Research Trends in Computer Science and Challenges for Japan — Findings from the International Science Awards —

Total Page:16

File Type:pdf, Size:1020Kb

Research Trends in Computer Science and Challenges for Japan — Findings from the International Science Awards — View metadata, citation and similar papers at core.ac.uk brought to you by CORE SCIENCE & TECHNOLOGY TRENDS QUARTERLY REVIEW No.13 / October 2004 4 Research Trends in Computer Science and Challenges for Japan — Findings from the International Science Awards — AKIHIRO FUJII Information and Communications Research Unit on the discovery of algorithms, proposals for 1 Introduction computational models, and the elucidation of computational complexity. In Japan, too, awards Securing top-quality research personnel have been established for computer science, such is an essential for science and technology as the Japan Prize, the Kyoto Prize, and the Japan policy[1,2]. One possible measure for research IBM Science Award. promotion is to increase the number of winners By reviewing the history of these awards of international awards and prizes [3 -5]. This and prizes for the past ten years or so, this article focuses on trends in computer science article discusses world-wide research trends in research from the viewpoint of science awards in computer science. It also summarizes the current computer science, such as the Turing Award, and Japanese research environment surrounding discusses how to facilitate academic development computer science research through interviews in this area. with prominent Japanese researchers about the Computer science emerged as an academic level of Japanese research and education as well discipline in the mid 20th century and achieved as possible measures for promotion in the area. rapid development. No matter how outstanding, commercial success has not necessarily been 2 What the awards valued from the academic perspective. This and prizes indicate means that it is a field in which academic about recent computer science structure and the boundaries between basic theory and application technology are subject to 2-1 The Turing Award constant review. (1) Recent laureates and characteristics In the field of computer science, which has of the award undergone such a transformation, the Turing Essential research on the information was Award has been known for its consistent review established in the mid 20th century, leading and recognition of research results since 1966. to the basic principles of the computer and To highlight certain aspects of research trends in communications. One of these fundamental computer science, this article traces the history of principles is a concept known as the “Turing the Turing Award. machine,” which was introduced by Alan M. There are many other awards and prizes Turing. His research results, represented in that honor achievement in computer science. his 1937 paper “Computable Numbers,” later The Gödel Prize is particularly intended for contributed to the birth of the computer and achievement in basic theory. The prize is given probably created a turning point in the entire for outstanding papers in theoretical computer world of science that furthered its advancement. science. Since its institution in 1993, the prize Alan J. Perlis, the first winner of the Turing has been presented to, among others, papers Award, praised Turing’s achievement in his 44 45 SCIENCE & TECHNOLOGY TRENDS QUARTERLY REVIEW No.13 / October 2004 commemorative lecture as having “completely already envisioning the computer of the future captured the imagination of one generation of in the 1960s, when ideas like the mouse and researchers and demanded all their thinking the laptop computer were revolutionary in the power”[12]. world of computer systems. His winning of the The Turing Award was established in honor of Turing Award was recognition of his long-lasting Turing’s achievement, and has been recognizing contribution to both the computer system and outstanding research achievements since its human beings. first presentation in 1966. Currently, a prize In 2001, Kristen Nygaard and Ole-Johan of 100,000 U.S. dollars is provided by the Intel Dahl received the award for their research into Corporation. object-oriented technology. This was another Table 1 shows the names of the Turing Award research effort that had a significant impact winners of the past 10 years, along with their on computer science. During the development achievements. Since the Turing Award honors process of a programming language named “general technical achievement in the field of “Simula I,” they invented a scheme for building computer science,” each of the listed research a layered control structure for computing, achievements has made a significant contribution based on the notion called the “object.” This to the computer science and the development “object-oriented” programming paradigm has of information and communications technology triggered a fundamental change in how programs today. are designed and developed. Not only has the For example, as early as in the 1960s, award-winning scheme been strongly inherited Douglas Engelbart, the 1997 winner, was in today’s programming languages, such as C++ seeking innovative ideas about the functions and Java, which are widely used for system characteristic of the current models of development, but it also exerts a considerable information terminals, including those on the influence on software development processes and precursor to the mouse that is in widespread design concepts. use today and a camera-based interface for the The 2002 recipients are Ronald L. Rivest, Adi personal computer. He and his colleagues were Shamir and Leonard M. Adleman, the inventors of Table 1 : Turing Award for the past 10 years Year Laureate Name Achievement Ronald L. Rivest, Contribution to the development of RSA cryptography and the subsequent advancement of 2002 Adi Shamir, cryptographic technology Leonard M. Adleman Kristen Nygaard, Establishment of the ideas fundamental to object-oriented programming through the design 2001 Ole-Johan Dahl of the programming languages, including Simula I Research in the theory of computation, especially computational complexity, cryptography, 2000 Andrew Chi-Chih Yao and communication complexity, based on the theory of pseudorandom number generation 1999 Frederick P. Brooks, Jr. Contributions to computer architecture, operating systems, and software engineering 1998 James Gray Contributions to database and transaction processing research and system implementation Presentation of a vision of the future of interactive computing between the human and the 1997 Douglas Engelbart computer, and invention of key technologies to help realize this vision Introduction of temporal logic into computing science and outstanding contributions to 1996 Amir Pnueli program and systems verification Contributions to the foundations of computational complexity theory and its application to 1995 Manuel Blum cryptography and program checking Edward Feigenbaum Pioneering research on the design and construction of large-scale artificial intelligence 1994 Raj Reddy systems, demonstrating the practical application of artificial intelligence technology Richard E. Stearns 1993 Establishment of the foundations of the field of computational complexity theory Juris Hartmanis Source: Compiled by the author based on Reference[7]. 