Nonlinear Behavior of High-Intensity Ultrasound Propagation in an Ideal Fluid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nonlinear Acoustics Applied to Nondestructive Testing
TO NONDESTRUCTIVE TESTING NONDESTRUCTIVE TO APPLIED ACOUSTICS NONLINEAR ABSTRACT Sensitive nonlinear acoustic methods are suitable But it is in general difficult to limit the geometrical for material characterization. This thesis describes extent of low-frequency acoustic waves. A techni- NONLINEAR ACOUSTICS APPLIED three nonlinear acoustic methods that are proven que is presented that constrains the wave field to useful for detection of defects like cracks and de- a localized trapped mode so that damage can be TO NONDESTRUCTIVE TESTING laminations in solids. They offer the possibility to located. use relatively low frequencies which is advanta- geous because attenuation and diffraction effects Keywords: nonlinear acoustics, nondestructive tes- are smaller for low frequencies. Therefore large ting, activation density, slow dynamics, resonance and multi-layered complete objects can be investi- frequency, nonlinear wave modulation spectros- gated in about one second. copy, harmonic generation, trapped modes, open Sometimes the position of the damage is required. resonator, sweep rate. Kristian Haller Kristian Haller Blekinge Institute of Technology Licentiate Dissertation Series No. 2007:07 2007:07 ISSN 1650-2140 School of Engineering 2007:07 ISBN 978-91-7295-119-8 Nonlinear Acoustics Applied to NonDestructive Testing Kristian Haller Blekinge Institute of Technology Licentiate Dissertation Series No 2007:07 ISSN 1650-2140 ISBN 978-91-7295-119-8 Nonlinear Acoustics Applied to NonDestructive Testing Kristian Haller Department of Mechanical Engineering School of Engineering Blekinge Institute of Technology SWEDEN © 2007 Kristian Haller Department of Mechanical Engineering School of Engineering Publisher: Blekinge Institute of Technology Printed by Printfabriken, Karlskrona, Sweden 2007 ISBN 978-91-7295-119-8 Acknowledgements This work was carried out at the Department of Mechanical Engineering, Blekinge Institute of Technology, Karlskrona, Sweden. -
Ultrasound Induced Cavitation and Resonance Amplification Using Adaptive Feedback Control System
Master's Thesis Electrical Engineering Ultrasound induced cavitation and resonance amplification using adaptive feedback Control System Vipul. Vijigiri Taraka Rama Krishna Pamidi This thesis is presented as part of Degree of Master of Science in Electrical Engineering with Emphasis on Signal Processing Blekinge Institute of Technology (BTH) September 2014 Blekinge Institute of Technology, Sweden School of Engineering Department of Electrical Engineering (AET) Supervisor: Dr. Torbjörn Löfqvist, PhD, LTU Co- Supervisor: Dr. Örjan Johansson, PhD, LTU Shadow Supervisor/Examiner: Dr. Sven Johansson, PhD, BTH Ultrasound induced cavitation and resonance amplification using adaptive feedback Control System Master`s thesis Vipul, Taraka, 2014 Performed in Electrical Engineering, EISlab, Dep’t of Computer Science, Electrical and Space Engineering, Acoustics Lab, dep’t of Acoustics at Lulea University of Technology ii | Page This thesis is submitted to the Department of Applied signal processing at Blekinge Institute of Technology in partial fulfilment of the requirements for the degree of Master of Science in Electrical Engineering with emphasis on Signal Processing. Contact Information: Authors: Vipul Vijigiri Taraka Rama Krishna Pamidi Dept. of Applied signal processing Blekinge Institute of Technology (BTH), Sweden E-mail: [email protected],[email protected] E-mail: [email protected], [email protected] External Advisors: Dr. Torbjörn Löfqvist Department of Computer Science, Electrical and Space Engineering Internet: www.ltu.se Luleå University of technology (LTU), Sweden Phone: +46 (0)920-491777 E-mail: [email protected] Co-Advisor: Dr. Örjan Johansson Internet: www.ltu.se Department of the built environment and natural resources- Phone: +46 (0)920-491386 -Operation, maintenance and acoustics Luleå University of technology (LTU), Sweden E-mail: [email protected] University Advisor/Examiner: Dr. -
The Standing Acoustic Wave Principle Within the Frequency Analysis Of
