Eflicient Major Histocompatibility Complex Class I Presentation Of

Total Page:16

File Type:pdf, Size:1020Kb

Eflicient Major Histocompatibility Complex Class I Presentation Of Proc. Natl. Acad. Sci. USA Vol. 90, pp. 4942-4946, June 1993 Immunology Eflicient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages (vaccine/cytotoxic T lymphocyte/viral immunity/antigen presentation) MAGDALENA KOVACSOVICS-BANKOWSKI*t, KAREN CLARK*, BARUJ BENACERRAF*t, AND KENNETH L. ROCK*t *Division of Lymphocyte Biology, Dana-Farber Cancer Institute, Boston, MA 02115; and tDepartment of Pathology, Harvard Medical School, Boston, MA 02115 Contributed by Baruj Benacerraf, March 4, 1993 ABSTRACT Antigens in extracellular fluids can be pro- antigens on class I molecules (15). This activity was first cessed and presented with major histocompatibility complex defined in vitro; however, when these cells are recovered (MHC) class I molecules by a subset of antigen presenting cells from mice injected with soluble antigen, they present this (APCs). Chicken egg ovalbumin (Ova) linked to beads was antigen to class I-restricted T cells (16). The APC that presented with MHC class I molecules by these cells up to mediates this unique antigen presenting activity is a macro- 104-fold more efficiently than soluble Ova. This enhanced phage (16, 17) (unpublished data). Previous studies, reporting presentation was observed with covalently or noncovalently that the depletion of macrophages with silica or carrageenan linked Ova and with beads of different compositions. A key reduces the capacity of mice to generate a CTL response parameter in the activity of these conjugates was the size of the even to live viruses, indicate that macrophages in general beads. The APC that is responsible for this form ofpresentation may be key components in the initiation ofall CTL responses is a macrophage. These cells internalize the antigen constructs (18, 19). through phagocytosis, since cytochalasin B inhibited presen- The present studies were initiated to investigate how tation. Processing of the antigen and association with MHC antigens enter into the class I presentation pathway in these class I molecules appears to occur intracellularly as presenta- macrophages and whether this pathway could be exploited to tion was observed under conditions where there was no detect- elicit CTL immunity with nonliving antigens. able release of peptides into the extracellular fluids. When injected in vivo in C57BL/6 mice, Ova-beads, but not soluble Ova, primed CD4- CD8+ cytotoxic T lymphocytes (CTLs). MATERIALS AND METHODS Similar results were obtained in BALB/c mice immunized with Mice. Female C57BL/6 and BALB/c 5- to 8-week-old mice 13-galactosidase-beads. The implications of these findings for were purchased from The Jackson Laboratory. development of nonliving vaccines that stimulate CTL immu- Cell Lines. RF33.70 is an anti-Ova+Kb hybridoma (20). nity are discussed. EL4 is a C57BL/6 T lymphoma, and EG7 is a chicken egg ovalbumin (Ova)-transfected clone of EL4 (7). P815 is a Major histocompatibility complex (MHC) class I molecules DBA/2 mastocytoma and P13.4 is a f-galactosidase (*-Gal)- bind fragments of endogenously synthesized proteins and transfected clone of P815. EG7 and P13.4 were kindly pro- transport these peptides to the cell surface. In this manner, vided by M. Bevan (University of Washington, Seattle). cells display to the immune system a sampling of their BMA3.1A and BMC2 are C57BL/6 bone marrow macro- endogenous proteins (1-3). When a viral peptide, to which phage cell lines (unpublished data). the host is not tolerant, is presented, cytotoxic T lympho- Reagents. Ova, 3-Gal, azide, 2-deoxyglucose, and cyto- cytes (CTLs) are stimulated and kill the antigen-bearing cell. chalasin B were purchased from Sigma. Monoclonal anti- The immune system thereby purges the pathologically af- bodies (mAbs) were kindly provided by the laboratories of fected cell from the host. This CTL response plays a major origin: anti-Thy-i (M5/49) (21), anti-CD4 (GK1.5) (22), and role in host defense against pathogenic viruses and tumors (4, anti-CD8 (HO2.2ADH4) (23). 