Nonlinear Acoustics Applied to Nondestructive Testing

Total Page:16

File Type:pdf, Size:1020Kb

Nonlinear Acoustics Applied to Nondestructive Testing TO NONDESTRUCTIVE TESTING NONDESTRUCTIVE TO APPLIED ACOUSTICS NONLINEAR ABSTRACT Sensitive nonlinear acoustic methods are suitable But it is in general difficult to limit the geometrical for material characterization. This thesis describes extent of low-frequency acoustic waves. A techni- NONLINEAR ACOUSTICS APPLIED three nonlinear acoustic methods that are proven que is presented that constrains the wave field to useful for detection of defects like cracks and de- a localized trapped mode so that damage can be TO NONDESTRUCTIVE TESTING laminations in solids. They offer the possibility to located. use relatively low frequencies which is advanta- geous because attenuation and diffraction effects Keywords: nonlinear acoustics, nondestructive tes- are smaller for low frequencies. Therefore large ting, activation density, slow dynamics, resonance and multi-layered complete objects can be investi- frequency, nonlinear wave modulation spectros- gated in about one second. copy, harmonic generation, trapped modes, open Sometimes the position of the damage is required. resonator, sweep rate. Kristian Haller Kristian Haller Blekinge Institute of Technology Licentiate Dissertation Series No. 2007:07 2007:07 ISSN 1650-2140 School of Engineering 2007:07 ISBN 978-91-7295-119-8 Nonlinear Acoustics Applied to NonDestructive Testing Kristian Haller Blekinge Institute of Technology Licentiate Dissertation Series No 2007:07 ISSN 1650-2140 ISBN 978-91-7295-119-8 Nonlinear Acoustics Applied to NonDestructive Testing Kristian Haller Department of Mechanical Engineering School of Engineering Blekinge Institute of Technology SWEDEN © 2007 Kristian Haller Department of Mechanical Engineering School of Engineering Publisher: Blekinge Institute of Technology Printed by Printfabriken, Karlskrona, Sweden 2007 ISBN 978-91-7295-119-8 Acknowledgements This work was carried out at the Department of Mechanical Engineering, Blekinge Institute of Technology, Karlskrona, Sweden. Firstly, I would like to thank my supervisor, Associate Professor Claes Hedberg, and my assistant supervisor, Professor Oleg Rudenko, for their support and guidance through- out this work. I would also like to thank my colleagues and friends at the department and especially Etienne Mfoumou for assistance in experimental setup and interest- ing discussions. I gratefully acknowledge the financial support from the Swedish Research Council, Vinnova and the Faculty Board of Blekinge Institute of Technol- ogy. Also the European Science Foundation programme NATEMIS (Nonlinear Acoustic Techniques for Micro Scale Damage Diagnostics) is acknowledged. Finally, I would like to express my deepest and dearest gratitude to my beloved family, my wife Malin and our wonderful children Anton, Gustav and Rebecca, for always being there. Karlskrona, August 2007 Kristian Haller iii iv Abstract Sensitive nonlinear acoustic methods are suitable for material characterization. This thesis describes three nonlinear acoustic methods that are proven useful for detection of defects like cracks and delaminations in solids. They offer the possibility to use relatively low frequencies which is advantageous because attenuation and diffraction effects are smaller for low frequencies. Therefore large and multi-layered complete objects can be investigated in about one second. Sometimes the position of the damage is required. But it is in general difficult to limit the geometrical extent of low-frequency acoustic waves. A technique is presented that constrains the wave field to a localized trapped mode so that damage can be located. Keywords: nonlinear acoustics, nondestructive testing, activation density, slow dynamics, resonance frequency, nonlinear wave modulation spectroscopy, harmonic generation, trapped modes, open resonator, sweep rate. v Thesis Disposition This thesis comprises an introduction and the following four appended papers: Paper A Haller, K.C.E, and Hedberg, C.M., Three Nonlinear NDT Techniques On Three Diverse Objects, Proc. 17th International Symposium on Nonlinear Acoustics, Penn State, USA (2006). Paper B Haller, K.C.E, and Hedberg, C.M., Frequency Sweep Ratio and Amplitude Influence on Nonlinear Acoustic Measurements. Proc. 9th Western Pacific Acoustic Conference, Seoul, Korea (2006). Paper C Hedberg, C.M., Haller, K.C.E., and Arnoldsson, S., Noncontact Nonlinear Acoustic Damage Localization in Plates, Part 