inee Eng ring al & ic d M e e d Misun, J Biomed Eng Med Devic 2016, 1:3 m i o c i a B l D f o e v DOI: 10.4172/2475-7586.1000116 l i a c n e r s u o Journal of Biomedical Engineering and Medical Devices J ISSN: 2475-7586 Review Article Open Access The Standing Acoustic Wave Principle within the Frequency Analysis of Acoustic Signals in the Cochlea Vojtech Misun* Department of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, Czech Republic Abstract The organ of hearing is responsible for the correct frequency analysis of auditory perceptions coming from the outer environment. The article deals with the principles of the analysis of auditory perceptions in the cochlea only, i.e., from the overall signal leaving the oval window to its decomposition realized by the basilar membrane. The paper presents two different methods with the function of the cochlea considered as a frequency analyzer of perceived acoustic signals. First, there is an analysis of the principle that cochlear function involves acoustic waves travelling along the basilar membrane; this concept is one that prevails in the contemporary specialist literature. Then, a new principle with the working name “the principle of standing acoustic waves in the common cavity of the scala vestibuli and scala tympani” is presented and defined in depth. According to this principle, individual structural modes of the basilar membrane are excited by continuous standing waves of acoustic pressure in the scale tympani. Keywords: Cochlea function; Acoustic signals; Frequency analysis; The following is a description of the theories in question: Travelling wave principle; Standing wave principle 1. -
Nuclear Acoustic Resonance Investigations of the Longitudinal and Transverse Electron-Lattice Interaction in Transition Metals and Alloys V
NUCLEAR ACOUSTIC RESONANCE INVESTIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERACTION IN TRANSITION METALS AND ALLOYS V. Müller, G. Schanz, E.-J. Unterhorst, D. Maurer To cite this version: V. Müller, G. Schanz, E.-J. Unterhorst, D. Maurer. NUCLEAR ACOUSTIC RESONANCE INVES- TIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERAC- TION IN TRANSITION METALS AND ALLOYS. Journal de Physique Colloques, 1981, 42 (C6), pp.C6-389-C6-391. 10.1051/jphyscol:19816113. jpa-00221175 HAL Id: jpa-00221175 https://hal.archives-ouvertes.fr/jpa-00221175 Submitted on 1 Jan 1981 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE CoZZoque C6, suppZe'ment au no 22, Tome 42, de'cembre 1981 page C6-389 NUCLEAR ACOUSTIC RESONANCE INVESTIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERACTION IN TRANSITION METALS AND ALLOYS V. Miiller, G. Schanz, E.-J. Unterhorst and D. Maurer &eie Universit8G Berlin, Fachbereich Physik, Kiinigin-Luise-Str.28-30, 0-1000 Berlin 33, Gemany Abstract.- In metals the conduction electrons contribute significantly to the acoustic-wave-induced electric-field-gradient-tensor (DEFG) at the nuclear positions. Since nuclear electric quadrupole coupling to the DEFG is sensi- tive to acoustic shear modes only, nuclear acoustic resonance (NAR) is a par- ticularly useful tool in studying the coup1 ing of electrons to shear modes without being affected by volume dilatations. -
Acoustic Wave Propagation in Rivers: an Experimental Study Thomas Geay1, Ludovic Michel1,2, Sébastien Zanker2 and James Robert Rigby3 1Univ
Acoustic wave propagation in rivers: an experimental study Thomas Geay1, Ludovic Michel1,2, Sébastien Zanker2 and James Robert Rigby3 1Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France 2EDF, Division Technique Générale, 38000 Grenoble, France 5 3USDA-ARS National Sedimentation Laboratory, Oxford, Mississippi, USA Correspondence to: Thomas Geay ([email protected]) Abstract. This research has been conducted to develop the use of Passive Acoustic Monitoring (PAM) in rivers, a surrogate method for bedload monitoring. PAM consists in measuring the underwater noise naturally generated by bedload particles when impacting the river bed. Monitored bedload acoustic signals depend on bedload characteristics (e.g. grain size 10 distribution, fluxes) but are also affected by the environment in which the acoustic waves are propagated. This study focuses on the determination of propagation effects in rivers. An experimental approach has been conducted in several streams to estimate acoustic propagation laws in field conditions. It is found that acoustic waves are differently propagated according to their frequency. As reported in other studies, acoustic waves are affected by the existence of a cutoff frequency in the kHz region. This cutoff frequency is inversely proportional to the water depth: larger water depth enables a better propagation of 15 the acoustic waves at low frequency. Above the cutoff frequency, attenuation coefficients are found to increase linearly with frequency. The power of bedload sounds is more attenuated at higher frequencies than at low frequencies which means that, above the cutoff frequency, sounds of big particles are better propagated than sounds of small particles. Finally, it is observed that attenuation coefficients are variable within 2 orders of magnitude from one river to another. -