5). Antigenic Constructs. Iron oxide beads (0.5-1.5 ,um) were The peptides presented on MHC class I molecules are purchased from Advanced Magnetics (Cambridge, MA). Ova generated in a nonlysosomal compartment in cells, probably or 8-Gal was covalently linked to these beads via an amino the cytosol (3). Antigens in the extracellular fluid do not gain group bound according to the manufacturer's instructions. access into this processing compartment in most cells (6-8). These conjugates are referred to as Ova-Fe beads orj-Gal-Fe Accordingly, CTL immunity is not generally elicited when beads. Ova was linked to latex beads (Polybeads) (diameter, proteins or nonliving viruses are injected into animals (8). 0.5-10 ,um) (Polysciences) either by a covalent amino bond, This anatomical segregation of the class I pathway, while Ova-latex(C), or by passive adsorption, Ova-latex(A), ac- potentially important for preserving the immunological iden- cording to the manufacturer's directions. The amount ofOva tity of healthy cells, has been a major barrier to the devel- bound to the beads was determine based on the difference in opment ofnonliving vaccines that elicit CTL immunity. It has optical density between the solution of Ova before and after also been unclear how CD8+ immunity is elicited against the linkage, and/or by using 125I-labeled Ova, and typically certain pathogens that reside in the phagolysosomes of mac- varied from 0.1 to 9 mg/ml. rophages (9) and why sometimes exogenous antigens prime Cell Culture. APCs were exposed to antigen and T-T CTLs (10-14). hybridoma cultures were prepared essentially as described Although exogenous proteins are excluded from the class (20), except that indomethacin (0.25 ,uM) was added to the I presenting pathway in most cells, there is an antigen culture medium. Serum-free cultures were performed in presenting cell (APC) that can process and present these Opti-MEM (GIBCO) supplemented with Nutridoma (1%) The publication costs of this article were defrayed in part by page charge Abbreviations: MHC, major histocompatibility complex; CTL, cy- payment. This article must therefore be hereby marked "advertisement" totoxic T lymphocyte; APC, antigen presenting cell; Ova, chicken in accordance with 18 U.S.C. §1734 solely to indicate this fact. egg ovalbumin; 3-Gal, ,-galactosidase; mAb, monoclonal antibody. 4942 Downloaded by guest on October 1, 2021 Immunology: Kovacsovics-Bankowski et al. Proc. Natl. Acad. Sci. USA 90 (1993) 4943 (Boehringer Mannheim). In some experiments, cultures were 250 prepared in Transwell plates (Coming) with T-T hybrids and live or fixed APCs in the upper chamber separated by 0.4-,um filters from APCs and antigen in the lower chamber in serum-free medium (500 ,ul). After 24 hr, an aliquot of supernatant (100 IlI) was collected and subjected to freeze- thawing, and interleukin 2 was assayed (24). Inhibition Studies. In some experiments, macrophage cell X 10-2 10-1 100 101 102 103 10-310-210-1100 101 102 103 lines were preincubated with or without azide (30 mM) and ..150 c 250 2-deoxyglucose (5 mM) or cytochalasin B (10 ,uM) for 1 hr at C.) -D 37°C, and then antigens were added for 5 hr in the continuous ~~~~~~~200- presence of inhibitors. Subsequently, cells were fixed with 100~~~~~~~10 1% paraformaldehyde, washed with medium, and put into j/5i0 5 T-T hybridoma cultures. In Vivo Immunization. C57BL/6 or BALB/c mice were injected subcutaneously with antigen in 0.1 ml of phosphate- 0. 