1: Resonance Between Plates. Acta Acustica Acustica 93(1), 13-21 (2007). Paper D Hedberg, C.M., and Haller, K.C.E., Noncontact Nonlinear Acoustic Dam- age Localization in Plates, Part 2: Localized Resonance through Dynamically Trapped Modes. Manuscript is in review for publication in Acta-Acustica Acus- tica, (2007). vi The Author’s Contribution to the Papers The appended papers were prepared in collaboration with the co-authors. The present author’s contributions are as follows: Paper A Responsible for planning and writing the paper. Carried out the experimental investigations. Paper B Responsible for planning and writing the paper. Carried out the experimental investigations. Paper C Took part in writing and planning the paper. Responsible for the experimental investigations. Paper D Took part in writing and planning the paper. Carried out the experimental investigations. vii viii Contents 1 Introduction 1 1.1Background............................. 1 1.2Problemdescription........................ 2 1.3Aimandscope........................... 3 2 Nondestructive testing 5 2.1Nondestructivetestingmethods.................. 5 2.2Nonlinearacousticsfornondestructivetesting.......... 7 3 Acoustics 9 3.1Acoustics.............................. 9 3.2Theoryofnonlinearacoustic.................... 9 3.3Experimentaltechniquesinnonlinearacoustics......... 15 4 Results and discussion 21 5 Summary of papers 29 5.1PaperA............................... 29 5.2PaperB............................... 29 5.3PaperC............................... 30 5.4PaperD............................... 30 6 Conclusions 31 Bibliography 32 Paper A 36 Paper B 43 Paper C 54 Paper D 78 ix Chapter 1 Introduction 1.1 Background In the manufacturing companies of today the amount of material in the prod- ucts is being minimized due to cost reduction demands. This leads to higher stresses which in turn tends to shorten the products’ lifetime. Also, new ma- terials are being introduced, whose long time changes are not well known. Still, rupture and breakdown from erroneous production, overload and fatigue must be prevented. The demand to assemble defect free parts is very high and can, if not met, be dangerous for the user and detrimental to the company. Therefore the interest to detect damage early is steadily increasing. Dam- age can be monitored in many ways. Mostly it is done through use of some NonDestructive Testing (NDT) method [1, 2]. NonDestructive Testing means that the tested object is in the same condition after being examined as it was before - no damage has been added in the testing procedure. This is oppo- site to destructive testing where parts or assembled structures are tested until damage occurs, or are being damaged for subsequent internal examination. For example, the seat belt arrangement in road construction vehicles must be tested until permanent deformation has occurred [3]. Damage is in this thesis referring to a single crack, a collection of cracks, or delaminations. This damage can be caused for example by different types of fatigue loading, overload tension, bending, twisting or mechanical impacts. Alternatively, cracks can be naturally present, for example in materials like rocks, concrete, cast iron or in badly quenched metals. Two main areas are identified for nondestructive testing: manufacturing and maintenance. In a production line damage tests are often performed to ensure quality. It is commonly done through a visual inspection and based upon statistics where a certain number of parts are inspected to represent the population. In sta- 1 K. Haller: Nonlinear Acoustics Applied to NonDestructive Testing tistically based tests a fraction of the total number of parts are tested. In production line testing, the speed of testing and evaluation is of great impor- tance since the production rate usually is high. Maintenance testing is the other field. For example, airplane wings and ship hulls are tested at intervals - predefined by the number of hours of use. These tests make sense only when being nondestructive. Accessibility, the ability to reach the relevant parts, is an important factor which is often limited for complete products. Testing of complicated geome- tries or when only a single side of an object is accessible raise demands on the testing method. The use of advanced testing equipment sometimes require rig- orous safety regulations or complicated analyses, which means that a skilled operator is required. Acoustic nondestructive testing methods have been used for a long time, for example by tapping a crystal glass and intuitively assessing differences in res- onance frequency, harmonic generation and attenuation. Today the acoustic methods in general have been further developed using elec- tronic equipment. The nonlinear acoustic methods in particular are extremely useful in detecting damage, as nonlinearity in solids is directly coupled to im- perfections and discontinuities like cracks and delaminations. One detects the nonlinearity by measuring either the distortion of the acoustic signal, or the resonance frequency shift of a mode. Damage can be detected because it is the damage itself that distorts the wave. The
