Contribution of the Conditioning Stage to the Total Harmonic Distortion in the Parametric Array Loudspeaker

Total Page:16

File Type:pdf, Size:1020Kb

Contribution of the Conditioning Stage to the Total Harmonic Distortion in the Parametric Array Loudspeaker Universidad EAFIT Contribution of the conditioning stage to the Total Harmonic Distortion in the Parametric Array Loudspeaker Andrés Yarce Botero Thesis to apply for the title of Master of Science in Applied Physics Advisor Olga Lucia Quintero. Ph.D. Master of Science in Applied Physics Science school Universidad EAFIT Medellín - Colombia 2017 1 Contents 1 Problem Statement 7 1.1 On sound artistic installations . 8 1.2 Objectives . 12 1.2.1 General Objective . 12 1.2.2 Specific Objectives . 12 1.3 Theoretical background . 13 1.3.1 Physics behind the Parametric Array Loudspeaker . 13 1.3.2 Maths behind of Parametric Array Loudspeakers . 19 1.3.3 About piezoelectric ultrasound transducers . 21 1.3.4 About the health and safety uses of the Parametric Array Loudspeaker Technology . 24 2 Acquisition of Sound from self-demodulation of Ultrasound 26 2.1 Acoustics . 26 2.1.1 Directionality of Sound . 28 2.2 On the non linearity of sound . 30 2.3 On the linearity of sound from ultrasound . 33 3 Signal distortion and modulation schemes 38 3.1 Introduction . 38 3.2 On Total Harmonic Distortion . 40 3.3 Effects on total harmonic distortion: Modulation techniques . 42 3.4 On Pulse Wave Modulation . 46 4 Loudspeaker Modelling by statistical design of experiments. 49 4.1 Characterization Parametric Array Loudspeaker . 51 4.2 Experimental setup . 52 4.2.1 Results of PAL radiation pattern . 53 4.3 Design of experiments . 56 4.3.1 Placket Burmann method . 59 4.3.2 Box Behnken methodology . 62 5 Digital filtering techniques and signal distortion analysis. 66 5.1 Chirp signal analysis . 66 5.1.1 Digital filter analysis . 69 5.1.2 Measurements of the harmonic content of a signal . 73 6 Conclusions 76 7 Acknowledgements 78 2 List of Figures 1.1 Design and construction of The Soundhouse ................................. 8 1.2 The SoundHouse, Marco Alunno 2015 . 9 1.3 The Forest and the Shadows projection . 10 1.4 The Forest of the Shadows, Marco Alunno 2016 . 11 1.5 Linear velocity acoustic dependence of temperature . 14 1.6 Deformation of a sinusoidal wave (black) into a sawtooth wave (red) due to local changes of speed during sound propagation . 14 1.7 Common signals and harmonic contents . 15 1.8 Audible frecuency by-product [1] . 16 1.9 Byproducts production due to the modulation of ultrasound in air . 16 1.10 Low frecuency wave generation . 17 1.11 Complete schematic operation PAL . 18 1.12 Constitutive equation to the KZK . 19 1.13 Soundlazer array . 22 1.14 Components of the PZT transducer and cone to couple the impedance [2] . 23 1.15 Cavities configuration to modify the frequency response of the PVDF transducer [3] . 23 1.16 Attenuation Characteristics of Sound Pressure by Distance . 24 2.1 Conical structures used to route the sound . 28 2.2 Commercial Sound Dome . 29 2.3 Other techniques to enroute sound . 29 2.4 Two-Frequency mutual interaction in a nonlinear medium . 30 2.5 First Parametric Array Loudspeaker Yoneyama . 31 2.6 Commercial Parametric Loudspeakers . 32 2.7 Close difference frequency wave addition . 34 2.8 Moiré pattern example . 35 2.9 Monaural and Binaural beats . 35 2.10 Graphical interpretation of a Linear and a Non linear system . 37 3.1 Common frequency spectrum of a signal . 39 3.2 Effect on the harmonic content of a signal caused for a Non Linear medium transformation . 39 3.3 Frequency spectrum Audiospot AS-24 The Soundhouse .......................... 41 3.4 Frequency spectrum Soundlazer Parametric Pro amp kit The Forest and the Shadows . 41 3.5 Pre-Distortion processing . 43 3.6 Comparison between the SRAM and the SBSAM . 45 3.7 PWM Output voltage frequency relation . 47 4.1 Cycle of the Design of Experiment methodology . 50 4.2 Soundlazer model SL-01 . 51 4.3 Electronic Schematic of the Soundlazer SL-01 . 52 4.4 Experimental setup for the radiation pattern characterization of the Loudspeaker . 53 4.5 Soundlazer SL-01 sound field characterization . 54 3 4.6 Testing of two microphones to choose the more appropriate one . 55 4.7 Controllable and non controllable factors for the DOE proposed . 56 4.8 Sigmastudio ™ digital signal processing stages . 57 4.9 Schematic Design of Experiment to measure the THD and the fundamental Intensity of the Parametric Array Loudspeaker . 58 4.10 Precondition stage DSP . 58 4.11 Placket Burmann second experiment, Response THD . 61 4.12 Placket Burmann response for the analysis of the fundamental . 61 4.13 Surface response plots of 3-factor Box Behnken analysis . 64 4.14 Contour plot of surface response . 65 5.1 Chirp Signal tested in the PAL . 67 5.2 GUI Interface for the signal analysis . 67 5.3 Time-dependent spectra of Chirp demodulated signal from Soundlazer PAL . 68 5.4 Time spectra of linear chirp signal demodulated 0-4500 Hz . 69 5.5 Software Designed Band-Pass filters . 70 5.6 Chime signal after and before filtered . 71 5.7 Band-Pass filter log chime signal . 72 5.8 Periodogram power spectrum 400 Hz . 73 5.9 THD and five first harmonics . 74 5.10 Signal to Noise Ratio 400 Hz . 74 5.11 Signal noise + distortion . 75 7.1 R Code for the Plackett Burmann Design . ..