0 10-2 10-1 10° 101 102 103 buffered saline. The amount of antigen is indicated in the individual experimental protocols. One to two weeks later, Antigen (gg/ml) splenocytes were restimulated with EG7 (15 x 106 cells per FIG. 1. Presentation of exogenous antigens with MHC class I flask) as described (7) and splenic CTL activity was measured molecules. (A) Cultures were prepared with RF33.70 T-cell hybrid 5 days later (20). For 1-Gal, the same procedure was used (anti-Ova + Kb) (5 x 104 cells per well), thioglycolate-elicited except that P13.4 cells (6 x 106 cells per flask) were used peritoneal exudate cells (104 cells per well), and soluble Ova (open instead of EG7 cells. 51Cr release assays were performed as squares) or Ova-Fe beads (solid squares) in 96-well plates (200 PI) in described (20). duplicate. Cultures were then handled as described. (B) Cultures contained RF33.70 cells (5 x 104 cells per well), soluble Ova (open symbols), or Ova-Fe beads (solid symbols) and, as APCs (5 x 104 RESULTS cells per well), either EL4 (triangles) or BMA3.1A (squares). Cul- tures were otherwise prepared and handled as described in A. (C) Analysis of the Presentation of Exogenous Soluble Versus Cultures contained RF33.70 cells (5 x 104 cells per well), thiogly- Particulate Ova with MHC Class I Molecules. Antigens in the colate-elicited macrophages (5 x 104 cells per well), and Ova- extracellular fluids can be internalized into macrophages by latex(A). The size of the beads was 0.5 ,um (open circles), 0.75 ,um two distinct mechanisms. Soluble antigens are internalized (open triangles), 2 Am (open squares), 3 ,um (solid triangles), 6 um by endocytosis while particulate antigens can be taken up (solid squares), and 10 ,um (solid circles). Cultures were prepared and through phagocytosis. To analyze how antigens are internal- handled as described in A. (D) Cultures were prepared with BMA3.1A (5 x 104 cells per well), RF33.70 T-cell hybrid (4 x 104 ized and presented with MHC class I, we incubated APCs cells per well), and soluble Ova (open squares), 3-,m Ova-latex(A) with soluble Ova or Ova conjugated to a phagocytic sub- (open circles), or 3-,um Ova-latex(C) (solid circles).
Recommended publications
  • Phagocytosis References
    9025 Technology Dr. Fishers, IN 46038 • www.bangslabs.com • [email protected] • 800.387.0672 PHAGOCYTOSIS REFERENCES GENERAL BEAD SELECTION & PHAGOCYTOSIS RATES Thiele L, Diederichs JE, Reszka R, Merkle HP, Walter E. (2003) Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells. Biomaterials; 24(8):1409-18. (1µm Polybead® and Fluoresbrite® Carboxylate microspheres) Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. (2002) Targeting to macrophages: role of physicochemical properties of particulate carriers-- liposomes and microspheres--on the phagocytosis by macrophages. J Controlled Release; 79:29-40. Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E. (2001) Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J Controlled Release; 76:59-71. Koval M, Preiter K, Adles C, Stahl PD, Steinberg TH. (1998) Size of IgG-opsonized particles determines macrophage response during internalization. Exp Cell Res; 242(1):265-73. (0.2-0.3µm Polybead® microspheres; trypan blue quenching) Tabata Y, Ikada Y. (1988) Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials; 9(4):356-62. MONOCYTES Gu BJ, Duce JA, Valova VA, Wong B, Bush AI, Petrou S, Wiley JS. (2012) P2X7 receptor-mediated scavenger activity of mononuclear phagocytes toward non-opsonized particles and apoptotic cells is inhibited by serum glycoproteins but remains active in cerebrospinal fluid.Journal of Biological Chemistry. May 18;287:17318-30. (1µm Fluoresbrite® YG microspheres) Dumrese C, Slomianka L, Ziegler U, Choi SS, Kalia A, Fulurija A, Lu W, Berg DE, Benghezal M, Marshall B, Mittl PR.