Recommended publications
  • Arxiv:1912.02281V1 [Math.NA] 4 Dec 2019
    A HIGH-ORDER DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR SOUND WAVES PAOLA. F. ANTONIETTI1, ILARIO MAZZIERI1, MARKUS MUHR∗;2, VANJA NIKOLIC´ 3, AND BARBARA WOHLMUTH2 1MOX, Dipartimento di Matematica, Politecnico di Milano, Milano, Italy 2Department of Mathematics, Technical University of Munich, Germany 3Department of Mathematics, Radboud University, The Netherlands Abstract. We propose a high-order discontinuous Galerkin scheme for nonlinear acoustic waves on polytopic meshes. To model sound propagation with and without losses, we use Westervelt's nonlinear wave equation with and without strong damping. Challenges in the numerical analysis lie in handling the nonlinearity in the model, which involves the derivatives in time of the acoustic velocity potential, and in preventing the equation from degenerating. We rely in our approach on the Banach fixed-point theorem combined with a stability and convergence analysis of a linear wave equation with a variable coefficient in front of the second time derivative. By doing so, we derive an a priori error estimate for Westervelt's equation in a suitable energy norm for the polynomial degree p ≥ 2. Numerical experiments carried out in two-dimensional settings illustrate the theoretical convergence results. In addition, we demonstrate efficiency of the method in a three- dimensional domain with varying medium parameters, where we use the discontinuous Galerkin approach in a hybrid way. 1. Introduction Nonlinear sound waves arise in many different applications, such as medical ultra- sound [20, 35, 44], fatigue crack detection [46, 48], or musical acoustics of brass instru- ments [10, 23, 38]. Although considerable work has been devoted to their analytical stud- ies [29, 30, 33, 37] and their computational treatment [27, 34, 42, 51], rigorous numerical analysis of nonlinear acoustic phenomena is still largely missing from the literature.
    [Show full text]
  • Deep Learning in Ultrasound Imaging Deep Learning Is Taking an Ever More Prominent Role in Medical Imaging
    1 Deep learning in Ultrasound Imaging Deep learning is taking an ever more prominent role in medical imaging. This paper discusses applications of this powerful approach in ultrasound imaging systems along with domain-specific opportunities and challenges. RUUD J.G. VAN SLOUN1,REGEV COHEN2 AND YONINA C. ELDAR3 ABSTRACT j We consider deep learning strategies in ultra- a highly cost-effective modality that offers the clinician an sound systems, from the front-end to advanced applications. unmatched and invaluable level of interaction, enabled by its Our goal is to provide the reader with a broad understand- real-time nature. Its portability and cost-effectiveness permits ing of the possible impact of deep learning methodologies point-of-care imaging at the bedside, in emergency settings, on many aspects of ultrasound imaging. In particular, we rural clinics, and developing countries. Ultrasonography is discuss methods that lie at the interface of signal acquisi- increasingly used across many medical specialties, spanning tion and machine learning, exploiting both data structure from obstetrics to cardiology and oncology, and its market (e.g. sparsity in some domain) and data dimensionality (big share is globally growing. data) already at the raw radio-frequency channel stage. On the technological side, ultrasound probes are becoming As some examples, we outline efficient and effective deep increasingly compact and portable, with the market demand learning solutions for adaptive beamforming and adaptive for low-cost ‘pocket-sized’ devices expanding [2], [3]. Trans- spectral Doppler through artificial agents, learn compressive ducers are miniaturized, allowing e.g. in-body imaging for encodings for color Doppler, and provide a framework for interventional applications.