Recommended publications
  • Moogerfooger® MF-107 Freqbox™
    Understanding and Using your moogerfooger® MF-107 FreqBox™ TABLE OF CONTENTS Introduction.................................................2 Getting Started Right Away!.......................4 Basic Applications......................................6 FreqBox Theory........................................10 FreqBox Functions....................................16 Advanced Applications.............................21 Technical Information...............................24 Limited Warranty......................................25 MF-107 Specifications..............................26 1 Welcome to the world of moogerfooger® Analog Effects Modules. Your Model MF-107 FreqBox™ is a rugged, professional-quality instrument, designed to be equally at home on stage or in the studio. Its great sound comes from the state-of-the- art analog circuitry, designed and built by the folks at Moog Music in Asheville, NC. Your MF-107 FreqBox is a direct descendent of the original modular Moog® synthesizers. It contains several complete modular synth functions: a voltage-controlled oscillator (VCO) with variable waveshape, capable of being hard synced and frequency modulated by the audio input, and an envelope follower which allows the dynamics of the input signal to modulate the frequency of the VCO. In addition the amplitude of the VCO is controlled by the dynamics of the input signal, and the VCO can be mixed with the audio input. All performance parameters are voltage-controllable, which means that you can use expression pedals, MIDI-to-CV converter, or any other source of control voltages to 'play' your MF-107. Control voltage outputs mean that the MF-107 can be used with other moogerfoogers or voltage controlled devices like the Minimoog Voyager® or Little Phatty® synthesizers. While you can use it on the floor as a conventional effects box, your MF-107 FreqBox is much more versatile and its sound quality is higher than the single fixed function "stomp boxes" that you may be accustomed to.
    [Show full text]
  • Ultrasound Induced Cavitation and Resonance Amplification Using Adaptive Feedback Control System
    Master's Thesis Electrical Engineering Ultrasound induced cavitation and resonance amplification using adaptive feedback Control System Vipul. Vijigiri Taraka Rama Krishna Pamidi This thesis is presented as part of Degree of Master of Science in Electrical Engineering with Emphasis on Signal Processing Blekinge Institute of Technology (BTH) September 2014 Blekinge Institute of Technology, Sweden School of Engineering Department of Electrical Engineering (AET) Supervisor: Dr. Torbjörn Löfqvist, PhD, LTU Co- Supervisor: Dr. Örjan Johansson, PhD, LTU Shadow Supervisor/Examiner: Dr. Sven Johansson, PhD, BTH Ultrasound induced cavitation and resonance amplification using adaptive feedback Control System Master`s thesis Vipul, Taraka, 2014 Performed in Electrical Engineering, EISlab, Dep’t of Computer Science, Electrical and Space Engineering, Acoustics Lab, dep’t of Acoustics at Lulea University of Technology ii | Page This thesis is submitted to the Department of Applied signal processing at Blekinge Institute of Technology in partial fulfilment of the requirements for the degree of Master of Science in Electrical Engineering with emphasis on Signal Processing. Contact Information: Authors: Vipul Vijigiri Taraka Rama Krishna Pamidi Dept. of Applied signal processing Blekinge Institute of Technology (BTH), Sweden E-mail: [email protected],[email protected] E-mail: [email protected], [email protected] External Advisors: Dr. Torbjörn Löfqvist Department of Computer Science, Electrical and Space Engineering Internet: www.ltu.se Luleå University of technology (LTU), Sweden Phone: +46 (0)920-491777 E-mail: [email protected] Co-Advisor: Dr. Örjan Johansson Internet: www.ltu.se Department of the built environment and natural resources- Phone: +46 (0)920-491386 -Operation, maintenance and acoustics Luleå University of technology (LTU), Sweden E-mail: [email protected] University Advisor/Examiner: Dr.