Acoustics & Ultrasonics
Dr.R.Vasuki Associate professor & Head Department of Physics Thiagarajar College of Engineering Madurai-625015 Science of sound that deals with origin, propagation and auditory sensation of sound. Sound production Propagation by human beings/machines Reception Classification of Sound waves Infrasonic audible ultrasonic Inaudible Inaudible < 20 Hz 20 Hz to 20,000 Hz ˃20,000 Hz Music – The sound which produces rhythmic sensation on the ears Noise-The sound which produces jarring & unpleasant effect To differentiate sound & noise Regularity of vibration Degree of damping Ability of ear to recognize the components Sound is a form of energy Sound is produced by the vibration of the body Sound requires a material medium for its propagation. When sound is conveyed from one medium to another medium there is no bodily motion of the medium Sound can be transmitted through solids, liquids and gases. Velocity of sound is higher in solids and lower in gases. Sound travels with velocity less than the velocity 8 of light. c= 3x 10 V0 =330 m/s at 0° degree Lightning comes first than thunder VT= V0+0.6 T Sound may be reflected, refracted or scattered. It undergoes diffraction and interference. Pitch or frequency Quality or timbre Intensity or Loudness Pitch is defined as the no of vibrations/sec. Frequency is a physical quantity but pitch is a physiological quantity. Mosquito- high pitch Lion- low pitch Quality or timbre is the one which helps to distinguish between the musical notes emitted by the different instruments or voices even though they have the same pitch. Intensity or loudness It is the average rate of flow of acoustic energy (Q) per unit area(A) situated normally to the direction of propagation of sound waves. -
Springer Handbook of Acoustics
Springer Handbook of Acoustics Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles, and functional relationships in physi- cal sciences and engineering. The world’s leading experts in the fields of physics and engineering will be assigned by one or several renowned editors to write the chapters com- prising each volume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of physical and technical information. The volumes are designed to be useful as readable desk reference books to give a fast and comprehen- sive overview and easy retrieval of essential reliable key information, including tables, graphs, and bibli- ographies. References to extensive sources are provided. HandbookSpringer of Acoustics Thomas D. Rossing (Ed.) With CD-ROM, 962 Figures and 91 Tables 123 Editor: Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics Stanford, CA 94305, USA Editorial Board: Manfred R. Schroeder, University of Göttingen, Germany William M. Hartmann, Michigan State University, USA Neville H. Fletcher, Australian National University, Australia Floyd Dunn, University of Illinois, USA D. Murray Campbell, The University of Edinburgh, UK Library of Congress Control Number: 2006927050 ISBN: 978-0-387-30446-5 e-ISBN: 0-387-30425-0 Printed on acid free paper c 2007, Springer Science+Business Media, LLC New York All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC New York, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. -
Psychoacoustics Perception of Normal and Impaired Hearing with Audiology Applications Editor-In-Chief for Audiology Brad A