    [Show full text]
  • Transcranial Blood-Brain Barrier Opening and Power Cavitation Imaging Using a Diagnostic Imaging Array
    2019 IEEE International Ultrasonics Symposium (IUS 2019) Glasgow, United Kingdom 6 – 9 October 2019 Pages 1-662 IEEE Catalog Number: CFP19ULT-POD ISBN: 978-1-7281-4597-6 1/4 Copyright © 2019 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. *** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version. IEEE Catalog Number: CFP19ULT-POD ISBN (Print-On-Demand): 978-1-7281-4597-6 ISBN (Online): 978-1-7281-4596-9 ISSN: 1948-5719 Additional Copies of This Publication Are Available From: Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: [email protected] Web: www.proceedings.com TABLE OF CONTENTS TRANSCRANIAL BLOOD-BRAIN BARRIER OPENING AND POWER CAVITATION IMAGING USING A DIAGNOSTIC IMAGING ARRAY ...................................................................................................................2 Robin Ji ; Mark Burgess ; Elisa Konofagou MICROBUBBLE VOLUME: A DEFINITIVE DOSE PARAMETER IN BLOOD-BRAIN BARRIER OPENING BY FOCUSED ULTRASOUND .......................................................................................................................5 Kang-Ho Song ; Alexander C.
    [Show full text]
  • Springer Handbook of Acoustics
    Springer Handbook of Acoustics Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles, and functional relationships in physi- cal sciences and engineering. The world’s leading experts in the fields of physics and engineering will be assigned by one or several renowned editors to write the chapters com- prising each volume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of physical and technical information. The volumes are designed to be useful as readable desk reference books to give a fast and comprehen- sive overview and easy retrieval of essential reliable key information, including tables, graphs, and bibli- ographies. References to extensive sources are provided. HandbookSpringer of Acoustics Thomas D. Rossing (Ed.) With CD-ROM, 962 Figures and 91 Tables 123 Editor: Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics Stanford, CA 94305, USA Editorial Board: Manfred R. Schroeder, University of Göttingen, Germany William M. Hartmann, Michigan State University, USA Neville H. Fletcher, Australian National University, Australia Floyd Dunn, University of Illinois, USA D. Murray Campbell, The University of Edinburgh, UK Library of Congress Control Number: 2006927050 ISBN: 978-0-387-30446-5 e-ISBN: 0-387-30425-0 Printed on acid free paper c 2007, Springer Science+Business Media, LLC New York All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC New York, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis.
    [Show full text]
  • Nonlinear Behavior of High-Intensity Ultrasound Propagation in an Ideal Fluid
    acoustics Article Nonlinear Behavior of High-Intensity Ultrasound Propagation in an Ideal Fluid Jitendra A. Kewalramani 1,* , Zhenting Zou 2 , Richard W. Marsh 3, Bruce G. Bukiet 4 and Jay N. Meegoda 1 1 Department of Civil & Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; [email protected] 2 Dynamic Engineering Consultants, Chester, NJ 07102, USA; [email protected] 3 Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; [email protected] 4 Department of Mathematical Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; [email protected] * Correspondence: [email protected] Received: 2 February 2020; Accepted: 29 February 2020; Published: 3 March 2020 Abstract: In this paper, nonlinearity associated with intense ultrasound is studied by using the one-dimensional motion of nonlinear shock wave in an ideal fluid. In nonlinear acoustics, the wave speed of different segments of a waveform is different, which causes distortion in the waveform and can result in the formation of a shock (discontinuity). Acoustic pressure of high-intensity waves causes particles in the ideal fluid to vibrate forward and backward, and this disturbance is of relatively large magnitude due to high-intensities, which leads to nonlinearity in the waveform. In this research, this vibration of fluid due to the intense ultrasonic wave is modeled as a fluid pushed by one complete cycle of piston. In a piston cycle, as it moves forward, it causes fluid particles to compress, which may lead to the formation of a shock (discontinuity). Then as the piston retracts, a forward-moving rarefaction, a smooth fan zone of continuously changing pressure, density, and velocity is generated.