    [Show full text]
  • Acoustics & Ultrasonics
    Dr.R.Vasuki Associate professor & Head Department of Physics Thiagarajar College of Engineering Madurai-625015 Science of sound that deals with origin, propagation and auditory sensation of sound. Sound production Propagation by human beings/machines Reception Classification of Sound waves Infrasonic audible ultrasonic Inaudible Inaudible < 20 Hz 20 Hz to 20,000 Hz ˃20,000 Hz Music – The sound which produces rhythmic sensation on the ears Noise-The sound which produces jarring & unpleasant effect To differentiate sound & noise Regularity of vibration Degree of damping Ability of ear to recognize the components Sound is a form of energy Sound is produced by the vibration of the body Sound requires a material medium for its propagation. When sound is conveyed from one medium to another medium there is no bodily motion of the medium Sound can be transmitted through solids, liquids and gases. Velocity of sound is higher in solids and lower in gases. Sound travels with velocity less than the velocity 8 of light. c= 3x 10 V0 =330 m/s at 0° degree Lightning comes first than thunder VT= V0+0.6 T Sound may be reflected, refracted or scattered. It undergoes diffraction and interference. Pitch or frequency Quality or timbre Intensity or Loudness Pitch is defined as the no of vibrations/sec. Frequency is a physical quantity but pitch is a physiological quantity. Mosquito- high pitch Lion- low pitch Quality or timbre is the one which helps to distinguish between the musical notes emitted by the different instruments or voices even though they have the same pitch. Intensity or loudness It is the average rate of flow of acoustic energy (Q) per unit area(A) situated normally to the direction of propagation of sound waves.
    [Show full text]
  • Pulse Width Modulation
    International Journal of Research in Engineering, Science and Management 38 Volume-2, Issue-12, December-2019 www.ijresm.com | ISSN (Online): 2581-5792 Pulse Width Modulation M. Naganetra1, R. Ramya2, D. Rohini3 1,2,3Student, Dept. of Electronics & Communication Engineering, K. S. Institute of Technology, Bengaluru India Abstract: This paper presents pulse width modulation which can 2. Principle be controlled by duty cycle. Pulse width modulation(PWM) is a Pulse width modulation uses a rectangular pulse wave powerful technique for controlling analog circuits with a digital signal. PWM is widely used in different applications, ranging from whose pulse width is modulated resulting in the variation of the measurement and communications to power control and average value of the waveform. If we consider a pulse signal conversions, which transforms the amplitude bounded input f(t), with period T, low value Y-min, high value Y-max and a signals into the pulse width output signal without suffering noise duty cycle D. Average value of the output signal is given by, quantization. The frequency of output signal is usually constant. By controlling analog circuits digitally, system cost and power 1 푇 푦̅= ∫ 푓(푡)푑푡 consumption can be reduced. The PWM signal is still digital 푇 0 because, at any instant of time, the full DC supply will be either fully_ ON or fully _OFF. Given a sufficient bandwidth, any analog 3. PWM generator signals (sine, square, triangle and so on) can be encoded with PWM. Keywords: decrease-duty, duty cycle, increase-duty, PWM (pulse width modulation), RTL view 1. Introduction Pulse width modulation (or pulse duration modulation) is a method of reducing the average power delivered by an electrical Fig.