    [Show full text]
  • Cd47-Sirpα Interaction and IL-10 Constrain Inflammation-Induced Macrophage Phagocytosis of Healthy Self-Cells
    Cd47-Sirpα interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells Zhen Biana,b, Lei Shia, Ya-Lan Guoa, Zhiyuan Lva, Cong Tanga, Shuo Niua, Alexandra Tremblaya, Mahathi Venkataramania, Courtney Culpeppera, Limin Lib, Zhen Zhoub, Ahmed Mansoura, Yongliang Zhangc, Andrew Gewirtzd, Koby Kiddera,e, Ke Zenb, and Yuan Liua,d,1 aProgram of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302; bState Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China; cDepartment of Microbiology and Immunology, Yong Loo Lin School of Medicine, Life Science Institute (LSI) Immunology Programme, National University of Singapore, Singapore 117456; dCenter for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303; and eDepartment of Cell Biology, Rutgers University, New Brunswick, NJ 08901 Edited by Jason G. Cyster, University of California, San Francisco, CA, and approved July 11, 2016 (received for review October 28, 2015) − − Rapid clearance of adoptively transferred Cd47-null (Cd47 / ) cells in The CD47-SIRPα mechanism was first reported by Oldenborg congeneic WT mice suggests a critical self-recognition mechanism, et al. (1), who had demonstrated in red blood cell (RBC) in which CD47 is the ubiquitous marker of self, and its interaction transfusion experiments that WT mice rapidly eliminate syngeneic − with macrophage signal regulatory protein α (SIRPα) triggers inhib- Cd47-null (Cd47 ) RBCs through erythrophagocytosis in the itory signaling through SIRPα cytoplasmic immunoreceptor tyrosine- spleen and that the lack of tyrosine phosphorylation in SIRPα based inhibition motifs and tyrosine phosphatase SHP-1/2.
    [Show full text]
  • CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor
    Published March 4, 2016, doi:10.4049/jimmunol.1502198 The Journal of Immunology CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcg Receptor– and Complement Receptor 3–Dependent Mechanisms Alaa Amash,*,† Lin Wang,‡ Yawen Wang,‡ Varsha Bhakta,x Gregory D. Fairn,† Ming Hou,‡ Jun Peng,‡ William P. Sheffield,*,x and Alan H. Lazarus*,†,{ Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoim- mune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcg receptors (FcgRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcgR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcgR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcgR-mediated phagocytosis of RBCs.
    [Show full text]
  • Initial Events During Phagocytosis by Macrophages Viewed from Outside and Inside the Cell: Membrane-Particle Interactions and Clathrin
    Initial Events during Phagocytosis by Macrophages Viewed from Outside and Inside the Cell: Membrane-Particle Interactions and Clathrin JUDITH AGGELER and ZENA WERB Department of Anatomy and Laboratory of Radiobiology and Environmental Health, University of California, San Francisco, California 94143 ABSTRACT The initial events during phagocytosis of latex beads by mouse peritoneal=; macro- phages were visualized by high-resolution electron microscopy of platinum replicas of freeze- dried cells and by conventional thin-section electron microscopy of macrophages postfixed with I% tannic acid. On the external surface of phagocytosing macrophages, all stages of particle uptake were seen, from early attachment to complete engulfment. Wherever the plasma membrane approached the bead surface, there was a 20-nm-wide gap bridged by narrow strands of material 12.4 nm in diameter. These strands were also seen in thin sections and in replicas of critical-point-dried and freeze-fractured macrophages. When cells were broken open and the plasma membrane was viewed from the inside, many nascent phagosomes had relatively smooth cytoplasmic surfaces with few associated cytoskeletal filaments. However, up to one-half of the phagosomes that were still close to the cell surface after a short phagocytic pulse (2-5 min) had large flat or spherical areas of clathrin basketwork on their membranes, and both smooth and clathrin-coated vesicles were seen fusing with or budding off from them. Clathrin-coated pits and vesicles were also abundant elsewhere on the plasma membranes of phagocytosing and control macrophages, but large flat clathrin patches similar to those on nascent phagosomes were observed only on the attached basal plasma membrane surfaces.