    [Show full text]
  • The Acoustic Wave Equation and Simple Solutions
    Chapter 5 THE ACOUSTIC WAVE EQUATION AND SIMPLE SOLUTIONS 5.1INTRODUCTION Acoustic waves constitute one kind of pressure fluctuation that can exist in a compressible fluido In addition to the audible pressure fields of modera te intensity, the most familiar, there are also ultrasonic and infrasonic waves whose frequencies lie beyond the limits of hearing, high-intensity waves (such as those near jet engines and missiles) that may produce a sensation of pain rather than sound, nonlinear waves of still higher intensities, and shock waves generated by explosions and supersonic aircraft. lnviscid fluids exhibit fewer constraints to deformations than do solids. The restoring forces responsible for propagating a wave are the pressure changes that oc­ cur when the fluid is compressed or expanded. Individual elements of the fluid move back and forth in the direction of the forces, producing adjacent regions of com­ pression and rarefaction similar to those produced by longitudinal waves in a bar. The following terminology and symbols will be used: r = equilibrium position of a fluid element r = xx + yy + zz (5.1.1) (x, y, and z are the unit vectors in the x, y, and z directions, respectively) g = particle displacement of a fluid element from its equilibrium position (5.1.2) ü = particle velocity of a fluid element (5.1.3) p = instantaneous density at (x, y, z) po = equilibrium density at (x, y, z) s = condensation at (x, y, z) 113 114 CHAPTER 5 THE ACOUSTIC WAVE EQUATION ANO SIMPLE SOLUTIONS s = (p - pO)/ pO (5.1.4) p - PO = POS = acoustic density at (x, y, Z) i1f = instantaneous pressure at (x, y, Z) i1fO = equilibrium pressure at (x, y, Z) P = acoustic pressure at (x, y, Z) (5.1.5) c = thermodynamic speed Of sound of the fluid <I> = velocity potential of the wave ü = V<I> .
    [Show full text]
  • The Changing Picture of Nonlinearity in Musical Instruments: Modeling and Simulation
    The Changing Picture of Nonlinearity in Musical Instruments: Modeling and Simulation Stefan Bilbao Proceedings of the International Symposium on Musical Acoustics Le Mans, France, 11 July 2014 1 Introduction: A Standard Musical formation in acoustic tubes is discussed in Section 4, and Instrument Model next the exotic and very new area of distributed collision between musical instrument components is briefly outlined A natural starting point for the study of any physical in Section 5. Finally, in Section 6, some very general system is linearisation—leading to great simplification is perspectives on the use of passivity concepts in simulation terms of analysis, and also, in the computer age, to design are presented. flexibility and algorithmic simplification in simulation. The acoustics of musical instruments is no exception. One 2 Strings question, then, is: how much of the behaviour of a given instrument can be linearised? The only clear answer is: Linear string vibration, particularly in the case of motion definitely not all of it. The production of musical sound in one transverse polarisation, and including effects of by an instrument, whether it is struck, blown, or bowed, bending stiffness and loss, has served as a useful starting relies critically on a nonlinear excitation mechanism. One point for many investigations in musical acoustics [7, 8, 9] standard model of the musical instrument, then, relies on and is also extensively used in synthesis [6]. Nonlinear a subdivision of the instrument into a nonlinear excitation models of string vibration have a long history—the first mechanism, which is to a good approximation lumped, and a models can be attributed to Kirchhoff [10] and Carrier linear resonator which is distributed, and characterized by a [11], and involve a very rough approximation to the number of natural frequencies, or modes.