PSYCHOACOUSTICS Perception of Normal and Impaired Hearing with Audiology Applications Editor-in-Chief for Audiology Brad A. Stach, PhD PSYCHOACOUSTICS Perception of Normal and Impaired Hearing with Audiology Applications Jennifer J. Lentz, PhD 5521 Ruffin Road San Diego, CA 92123 e-mail: [email protected] Website: http://www.pluralpublishing.com Copyright © 2020 by Plural Publishing, Inc. Typeset in 11/13 Adobe Garamond by Flanagan’s Publishing Services, Inc. Printed in the United States of America by McNaughton & Gunn, Inc. All rights, including that of translation, reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, including photocopying, recording, taping, Web distribution, or information storage and retrieval systems without the prior written consent of the publisher. For permission to use material from this text, contact us by Telephone: (866) 758-7251 Fax: (888) 758-7255 e-mail: [email protected] Every attempt has been made to contact the copyright holders for material originally printed in another source. If any have been inadvertently overlooked, the publishers will gladly make the necessary arrangements at the first opportunity. Library of Congress Cataloging-in-Publication Data Names: Lentz, Jennifer J., author. Title: Psychoacoustics : perception of normal and impaired hearing with audiology applications / Jennifer J. Lentz. Description: San Diego, CA : Plural Publishing, -
Investigation of the Time Dependent Nature of Infrasound Measured Near a Wind Farm Branko ZAJAMŠEK1; Kristy HANSEN1; Colin HANSEN1
Investigation of the time dependent nature of infrasound measured near a wind farm Branko ZAJAMŠEK1; Kristy HANSEN1; Colin HANSEN1 1 University of Adelaide, Australia ABSTRACT It is well-known that wind farm noise is dominated by low-frequency energy at large distances from the wind farm, where the high frequency noise has been more attenuated than low-frequency noise. It has also been found that wind farm noise is highly variable with time due to the influence of atmospheric factors such as atmospheric turbulence, wake turbulence from upstream turbines and wind shear, as well as effects that can be attributed to blade rotation. Nevertheless, many standards that are used to determine wind farm compliance are based on overall A-weighted levels which have been averaged over a period of time. Therefore the aim of the work described in this paper is to investigate the time dependent nature of unweighted wind farm noise and its perceptibility, with a focus on infrasound. Measurements were carried out during shutdown and operational conditions and results show that wind farm infrasound could be detectable by the human ear although not perceived as sound. Keywords: wind farm noise, on and off wind farm, infrasound, OHC threshold, crest factor I-INCE Classification of Subjects Number(s): 14.5.4 1. INTRODUCTION Wind turbine noise is influenced by atmospheric effects, which cause significant variations in the sound pressure level magnitude over time. In particular, factors causing amplitude variations include wind shear (1), directivity (2) and variations in the wind speed and direction. Wind shear, wind speed variations and yaw error (deviation of the turbine blade angle from optimum with respect to wind direction) cause changes in the blade loading and in the worst case, can lead to dynamic stall (3). -
THE SPECIAL RELATIONSHIP BETWEEN SOUND and LIGHT, with IMPLICATIONS for SOUND and LIGHT THERAPY John Stuart Reid ABSTRACT
Theoretical THE SPECIAL RELATIONSHIP BETWEEN SOUND AND LIGHT, WITH IMPLICATIONS FOR SOUND AND LIGHT THERAPY John Stuart Reid ABSTRACT In this paper we explore the nature of sound and light and the special relationship that exists between these two seemingly unrelated forms of energy. The terms 'sound waves' and 'electromagnetic waves' are examined. These commonly used expressions, it is held, misrepresent science and may have delayed new discoveries. A hypothetical model is proposed for the mechanism that creaIL'S electromagnetism. named "Sonic Propagation of Electromagnetic Energy Components" (SPEEC). The SPEEC hypothesis states that all sounds have an electromagnetic component and that all electromagnetism is created as a consequence of sound. SPEEC also predicts that the electromagnetism created by sound propagation through air will be modulated by the same sound periodicities that created the electromagnetism. The implications for SPEEC are discussed within the context of therapeutic sound and light. KEYWORDS: Sound, Light, SPEEC, Sound and Light Therapy Subtle Energies &- Energy Medicine • Volume 17 • Number 3 • Page 215 THE NATURE OF SOUND ound traveling through air may be defined as the transfer of periodic vibrations between colliding atoms or molecules. This energetic S phenomenon typically expands away from the epicenter of the sound event as a bubble-shaped emanation. As the sound bubble rapidly increases in diameter its surface is in a state of radial oscillation. These periodic movements follow the same expansions and contractions as the air bubble surrounding the initiating sound event. DE IUPlIUlIEPIESEITInU IF ..... mBIY II m DE TEll '..... "'EI' II lIED, WIIIH DE FAlSE 111101111 DAT ..... IUYEIJ AS I lAVE. -