    [Show full text]
  • Mediate Endocytosis and Phagocytosis
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 5030-5034, June 1992 Immunology Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: Identification of the critical cytoplasmic domains (CD23/endocytosis/phagocytosis) AKIRA YOKOTA*, KAzUNORI YUKAWA*, AKITSUGU YAMAMOTOt, KENJI SUGIYAMA*, MASAKI SUEMURAt, YUTAKA TASHIROt, TADAMITSU KISHIMOTO*t, AND HITOSHI KIKUTANI* *Institute for Molecular and Cellular Biology, Osaka University, 1-3, Yamada-oka, Suita, Osaka 565, Japan; *Department of Medicine III, Osaka University Medical School, 1-1-50, Fukushima, Fukushima-ku, Osaka 553, Japan; and tDepartment of Physiology, Kansai Medical University, Moriguchi-shi, Osaka 570, Japan Contributed by Tadamitsu Kishimoto, February 21, 1992 ABSTRACT We have previously identified two species of FceRIIb may be involved in B-cell function and IgE-mediated the low-affinity human Fc receptor for IgE, FceRIIa and immunity, respectively. FceRIIb, which differ only in a short stretch of amino acids at In this paper, we have attempted to elucidate the molecular the N-terminal cytoplasmic end. Their differential expressions basis ofthe functional difference between these two forms of on B cells and monocytes suggest that FceRlla and FceRIIb are receptor molecules by using stable transfectants expressing involved in B-cell function and IgE-mediated immunity, re- either human wild-type or mutated FceRII and have demon- spectively. Here we show that FceRII-mediated endocytosis is strated that endocytosis is mediated only through FceRIIa observed only in FceRlia-expressing cells, whereas IgE- and that phagocytosis is mediated only through FceRIIb. dependent phagocytosis isobserved only in FceRIEb-expressing Furthermore, the minimum amino acid residues necessary cells, demonstrating the functional difference between FceRIIa for endocytosis and phagocytosis have been determined.
    [Show full text]
  • The Immune System Phagocytosis Antibody Function
    IMMUNE SYSTEM By the end of the lesson you should be able to Identify the 1st Line of Defense against a pathogen Identify the 2nd Line of Defense against a pathogen. Outline the stages in phagocytosis. Describe how antibodies work and how they are specific. IMMUNITY the body’s ability to resist disease can be natural or acquired Natural immunity is something you are born with Acquired immunity is something you develop over a lifetime TYPES OF IMMUNITY NATURAL ACQUIRED Includes Includes Intact skin Antibodies made Intact mucus after sickness membranes Anti-venom Tears Vaccines Saliva Stomach acid FIRST LINES OF DEFENSE saliva tears antibacterial antibacterial enzymes enzymes mucus linings skin traps dirt and prevents microbes entry stomach acid “good” gut low pH kills bacteria out harmful compete bad microbes SECOND LINES OF DEFENSE Inflammation Redness Heat Swelling Pain Involves white blood cells Non-specific response - invading pathogens are targeted by macrophages Specific response - chemicals called antibodies that target specific pathogens PHAGOCYTES PHAGOCYTES Macrophages and Neutrophils Provide a non-specific response to disease PHAGOCYTOSIS Stages in phagocytosis 1. Phagocyte detects chemicals released by a pathogen (e.g. bacteria). 2. Phagocyte travels to location of pathogen 3. Phagocyte attaches to the pathogen and surrounds it with its cell membrane. 4. Lysosomes (digest things) inside the phagocyte release their contents to break apart the pathogen and digest it. During infection, hundreds of phagocytes are needed. Pus is dead bacteria and phagocytes PUS An accumulation of : - dead phagocytes destroyed bacteria dead cells Pus shows your immune system is working. LYMPHOCYTE LYMPHOCYTES Provide a specific immune response to infectious diseases.
    [Show full text]
  • On Regulation of Phagosome Maturation and Antigen Presentation
    PERSPECTIVE On regulation of phagosome maturation and antigen presentation J Magarian Blander1 & Ruslan Medzhitov2 Phagocytosis has essential functions in immunity. Here we keeping’or scavenging function and a function in host defense against highlight the presence of a subcellular level of self–non-self infection6.Although there are dozens of different types of tissue-resi- discrimination in dendritic cells that operates at the level dent macrophages7,as far as is known at present the scavenging and of individual phagosomes. We discuss how engagement of host defense functions are not performed by specialized cell lineages: Toll-like receptor signaling controls distinct programs of the same macrophage, in other words, can carry out both functions. http://www.nature.com/natureimmunology phagosome maturation. An inducible mode of phagosome The scavenging function is essential for tissue homeostasis of com- maturation triggered by these receptors ensures the plex metazoans and involves removal of apoptotic cells, components selection of microbial antigens for presentation by major of the extracellular matrix and other by-products of metazoan physi- histocompatibility class II molecules during the simultaneous ology.Apoptotic cell recognition is mediated through the detection of phagocytosis of self and non-self. a number of molecules that are normally absent on live and healthy cells8.These molecules include surface expression of calreticulin and Uptake of external materials is an essential process for all eukaryotic exposure of phosphatidylserine on the outer leaflet of the plasma cells.Cells internalize nutrients and growth factors for their intrinsic membrane, as well as the expression of amino sugars and lysophos- needs, and specialized cell types also remove unwanted or excessive pholipids, which are recognized by various types of collectins, scav- materials from the circulation or tissue fluids, thus contributing to enger receptors, integrins and bridging molecules that link these Nature Publishing Group Group Nature Publishing tissue homeostasis.