    [Show full text]
  • Nonlinear Acoustics and Shock Formation in Lossless Barotropic Green–Naghdi Fluids
    EVOLUTION EQUATIONS AND doi:10.3934/eect.2016008 CONTROL THEORY Volume 5, Number 3, September 2016 pp. 349{365 NONLINEAR ACOUSTICS AND SHOCK FORMATION IN LOSSLESS BAROTROPIC GREEN{NAGHDI FLUIDS Ivan C. Christov School of Mechanical Engineering, Purdue University West Lafayette, IN 47907, USA Abstract. The equations of motion of lossless compressible nonclassical flu- ids under the so-called Green{Naghdi theory are considered for two classes of barotropic fluids: (i) perfect gases and (ii) liquids obeying a quadratic equa- tion of state. An exact reduction in terms of a scalar acoustic potential and the (scalar) thermal displacement is achieved. Properties and simplifications of these model nonlinear acoustic equations for unidirectional flows are noted. Specifically, the requirement that the governing system of equations for such flows remain hyperbolic is shown to lead to restrictions on the physical param- eters and/or applicability of the model. A weakly nonlinear model is proposed on the basis of neglecting only terms proportional to the square of the Mach number in the governing equations, without any further approximation or mod- ification of the nonlinear terms. Shock formation via acceleration wave blow up is studied numerically in a one-dimensional context using a high-resolution Godunov-type finite-volume scheme, thereby verifying prior analytical results on the blow up time and contrasting these results with the corresponding ones for classical (Euler, i.e., lossless compressible) fluids. 1. Introduction. Recently, there has been significant interest in the mathematics of nonlinear acoustics [42] and, specifically, in proving abstract mathematical re- sults for model nonlinear acoustic equations, including well-posedness and control [43, 44, 45, 46,9, 10, 11].
    [Show full text]
  • Nonlinear Acoustics of Solids: Histo~ and Modern Trends
    Nonlinear acoustics of solids: Histo~ and modern trends Vladimir A. Kasilnikov Department of Acoustics, Facul@ of Physics, Moscow State Untiersi@, Moscow, 119899 Russia Abstract: In 1960 it was experimentally discovered that a number of nonlinear phenomena in solids such as harmonics generation, acoustic wave interactions and other nonlinear effects can be observed even for weak longitudinal ultrasonicwaves.Beside that it was shown that shear acousticwaves also demonstratednonlinear behaviour under someexternalinfluencelike pressure, heating etc., despite the fact it was forbidden in a framework of a crystal lattice theory. These phenomena were explained in terms of acoustic structural nonlinearity, which was due to various structural defects of solids (dislocations, “cracks”, etc.) Recent developments in nonlinear phonon interaction with e[ectrons, phonons, magnon are also discussed. EXPERIMENTS ON FINITE AMPLITUDE ACOUSTIC WAVE. PROPAGATION IN LIQ~S Am SOLIDS In 1955 the first experimental observation of higher harmonics generation and frequency mixing for finite amplitude ultrasonic waves in liquids was reported by the author (1) with colleagues &. Zarembo, V.Shklovskaya - Kordy, and V.Burov). It was also shown that harmonic acoustic wave propagation was accompanied by saw-tooth waveform distortion as well as nonlinear acoustic wave attenuation. Prior to these experiments an accepted opinion was that for small amplitude waves in liquids where internal pressure was much greater than that for a sound wave, nonlinear properties are not important. However, it was first demonstrated that for liquids possesing weak attenuation in the lack of sound dispersion, nonlinewity accumulation takes place giving rise to sufficient nonlinear effects even for low sound intensity. The results obtained gave a start to further development of nonlinear acoustics in liquids in general, and nonlinear acoustics applications in underwater acoustics, seismology, medicine, etc.
    [Show full text]
  • Nonlinear Acoustics Through Problems and Examples
    i Nonlinear acoustics through problems and examples Oleg V. Rudenko Sergey N. Gurbatov Claes M. Hedberg 2009 Order this book online at www.traff ord.com or email orders@traff ord.com Most Traff ord titles are also available at major online book retailers. © Copyright 2010 O. V. Rudenko, S. N. Gurbatov, C. M. Hedberg. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written prior permission of the author. Printed in Victoria, BC, Canada. isbn: 978-1-4269-0544-5 (sc) isbn: 978-1-4269-0545-2 (dj) isbn: 978-1-4269-0546-9 (e-book) Our mission is to effi ciently provide the world’s fi nest, most comprehensive book publishing service, enabling every author to experience success. To fi nd out how to publish your book, your way, and have it available worldwide, visit us online at www.traff ord.com Traff ord rev. 2/9/2010 www.traff ord.com North America & international toll-free: 1 888 232 4444 (USA & Canada) phone: 250 383 6864 fax: 812 355 4082 Contents Introduction 3 1 Simple waves 10 2 Plane nonlinear waves with discontinuities 32 3 Nonlinear waves in dissipative media and Burgers’ equation 59 4 Spherical and cylindrical waves and nonlinear beams 74 5 High intensity acoustic noise 88 6 Nonlinear nondestructive testing 108 7 Focused nonlinear beams and nonlinear geometrical acoustics 127 8 Various types of nonlinear problems 145 References 168 Subject index 171 iii iv Foreword Nonlinear acoustics is based mainly on results obtained more than 30 years ago.