    [Show full text]
  • Prof. Peter Westervelt WHOI Ocean Acoustics Nov. 15, 2006
    Prof. Peter Westervelt WHOI Ocean Acoustics Nov. 15, 2006 PART 1 Intro-This is a weekly gathering of the Ocean Acoustics Laboratory; this is a part of the Department Applied Ocean Physics and Engineering here at the Institution. Of course this is a very special occasion; I'm very pleased to welcome you to our Institution. Glad to be here. Don't recognize it but I was here very early on, forty years ago, when they dedicated one of the labs. Intro-This is the first and the oldest of the buildings, we have of the order of sixty buildings at the Institution, but Bigelow Laboratory is the first, built in 1930 and apparently the donors, the Rockefeller Brothers, were later asked about the donation to the Institution and they expressed surprise, they didn't recall it, they didn't know why they were asked! The influence of Brown University has been genuinely profound in many ways, it continues to be and there was a celebration of Brown University Physics at the Acoustical Society of America meeting in Providence in June, quite a turn out. Of course the Physics Department is also a profound personal influence for several of us and many colleges that we work with also. Your work has already been described to the group. But, its actually been very enlightening to take a ramble through some of the literature you're responsible for concerned with scattering with sound by sound and parametric acoustic array, absorption of sound by sound. A favorite later theme of course was non-scattering of sound by sound.
    [Show full text]
  • THE SPECIAL RELATIONSHIP BETWEEN SOUND and LIGHT, with IMPLICATIONS for SOUND and LIGHT THERAPY John Stuart Reid ABSTRACT
    Theoretical THE SPECIAL RELATIONSHIP BETWEEN SOUND AND LIGHT, WITH IMPLICATIONS FOR SOUND AND LIGHT THERAPY John Stuart Reid ABSTRACT In this paper we explore the nature of sound and light and the special relationship that exists between these two seemingly unrelated forms of energy. The terms 'sound waves' and 'electromagnetic waves' are examined. These commonly used expressions, it is held, misrepresent science and may have delayed new discoveries. A hypothetical model is proposed for the mechanism that creaIL'S electromagnetism. named "Sonic Propagation of Electromagnetic Energy Components" (SPEEC). The SPEEC hypothesis states that all sounds have an electromagnetic component and that all electromagnetism is created as a consequence of sound. SPEEC also predicts that the electromagnetism created by sound propagation through air will be modulated by the same sound periodicities that created the electromagnetism. The implications for SPEEC are discussed within the context of therapeutic sound and light. KEYWORDS: Sound, Light, SPEEC, Sound and Light Therapy Subtle Energies &- Energy Medicine • Volume 17 • Number 3 • Page 215 THE NATURE OF SOUND ound traveling through air may be defined as the transfer of periodic vibrations between colliding atoms or molecules. This energetic S phenomenon typically expands away from the epicenter of the sound event as a bubble-shaped emanation. As the sound bubble rapidly increases in diameter its surface is in a state of radial oscillation. These periodic movements follow the same expansions and contractions as the air bubble surrounding the initiating sound event. DE IUPlIUlIEPIESEITInU IF ..... mBIY II m DE TEll '..... "'EI' II lIED, WIIIH DE FAlSE 111101111 DAT ..... IUYEIJ AS I lAVE.
    [Show full text]
  • How Can You Replicate Real World Signals? Precisely
    How can you replicate real world signals? Precisely tç)[UP.)[ 7QQ PSDIBOOFMT FG400 Series t*OUVJUJWFPQFSBUJPOXJUIBw Arbitrary/Function Generator LCD screen t4ZODISPOJ[FVQUPVOJUTUP QSPWJEFVQUPPVUQVU DIBOOFMT t"WBSJFUZPGTXFFQTBOE modulations Bulletin FG400-01EN Features and benefits FG400 Series Features and CFOFýUT &BTJMZHFOFSBUFCBTJD BQQMJDBUJPOTQFDJýDBOEBSCJUSBSZXBWFGPSNT 2 The FG400 Arbitrary/Function Generator provides a wide variety of waveforms as standard and generates signals simply and easily. There are one channel (FG410) and two channel (FG420) models. As the output channels are isolated, an FG400 can also be used in the development of floating circuits. (up to 42 V) Basic waveforms Advanced functions 4JOF DC 4XFFQ.PEVMBUJPO Burst 0.01 μHz to 30 MHz ±10 V/open Frequency sweep "VUP Setting items Oscillation and stop are 4RVBSF start/stop frequency, time, mode automatically repeated with the (continuous, single, gated single), respectively specified wave number. function (one-way/shuttle, linear/ log) 0.01 μHz to 15 MHz, variable duty Pulse 18. Trigger Setting items Oscillation with the specified wave carrier duty, peak duty deviation number is done each time a trigger Output duty is received. the range of carrier duty ±peak duty deviation 0.01 μHz to 15 MHz, variable leading/trailing edge time Ramp ". Gate Setting items Oscillation is done in integer cycles carrier amplitude, modulation depth or half cycles while the gate is on. Output amp. the range of amp./2 × (1 ±mod. 0.01 μHz to 5 MHz, variable symmetry Depth/100) 3 For trouble shooting Arbitrary waveforms (16 bits amplitude resolution) of up to 512 K words per waveform can be generated. 128 waveforms with a total size of 4 M words can be saved to the internal non-volatile memory.