    [Show full text]
  • Endocytosis: the Nanoparticle and Submicron Nanocompounds Gateway Into the Cell
    pharmaceutics Review Endocytosis: The Nanoparticle and Submicron Nanocompounds Gateway into the Cell Darío Manzanares 1,2 and Valentín Ceña 1,2,* 1 Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; [email protected] 2 CIBERNED, Instituto de Salud Carlos III, 28031 Madrid, Spain * Correspondence: [email protected] Received: 23 March 2020; Accepted: 15 April 2020; Published: 17 April 2020 Abstract: Nanoparticles (NPs) and submicron particles are increasingly used as carriers for delivering therapeutic compounds to cells. Their entry into the cell represents the initial step in this delivery process, being most of the nanoparticles taken up by endocytosis, although other mechanisms can contribute to the uptake. To increase the delivery efficiency of therapeutic compounds by NPs and submicron particles is very relevant to understand the mechanisms involved in the uptake process. This review covers the proposed pathways involved in the cellular uptake of different NPs and submicron particles types as well as the role that some of the physicochemical nanoparticle characteristics play in the uptake pathway preferentially used by the nanoparticles to gain access and deliver their cargo inside the cell. Keywords: nanoparticles; endocytosis; clathrin; caveolin; macropinocytosis 1. Introduction Nanomedicine has become one of the most rapidly growing areas of research in the biomedical field during the last years. Nanoparticles (NPs) and submicron particles (named both from this point as NPs to abbreviate) are defined as materials with nanometric sizes (1–100 and 100–1000 nm, respectively) that interact with biological systems in an unusual way because of their high surface to volume ratio. This property, combined with the possibility of modifying their peripheral chemical groups to achieve multitasking properties, provides NPs compounds with a very high potential for diagnostic and therapeutic applications in nanomedicine.
    [Show full text]
  • Innate Immunity
    Know Differences and Provide Examples Chapter 3 * * Innate Immunity Skin and Epithelial Barriers * Antimicrobial peptide – psoriasin -Activity against Gram (-) E. coli Connection Between Innate and Adaptive Immunity 1 1 INFLAMMATION * PRRs – Pattern 2 Recognition * Receptors on 0 5 – Tissue Repair 3 HOST CELLS 4 PAMPs – 5 Pathogen- Associated Activation Molecular 6 Patterns on MICROBES Inflammation 4 Steps in Cell Recruitment from Blood Vessels Tissue damage Acute • 1) Release of Vasoactive and chemotactic Mediators histamine, serotonin, etc. • 2) Action on Blood Vessels ↑ cell adhesion molecules (CAMs) • 3) Vasodilation : ↑diameter of capillaries, ↑blood flow • 4) Increased Vascular Permeability : ↑ leakiness from blood vessels ↑ recruitment of cells and fluid edema • 5) Extravasation of Phagocytes – recruitment of leukocytes Chemotaxis (chemokines; C3a/C5a, N-formyl peptides) • 6) Phagocyte activation – chemokine and cytokine production CAMs – cell adhesion molecules • 6) Tissue Repair – fibrin (clotting) and fibroblasts Soluble Molecules and Membrane- Associated Receptors • 1) Antimicrobial Peptides – defensins, interferons Blood vessel – Defensins – α-Defensins, β-Defensins 2 4 5 endothelial cells • Cationic (+) peptides (29-35 aa) • Antibacterial and anti-fungal 3 • Disrupt microbial membranes and synthesis of RNA, DNA, and proteins • Produced among others by neutrophils and epithelial 1 1 1 cells ( paneth cells ) 0 – Interferons (Type I) -IFN-α and IFN-β Inflammatory • Block viral replication (RNA viruses) Mediators 2 Soluble
    [Show full text]