Arxiv:1912.02281V1 [Math.NA] 4 Dec 2019
A HIGH-ORDER DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR SOUND WAVES PAOLA. F. ANTONIETTI1, ILARIO MAZZIERI1, MARKUS MUHR∗;2, VANJA NIKOLIC´ 3, AND BARBARA WOHLMUTH2 1MOX, Dipartimento di Matematica, Politecnico di Milano, Milano, Italy 2Department of Mathematics, Technical University of Munich, Germany 3Department of Mathematics, Radboud University, The Netherlands Abstract. We propose a high-order discontinuous Galerkin scheme for nonlinear acoustic waves on polytopic meshes. To model sound propagation with and without losses, we use Westervelt's nonlinear wave equation with and without strong damping. Challenges in the numerical analysis lie in handling the nonlinearity in the model, which involves the derivatives in time of the acoustic velocity potential, and in preventing the equation from degenerating. We rely in our approach on the Banach fixed-point theorem combined with a stability and convergence analysis of a linear wave equation with a variable coefficient in front of the second time derivative. By doing so, we derive an a priori error estimate for Westervelt's equation in a suitable energy norm for the polynomial degree p ≥ 2. Numerical experiments carried out in two-dimensional settings illustrate the theoretical convergence results. In addition, we demonstrate efficiency of the method in a three- dimensional domain with varying medium parameters, where we use the discontinuous Galerkin approach in a hybrid way. 1. Introduction Nonlinear sound waves arise in many different applications, such as medical ultra- sound [20, 35, 44], fatigue crack detection [46, 48], or musical acoustics of brass instru- ments [10, 23, 38]. Although considerable work has been devoted to their analytical stud- ies [29, 30, 33, 37] and their computational treatment [27, 34, 42, 51], rigorous numerical analysis of nonlinear acoustic phenomena is still largely missing from the literature. -
About Possibility of Using the Reverberation Phenomenon in the Defectoscopy Field and the Stress-Strain State Evaluation of Solids
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 23 (2017) pp. 13122-13126 © Research India Publications. http://www.ripublication.com About Possibility of using the Reverberation Phenomenon in the Defectoscopy Field and the Stress-Strain State Evaluation of Solids Petr N. Khorsov1, Anna A. Demikhova1* and Alexander A. Rogachev2 1 National Research Tomsk Polytechnic University, 30, Lenina Avenue, 634050, Tomsk, Russia. 2 Francisk Skorina Gomel State University, 104, Sovetskaya str., 246019, Gomel, Republic of Belarus. Abstract multiple reflections from natural and artificial interference [6- 8]. The work assesses the possibilities of using the reverberation phenomenon for defectiveness testing and stress-strain state of The reverberation phenomenon is also used in the solid dielectrics on the mechanoelectrical transformations mechanoelectrical transformations (MET) method for method base. The principal reverberation advantage is that investigation the defectiveness and stress-strain state (SSS) of excitation acoustic wave repeatedly crosses the dielectric composite materials [9]. The essence of the MET- heterogeneities zones of testing objects. This causes to method is that the test sample is subjected pulse acoustic distortions accumulation of wave fronts which is revealed in excitement, as a result of which an acoustic wave propagates the response parameters. A comparative responses analysis in it. Waves fronts repeatedly reflecting from the boundaries from the sample in uniaxial compression conditions at crosse defective and local inhomogeneities zones. different loads in two areas of responses time realizations was Part of the acoustic energy waves converted into made: deterministic ones in the initial intervals and pseudo- electromagnetic signal on the MET sources. Double electrical random intervals in condition of superposition of large layers at the boundaries of heterogeneous materials, as well as numbers reflected acoustic waves.