    [Show full text]
  • The 1-Bit Instrument: the Fundamentals of 1-Bit Synthesis
    BLAKE TROISE The 1-Bit Instrument The Fundamentals of 1-Bit Synthesis, Their Implementational Implications, and Instrumental Possibilities ABSTRACT The 1-bit sonic environment (perhaps most famously musically employed on the ZX Spectrum) is defined by extreme limitation. Yet, belying these restrictions, there is a surprisingly expressive instrumental versatility. This article explores the theory behind the primary, idiosyncratically 1-bit techniques available to the composer-programmer, those that are essential when designing “instruments” in 1-bit environments. These techniques include pulse width modulation for timbral manipulation and means of generating virtual polyph- ony in software, such as the pin pulse and pulse interleaving techniques. These methodologies are considered in respect to their compositional implications and instrumental applications. KEYWORDS chiptune, 1-bit, one-bit, ZX Spectrum, pulse pin method, pulse interleaving, timbre, polyphony, history 2020 18 May on guest by http://online.ucpress.edu/jsmg/article-pdf/1/1/44/378624/jsmg_1_1_44.pdf from Downloaded INTRODUCTION As unquestionably evident from the chipmusic scene, it is an understatement to say that there is a lot one can do with simple square waves. One-bit music, generally considered a subdivision of chipmusic,1 takes this one step further: it is the music of a single square wave. The only operation possible in a -bit environment is the variation of amplitude over time, where amplitude is quantized to two states: high or low, on or off. As such, it may seem in- tuitively impossible to achieve traditionally simple musical operations such as polyphony and dynamic control within a -bit environment. Despite these restrictions, the unique tech- niques and auditory tricks of contemporary -bit practice exploit the limits of human per- ception.
    [Show full text]
  • L Atdment OFFICF QO9ENT ROOM 36
    *;JiQYL~dW~llbk~ieira - - ~-- -, - ., · LAtDMENT OFFICF QO9ENT ROOM 36 ?ESEARC L0ORATORY OF RL C.f:'__ . /j16baV"BLI:1!S INSTITUTE 0i'7Cn' / PERCEPTION OF MUSICAL INTERVALS: EVIDENCE FOR THE CENTRAL ORIGIN OF THE PITCH OF COMPLEX TONES ADRIANUS J. M. HOUTSMA JULIUS L. GOLDSTEIN LO N OPY TECHNICAL REPORT 484 OCTOBER I, 1971 MASSACHUSETTS INSTITUTE OF TECHNOLOGY RESEARCH LABORATORY OF ELECTRONICS CAMBRIDGE, MASSACHUSETTS 02139 The Research Laboratory of Electronics is an interdepartmental laboratory in which faculty members and graduate students from numerous academic departments conduct research. The research reported in this document was made possible in part by support extended the Massachusetts Institute of Tech- nology, Research Laboratory of Electronics, by the JOINT SER- VICES ELECTRONICS PROGRAMS (U. S. Army, U. S. Navy, and U.S. Air Force) under Contract No. DAAB07-71-C-0300, and by the National Institutes of Health (Grant 5 PO1 GM14940-05). Requestors having DOD contracts or grants should apply for copies of technical reports to the Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314; all others should apply to the Clearinghouse for Federal Scientific and Technical Information, Sills Building, 5285 Port Royal Road, Springfield, Virginia 22151. THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED. MASSACHUSETTS INSTITUTE OF TECHNOLOGY RESEARCH LABORATORY OF ELECTRONICS Technical Report 484 October 1, 1971 PERCEPTION OF MUSICAL INTERVALS: EVIDENCE FOR THE CENTRAL ORIGIN OF COMPLEX TONES Adrianus J. M. Houtsma and Julius L. Goldstein This report is based on a thesis by A. J. M. Houtsma submitted to the Department of Electrical Engineering at the Massachusetts Institute of Technology, June 1971, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
    [Show full text]
  • Large Scale Sound Installation Design: Psychoacoustic Stimulation
    LARGE SCALE SOUND INSTALLATION DESIGN: PSYCHOACOUSTIC STIMULATION An Interactive Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by Taylor H. Andrews, CS 2012 Mark E. Hayden, ECE 2012 Date: 16 December 2010 Professor Frederick W. Bianchi, Advisor Abstract The brain performs a vast amount of processing to translate the raw frequency content of incoming acoustic stimuli into the perceptual equivalent. Psychoacoustic processing can result in pitches and beats being “heard” that do not physically exist in the medium. These psychoac- oustic effects were researched and then applied in a large scale sound design. The constructed installations and acoustic stimuli were designed specifically to combat sensory atrophy by exer- cising and reinforcing the listeners’ perceptual skills. i Table of Contents Abstract ............................................................................................................................................ i Table of Contents ............................................................................................................................ ii Table of Figures ............................................................................................................................. iii Table of Tables .............................................................................................................................. iv Chapter 1: Introduction .................................................................................................................
