] E-mail: [email protected], [email protected] External Advisors: Dr. Torbjörn Löfqvist Department of Computer Science, Electrical and Space Engineering Internet: www.ltu.se Luleå University of technology (LTU), Sweden Phone: +46 (0)920-491777 E-mail: [email protected] Co-Advisor: Dr. Örjan Johansson Internet: www.ltu.se Department of the built environment and natural resources- Phone: +46 (0)920-491386 -Operation, maintenance and acoustics Luleå University of technology (LTU), Sweden E-mail: [email protected] University Advisor/Examiner: Dr. -
Acoustics & Ultrasonics
Dr.R.Vasuki Associate professor & Head Department of Physics Thiagarajar College of Engineering Madurai-625015 Science of sound that deals with origin, propagation and auditory sensation of sound. Sound production Propagation by human beings/machines Reception Classification of Sound waves Infrasonic audible ultrasonic Inaudible Inaudible < 20 Hz 20 Hz to 20,000 Hz ˃20,000 Hz Music – The sound which produces rhythmic sensation on the ears Noise-The sound which produces jarring & unpleasant effect To differentiate sound & noise Regularity of vibration Degree of damping Ability of ear to recognize the components Sound is a form of energy Sound is produced by the vibration of the body Sound requires a material medium for its propagation. When sound is conveyed from one medium to another medium there is no bodily motion of the medium Sound can be transmitted through solids, liquids and gases. Velocity of sound is higher in solids and lower in gases. Sound travels with velocity less than the velocity 8 of light. c= 3x 10 V0 =330 m/s at 0° degree Lightning comes first than thunder VT= V0+0.6 T Sound may be reflected, refracted or scattered. It undergoes diffraction and interference. Pitch or frequency Quality or timbre Intensity or Loudness Pitch is defined as the no of vibrations/sec. Frequency is a physical quantity but pitch is a physiological quantity. Mosquito- high pitch Lion- low pitch Quality or timbre is the one which helps to distinguish between the musical notes emitted by the different instruments or voices even though they have the same pitch. Intensity or loudness It is the average rate of flow of acoustic energy (Q) per unit area(A) situated normally to the direction of propagation of sound waves. -
THE SPECIAL RELATIONSHIP BETWEEN SOUND and LIGHT, with IMPLICATIONS for SOUND and LIGHT THERAPY John Stuart Reid ABSTRACT
Theoretical THE SPECIAL RELATIONSHIP BETWEEN SOUND AND LIGHT, WITH IMPLICATIONS FOR SOUND AND LIGHT THERAPY John Stuart Reid ABSTRACT In this paper we explore the nature of sound and light and the special relationship that exists between these two seemingly unrelated forms of energy. The terms 'sound waves' and 'electromagnetic waves' are examined. These commonly used expressions, it is held, misrepresent science and may have delayed new discoveries. A hypothetical model is proposed for the mechanism that creaIL'S electromagnetism. named "Sonic Propagation of Electromagnetic Energy Components" (SPEEC). The SPEEC hypothesis states that all sounds have an electromagnetic component and that all electromagnetism is created as a consequence of sound. SPEEC also predicts that the electromagnetism created by sound propagation through air will be modulated by the same sound periodicities that created the electromagnetism. The implications for SPEEC are discussed within the context of therapeutic sound and light. KEYWORDS: Sound, Light, SPEEC, Sound and Light Therapy Subtle Energies &- Energy Medicine • Volume 17 • Number 3 • Page 215 THE NATURE OF SOUND ound traveling through air may be defined as the transfer of periodic vibrations between colliding atoms or molecules. This energetic S phenomenon typically expands away from the epicenter of the sound event as a bubble-shaped emanation. As the sound bubble rapidly increases in diameter its surface is in a state of radial oscillation. These periodic movements follow the same expansions and contractions as the air bubble surrounding the initiating sound event. DE IUPlIUlIEPIESEITInU IF ..... mBIY II m DE TEll '..... "'EI' II lIED, WIIIH DE FAlSE 111101111 DAT ..... IUYEIJ AS I lAVE. -
Contribution of the Conditioning Stage to the Total Harmonic Distortion in the Parametric Array Loudspeaker