    [Show full text]
  • Acoustics for Physics Pedagogy and Outreach Kent L
    Resource Letter APPO-1: Acoustics for Physics Pedagogy and Outreach Kent L. Gee and Tracianne B. Neilsen Citation: American Journal of Physics 82, 825 (2014); doi: 10.1119/1.4869298 View online: http://dx.doi.org/10.1119/1.4869298 View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/82/9?ver=pdfcov Published by the American Association of Physics Teachers Articles you may be interested in Resource Letter NTUC-1: Noether's Theorem in the Undergraduate Curriculum Am. J. Phys. 82, 183 (2014); 10.1119/1.4848215 The Shapes of Physics Phys. Teach. 51, 524 (2013); 10.1119/1.4830062 Resource Letter MPCVW-1: Modeling Political Conflict, Violence, and Wars: A Survey Am. J. Phys. 81, 805 (2013); 10.1119/1.4820892 “Physics Questions Without Numbers” from Monash University, tinyurl.com/WS-qwn Phys. Teach. 50, 510 (2012); 10.1119/1.4758167 Resource Letter ALIP–1: Active-Learning Instruction in Physics Am. J. Phys. 80, 478 (2012); 10.1119/1.3678299 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.187.97.22 On: Sat, 30 Aug 2014 15:04:44 RESOURCE LETTER Resource Letters are guides for college and university physicists, astronomers, and other scientists to literature, websites, and other teaching aids. Each Resource Letter focuses on a particular topic and is intended to help teachers improve course content in a specific field of physics or to introduce nonspecialists to this field. The Resource Letters Editorial Board meets at the AAPT Winter Meeting to choose topics for which Resource Letters will be commissioned during the ensuing year.
    [Show full text]
  • Time-Domain Numerical Modeling of Brass Instruments Including
    Time-domain numerical modeling of brass instruments including nonlinear wave propagation, viscothermal losses, and lips vibration Harold Berjamina, Bruno Lombarda, Christophe Vergeza, Emmanuel Cottanceau1 aLaboratoire de M´ecanique et d’Acoustique, UPR 7051 CNRS, 4 impasse Nicolas Tesla, 13453 Marseille Cedex 13, France Abstract A time-domain numerical modeling of brass instruments is proposed. On one hand, outgoingand incoming waves in the resonator are described by the Menguy-Gilbert model, which incorporates three key issues: nonlinear wave propagation, viscothermal losses, and a variable section. The nonlinear propagation is simulated by a TVD scheme well-suited to non-smooth waves. The fractional derivatives induced by the viscothermal losses are replaced by a set of local-in-time memory variables. A splitting strategy is followed to couple optimally these dedicated methods. On the other hand, the exciter is described by a one-mass model for the lips. The Newmark method is used to integrate the nonlinear ordinary differential equation so-obtained. At each time step, a coupling is performed between the pressure in the tube and the displacement of the lips. Finally, an extensive set of validation tests is successfully completed. In particular, self-sustained oscillations of the lips are simulated by taking into account the nonlinear wave propagation in the tube. Simulations clearly indicate that the nonlinear wave propagation has a major influence on the timbre of the sound, as expected. Moreover, simulations also highlight an influence on playing frequencies, time envelopes and on the playability of the low frequencies in the case of a variable lips tension. Keywords: 1. Introduction Risset and Mathews [1] were the first to highlight the fact that the spectral enrichment of brass sounds with increasing sound level is crucial to recognize these instruments.
    [Show full text]