    [Show full text]
  • An Infrasonic Missing Fundamental Rises at 18.5Hz Christopher D
    Papers & Publications: Interdisciplinary Journal of Undergraduate Research Volume 2 Article 11 2013 An Infrasonic Missing Fundamental Rises at 18.5Hz Christopher D. Lacomba University of North Georgia Steven A. Lloyd University of North Georgia Ryan A. Shanks University of North Georgia Follow this and additional works at: http://digitalcommons.northgeorgia.edu/papersandpubs Part of the Behavior and Behavior Mechanisms Commons, Biological and Chemical Physics Commons, Biological Psychology Commons, Cognition and Perception Commons, Cognitive Neuroscience Commons, Cognitive Psychology Commons, Computational Neuroscience Commons, Dynamic Systems Commons, Investigative Techniques Commons, Mental Disorders Commons, Non-linear Dynamics Commons, Numerical Analysis and Computation Commons, Psychological Phenomena and Processes Commons, Speech and Hearing Science Commons, and the Systems Neuroscience Commons Recommended Citation Lacomba, Christopher D.; Lloyd, Steven A.; and Shanks, Ryan A. (2013) "An Infrasonic Missing Fundamental Rises at 18.5Hz," Papers & Publications: Interdisciplinary Journal of Undergraduate Research: Vol. 2 , Article 11. Available at: http://digitalcommons.northgeorgia.edu/papersandpubs/vol2/iss1/11 This Article is brought to you for free and open access by the Center for Undergraduate Research and Creative Activities (CURCA) at Nighthawks Open Institutional Repository. It has been accepted for inclusion in Papers & Publications: Interdisciplinary Journal of Undergraduate Research by an authorized editor of Nighthawks Open Institutional Repository. The Missing Fundamental (MF) phenomenon creates perceptible tones, which do not actually exist in the audible range, from harmonic series. Sounds that follow a harmonic series are perceptually significant since they stand out from random background noise and frequently represent sounds of biological origin and importance. For example, both animal vocalizations and human speech produce harmonic series of sounds.
    [Show full text]
  • Directional Steering of Audio Signal Using Parametric Array in Air
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 1, January - 2014 Directional Steering of Audio Signal Using Parametric Array in Air Sreedhu T Sasi, Anaswara V Nath, Archana V R College of Engineering,Cherthala Abstract directly on the wall without the need for a mechanical pan-and-tilt system. Directional Audio is very recent technology that creates . focused beams of sound .By projecting sound to one location, 2. Prior art specific listeners can be targeted with sound without other In 1963, Westervelt described how an audible nearby hearing it.The parametric loudspeaker provides an difference frequency signal is generated from two high- effective means of projecting sound in a highly directional frequency collimated beams of sound. These high- manner without using large loudspeaker arrays to form sharp frequency sound beams are commonly referred to as primary waves. The nonlinear interaction of primary directional beams.Development of parametric loudspeaker in waves in mediums (such as air and water) produces an many public places reduce noise pollution.Digital Signal end-fire array of virtual acoustics sources that is Processing plays a significant role in enhancing the aural referred to as the parametric array. The primary interest quality of the parametric loudspeakers,and array processing for the parametric array focuses on the difference- can help to shape and steer the beam electronic electronically. frequency signal that is being created along the axis of the main beam (or virtual end-fire array) at the speed of 1. Introduction sound. This phenomenon results in a sharp directional he controllable audible sound can greatly reduce sound beam of audible signal.
    [Show full text]