Universidad EAFIT Contribution of the conditioning stage to the Total Harmonic Distortion in the Parametric Array Loudspeaker Andrés Yarce Botero Thesis to apply for the title of Master of Science in Applied Physics Advisor Olga Lucia Quintero. Ph.D. Master of Science in Applied Physics Science school Universidad EAFIT Medellín - Colombia 2017 1 Contents 1 Problem Statement 7 1.1 On sound artistic installations . 8 1.2 Objectives . 12 1.2.1 General Objective . 12 1.2.2 Specific Objectives . 12 1.3 Theoretical background . 13 1.3.1 Physics behind the Parametric Array Loudspeaker . 13 1.3.2 Maths behind of Parametric Array Loudspeakers . 19 1.3.3 About piezoelectric ultrasound transducers . 21 1.3.4 About the health and safety uses of the Parametric Array Loudspeaker Technology . 24 2 Acquisition of Sound from self-demodulation of Ultrasound 26 2.1 Acoustics . 26 2.1.1 Directionality of Sound . 28 2.2 On the non linearity of sound . 30 2.3 On the linearity of sound from ultrasound . 33 3 Signal distortion and modulation schemes 38 3.1 Introduction . 38 3.2 On Total Harmonic Distortion . 40 3.3 Effects on total harmonic distortion: Modulation techniques . 42 3.4 On Pulse Wave Modulation . 46 4 Loudspeaker Modelling by statistical design of experiments. 49 4.1 Characterization Parametric Array Loudspeaker . 51 4.2 Experimental setup . 52 4.2.1 Results of PAL radiation pattern . 53 4.3 Design of experiments . 56 4.3.1 Placket Burmann method . 59 4.3.2 Box Behnken methodology . 62 5 Digital filtering techniques and signal distortion analysis. -
A Compound for Use in Imaging Procedures Original Research Article
J of Nuclear Medicine Technology, first published online September 3, 2015 as doi:10.2967/jnmt.115.162404 A compound for use in imaging procedures Original research article Mulugeta Semework, Ph.D., Postdoctoral Research Scientist Columbia University Department of Neuroscience 1051 Riverside Drive, Unit 87 New York, N.Y. 10032 e-mails: [email protected] [email protected] Tel: 678-362-3554, Fax: 646-774-7649 Sources of support: NINDS training grant from 2T32MH015174-35 (to Dr. Rene Hen); Support from NEI grant 1 R01 EY014978-06 (to Dr. Michael E. Goldberg); Supplement grant through NEI grant 3 R01 EY014978-06; Brain & Behavior Research Foundation (NARSAD) 2013 Young Investigator Award; generous scan time, technical and expert support from New York State Psychiatric Institute MRI unit, PET Center at Columbia University Medical Center Department of Radiology, Department of Radiology of the Center for Neurobiology and Behavior, of Columbia University/Neurological Institute and the radiology department of NY- Presbyterian Hospital. Word count: 5073 (including references) Short running title: Imaging compound 1 Abstract Numerous research and clinical interventions, such as targeted drug deliveries or surgeries, finding blood clots, abscess, lesions, etc., require accurate localization of various body parts. Individual differences in anatomy make it hard to use typical stereotactic procedures that rely upon external landmarks and standardized atlases. For instance, it is not unusual to make misplaced craniotomies in brain surgery. This project was thus carried out to find a new and easy method to correctly establish the relationship between external landmarks and medical scans of internal organs, such as specific brain regions. -
Large Scale Sound Installation Design: Psychoacoustic Stimulation
LARGE SCALE SOUND INSTALLATION DESIGN: PSYCHOACOUSTIC STIMULATION An Interactive Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by Taylor H. Andrews, CS 2012 Mark E. Hayden, ECE 2012 Date: 16 December 2010 Professor Frederick W. Bianchi, Advisor Abstract The brain performs a vast amount of processing to translate the raw frequency content of incoming acoustic stimuli into the perceptual equivalent. Psychoacoustic processing can result in pitches and beats being “heard” that do not physically exist in the medium. These psychoac- oustic effects were researched and then applied in a large scale sound design. The constructed installations and acoustic stimuli were designed specifically to combat sensory atrophy by exer- cising and reinforcing the listeners’ perceptual skills. i Table of Contents Abstract ............................................................................................................................................ i Table of Contents ............................................................................................................................ ii Table of Figures ............................................................................................................................. iii Table of Tables .............................................................................................................................. iv Chapter 1: Introduction ................................................................................................................. -
Infrasound and Ultrasound