  • Endocytosis, Phagocytosis, and Innate Immune Responses: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2010-07-13 Endocytosis, Phagocytosis, and Innate Immune Responses: A Dissertation Christine A. St. Pierre University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Cells Commons, Environmental Public Health Commons, Hemic and Immune Systems Commons, Immunology and Infectious Disease Commons, Investigative Techniques Commons, Nucleic Acids, Nucleotides, and Nucleosides Commons, Pharmaceutical Preparations Commons, and the Therapeutics Commons Repository Citation St. Pierre CA. (2010). Endocytosis, Phagocytosis, and Innate Immune Responses: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/0zzv-kd21. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/488 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. ENDOCYTOSIS, PHAGOCYTOSIS, AND INNATE IMMUNE RESPONSES A Dissertation Presented By Christine A. St. Pierre submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY July 13, 2010 Biomedical Sciences
    [Show full text]
  • Report Phagosome Extrusion and Host-Cell Survival After Cryptococcus Neoformans Phagocytosis by Macrophages
    Current Biology 16, 2161–2165, November 7, 2006 ª2006 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2006.09.061 Report Phagosome Extrusion and Host-Cell Survival after Cryptococcus neoformans Phagocytosis by Macrophages Mauricio Alvarez1 and Arturo Casadevall1,* extrusion was observed as early as 2 hr after macro- 1 Department of Microbiology and Immunology phage infection, and the likelihood of extrusion was tem- Albert Einstein College of Medicine porally dependent on the initial ratio of pathogens to Bronx, New York, 10461 host cells, with higher ratios resulting in earlier phagoso- mal extrusion events (data not shown). Phagosomal ex- trusion was independent of the activated state of macro- Summary phages because nonactivated macrophages equally extruded Cn cells (Figure 2). Additionally, fusion of Cryptococcus neoformans (Cn) is an encapsulated Cn-containing phagosomes led to the formation of a yeast that is a facultative intracellular pathogen and giant compartment that appeared to be a prerequisite a frequent cause of human disease. The interaction for the complete extrusion of all Cn cells (Figure 1 and of Cn with alveolar macrophages is critical for contain- Figure S3). ing the infection [1, 2], but Cn can also replicate intra- Phagosomal extrusion was not observed with macro- cellularly and lyse macrophages [3–5]. Cn has a unique phages that ingested polystyrene beads (data not intracellular pathogenic strategy that involves cyto- shown) or acapsular Cn (cap67), but on rare occasions, plasmic accumulation of polysaccharide-containing incomplete extrusion of the latter was observed, where vesicles and intracellular replication leading to the only small numbers of Cn escaped the macrophages, formation of spacious phagosomes in which multiple with most remaining intracellular.
    [Show full text]
  • Mechanisms Involved in Macrophage Phagocytosis of Apoptotic Cells
    Mechanisms involved in macrophage phagocytosis of apoptotic cells Anna Nilsson Department of Integrative Medical Biology Section for Histology and Cell Biology Umeå University, Umeå, Sweden 2009 Cover illustration: Confocal microscopic image of murine resident peritoneal macrophages, stained for F-actin (green), CMFDA labeled apoptotic thymocytes (pink), and nuclear DAPI staining (blue). © Anna Nilsson 2009 Umeå University Medical Dissertations New Series No. 1307 ISSN 0346-6612 ISBN 978-91-7264-890-6 Printed at Print & Media, Umeå University, Umeå, Sweden 2 To Stefan and Hjalmar 3 TABLE OF CONTENTS ABBREVIATIONS 6 ABSTRACT 7 LIST OF ORIGINAL PAPERS 8 INTRODUCTION 9 Apoptosis..................................................................................................................................................9 Elimination of apoptotic cells - an overview..........................................................................................10 “Find me signals”....................................................................................................................................11 “Eat me signals”......................................................................................................................................12 The calreticulin/LRP1 interaction...........................................................................................12 “Don’t eat me signals”............................................................................................................................14 The CD47/SIRPα
    [Show full text]