Infrasound and Ultrasound Exposure and Protection Ranges Classical range of audible frequencies is 20-20,000 Hz <20 Hz is infrasound >20,000 Hz is ultrasound HOWEVER, sounds of sufficient intensity can be aurally detected in the range of both infrasound and ultrasound Infrasound Can be generated by natural events • Thunder • Winds • Volcanic activity • Large waterfalls • Impact of ocean waves • Earthquakes Infrasound Whales and elephants use infrasound to communicate Infrasound Can be generated by man-made events • High powered aircraft • Rocket propulsion systems • Explosions • Sonic booms • Bridge vibrations • Ships • Air compressors • Washing machines • Air heating and cooling systems • Automobiles, trucks, watercraft and rail traffic Infrasound At very specific pitch, can explode matter • Stained glass windows have been known to rupture from the organ’s basso profunda Can incapacitate and kill • Sea creatures use this power to stun and kill prey Infrasound Infrasound can be heard provided it is strong enough. The threshold of hearing is determined at least down to 4 Hz Infrasound is usually not perceived as a tonal sound but rather as a pulsating sensation, pressure on the ears or chest, or other less specific phenomena. Infrasound Produces various physiological sensations Begin as vague “irritations” At certain pitch, can be perceived as physical pressure At low intensity, can produce fear and disorientation Effects can produce extreme nausea (seasickness) Infrasound: Effects on humans Changes in blood pressure, respiratory rate, and balance. These effects occurred after exposures to infrasound at levels generally above 110 dB. Physical damage to the ear or some loss of hearing has been found in humans and/or animals at levels above 140 dB. -
Physics and Medicine: a Historical Perspective
Series Physics and Medicine 1 Physics and medicine: a historical perspective Stephen F Keevil Nowadays, the term medical physics usually refers to the work of physicists employed in hospitals, who are concerned Lancet 2011; 379: 1517–24 mainly with medical applications of radiation, diagnostic imaging, and clinical measurement. This involvement in Published Online clinical work began barely 100 years ago, but the relation between physics and medicine has a much longer history. In April 18, 2012 this report, I have traced this history from the earliest recorded period, when physical agents such as heat and light DOI:10.1016/S0140- 6736(11)60282-1 began to be used to diagnose and treat disease. Later, great polymaths such as Leonardo da Vinci and Alhazen used See Comment pages 1463 physical principles to begin the quest to understand the function of the body. After the scientifi c revolution in the and 1464 17th century, early medical physicists developed a purely mechanistic approach to physiology, whereas others applied This is the fi rst in a Series of ideas derived from physics in an eff ort to comprehend the nature of life itself. These early investigations led directly fi ve papers about physics to the development of specialties such as electrophysiology, biomechanics, and ophthalmology. Physics-based medical and medicine technology developed rapidly during the 19th century, but it was the revolutionary discoveries about radiation and Department of Medical radioactivity at the end of the century that ushered in a new era of radiation-based medical diagnosis and treatment, Physics, Guy’s and St Thomas’ thereby giving rise to the modern medical physics profession. -
Chapter 12: Physics of Ultrasound
Chapter 12: Physics of Ultrasound Slide set of 54 slides based on the Chapter authored by J.C. Lacefield of the IAEA publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for Teachers and Students Objective: To familiarize students with Physics or Ultrasound, commonly used in diagnostic imaging modality. Slide set prepared by E.Okuno (S. Paulo, Brazil, Institute of Physics of S. Paulo University) IAEA International Atomic Energy Agency Chapter 12. TABLE OF CONTENTS 12.1. Introduction 12.2. Ultrasonic Plane Waves 12.3. Ultrasonic Properties of Biological Tissue 12.4. Ultrasonic Transduction 12.5. Doppler Physics 12.6. Biological Effects of Ultrasound IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,2 12.1. INTRODUCTION • Ultrasound is the most commonly used diagnostic imaging modality, accounting for approximately 25% of all imaging examinations performed worldwide nowadays • Ultrasound is an acoustic wave with frequencies greater than the maximum frequency audible to humans, which is 20 kHz IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,3 12.1. INTRODUCTION • Diagnostic imaging is generally performed using ultrasound in the frequency range from 2 to 15 MHz • The choice of frequency is dictated by a trade-off between spatial resolution and penetration depth, since higher frequency waves can be focused more tightly but are attenuated more rapidly by tissue The information in an ultrasonic image is influenced by the physical processes underlying propagation, reflection and attenuation of ultrasound waves in tissue IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,4 12.1. -
Medical Instruments/Equipment Catalogue
MEDICAL INSTRUMENTS/EQUIPMENT CATALOGUE Addis Ababa, Ethiopia December, 2008 WHO Ethiopia 1 TABLE OF CONTENTS Page No. Acknowledgements ………………………………………………..II Forward…………………………………………………………….III Introduction………………………………………………………..IV Diagnostic Instruments…………………………………………….1 Laboratory instruments……………………………………............14 Imaging instruments………………………………………………..30 General Surgery instruments………………………………………..32 ENT instruments……………………………………………………55 Ophthalmic instruments……………………………………………..73 Cardiovascular and thoracic instruments..………………………….110 Dental instruments…………………………………………………131 Orthopedic instruments……………………………………………..148 Rectal instruments…………………………………………………..175 Gynecology instruments…………………………………………….179 Physiotherapy ………………………….……………………………196 Hospital Equipments…………………………………………………203 Catalogue index………………………………………………………210 i ACKNOWLEDGEMENTS The Pharmaceutical Fund and Supply Agency (PFSA) of Ethiopia would like to extend its gratitude to the World Health Organization (WHO) for its technical support and for meeting all the financial expenses associated with the preparation and printing of this Catalogue. PFSA acknowledges the contribution of Sister Mebrat Ashine (from PFSA), Mr Bekele Tefera (National Professional Officer for Essential Drugs and Medicines policy of WHO office) and Mr Ashenafi Hussein (from PFSA) who jointly prepared this catalogue with great commitment and effort. PFSA also thanks all those who contributed directly or indirectly for the preparation of this catalogue. ii F0RWARD The day to day health care activities -
Molecular Imaging of Inflammatory Disease
biomedicines Review Molecular Imaging of Inflammatory Disease Meredith A. Jones 1,2, William M. MacCuaig 1,2, Alex N. Frickenstein 1,2, Seda Camalan 3 , Metin N. Gurcan 3, Jennifer Holter-Chakrabarty 2,4, Katherine T. Morris 2,5 , Molly W. McNally 2, Kristina K. Booth 2,5, Steven Carter 2,5, William E. Grizzle 6 and Lacey R. McNally 2,5,* 1 Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; [email protected] (M.A.J.); [email protected] (W.M.M.); [email protected] (A.N.F.) 2 Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; [email protected] (J.H.-C.); [email protected] (K.T.M.); [email protected] (M.W.M.); [email protected] (K.K.B.); [email protected] (S.C.) 3 Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; [email protected] (S.C.); [email protected] (M.N.G.) 4 Department of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA 5 Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA 6 Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; [email protected] * Correspondence: [email protected] Abstract: Inflammatory diseases include a wide variety of highly prevalent conditions with high mortality rates in severe cases ranging from cardiovascular disease, to rheumatoid arthritis, to chronic obstructive pulmonary disease, to graft vs. host disease, to a number of gastrointestinal disorders. Many diseases that are not considered inflammatory per se are associated with varying levels of inflammation. -
Scintillator Requirements for Medical Imaging
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Scintillator requirements for medical imaging Permalink https://escholarship.org/uc/item/5pc245ds Author Moses, William W. Publication Date 1999-09-01 eScholarship.org Powered by the California Digital Library University of California Accepted by the International Conference on Inorganic Scintillators and Their Applications: SCINT99 LBNL-4580 Scintillator Requirements for Medical Imaging* William W. Moses Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 USA Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties. Keywords: Medical Imaging, Planar X-Ray, X-Ray CT, SPECT, PET 1. Introduction The first medical image is arguably the x-ray image that Röntgen took of his wife’s hand in 1895. While Roentgen used photographic film to convert the x-rays into a form observable by the human eye, within one year powdered phosphor materials such as CaWO4 replaced photographic film as the x-ray conversion material [1, 2], and have been an integral part of medical imaging devices ever since.