44 45 SCIENCE & TECHNOLOGY TRENDS QUARTERLY REVIEW No.13 / October 2004 RSA public key cryptography. Their achievement, have been supplied in the area of natural science, which is a technology providing basic principles particularly over the past half-century. for ensuring electronic information security, has One characteristic of computer science is that had a significant impact on the computing world. there are many researchers who used to work in As society becomes increasingly computerized, the area of mathematics or applied physics. This a framework for electronic security protection is can be attributed to the short history of computer expected to play an essential role in a variety of science as well as to the academic position of areas. Security capability for these purposes will computer science as a discipline that lies on the be enabled based on public key cryptography. boundary between existing academic disciplines An example of award-winning research such as mathematics, communication engineering achievement more inclined to basic theory is that and electrical engineering. of Andrew Chi-Chih Yao, who was honored with Another characteristic is that, for achievements the Turing Award in 2000 for his contribution to in such fields as cryptography, database theory quantum computing. He established a completely and software engineering, laureates not only new computational paradigm based on the write theoretical papers, but also concurrently principles of quantum mechanics. He succeeded develop practical systems. In fact, the essential in proving the equivalence between quantum objectives of their projects have often been the circuits in quantum mechanics and the Turing design of practical systems. machine in computer science. This achievement As these findings indicate, for a scientist to indicates that algorithms used on regular receive the Turing Award, his or her achievement computers can be realized at the quantum level. must involve the discovery or elucidation of These findings have provided new possibilities a fundamental principle. In addition to this, for innovation such as the development of practical application of this principle must computer mechanisms based on new principles be demonstrated, or alternatively, a concept and ultra high-speed communications systems. established by the researcher must be inherited Award recipients in other theoretical fields
Recommended publications
  • Tarjan Transcript Final with Timestamps
    A.M. Turing Award Oral History Interview with Robert (Bob) Endre Tarjan by Roy Levin San Mateo, California July 12, 2017 Levin: My name is Roy Levin. Today is July 12th, 2017, and I’m in San Mateo, California at the home of Robert Tarjan, where I’ll be interviewing him for the ACM Turing Award Winners project. Good afternoon, Bob, and thanks for spending the time to talk to me today. Tarjan: You’re welcome. Levin: I’d like to start by talking about your early technical interests and where they came from. When do you first recall being interested in what we might call technical things? Tarjan: Well, the first thing I would say in that direction is my mom took me to the public library in Pomona, where I grew up, which opened up a huge world to me. I started reading science fiction books and stories. Originally, I wanted to be the first person on Mars, that was what I was thinking, and I got interested in astronomy, started reading a lot of science stuff. I got to junior high school and I had an amazing math teacher. His name was Mr. Wall. I had him two years, in the eighth and ninth grade. He was teaching the New Math to us before there was such a thing as “New Math.” He taught us Peano’s axioms and things like that. It was a wonderful thing for a kid like me who was really excited about science and mathematics and so on. The other thing that happened was I discovered Scientific American in the public library and started reading Martin Gardner’s columns on mathematical games and was completely fascinated.
    [Show full text]
  • Rivest, Shamir, and Adleman Receive 2002 Turing Award, Volume 50
    Rivest, Shamir, and Adleman Receive 2002 Turing Award Cryptography and Information Se- curity Group. He received a B.A. in mathematics from Yale University and a Ph.D. in computer science from Stanford University. Shamir is the Borman Profes- sor in the Applied Mathematics Department of the Weizmann In- stitute of Science in Israel. He re- Ronald L. Rivest Adi Shamir Leonard M. Adleman ceived a B.S. in mathematics from Tel Aviv University and a Ph.D. in The Association for Computing Machinery (ACM) has computer science from the Weizmann Institute. named RONALD L. RIVEST, ADI SHAMIR, and LEONARD M. Adleman is the Distinguished Henry Salvatori ADLEMAN as winners of the 2002 A. M. Turing Award, Professor of Computer Science and Professor of considered the “Nobel Prize of Computing”, for Molecular Biology at the University of Southern their contributions to public key cryptography. California. He earned a B.S. in mathematics at the The Turing Award carries a $100,000 prize, with University of California, Berkeley, and a Ph.D. in funding provided by Intel Corporation. computer science, also at Berkeley. As researchers at the Massachusetts Institute of The ACM presented the Turing Award on June 7, Technology in 1977, the team developed the RSA 2003, in conjunction with the Federated Computing code, which has become the foundation for an en- Research Conference in San Diego, California. The tire generation of technology security products. It award was named for Alan M. Turing, the British mathematician who articulated the mathematical has also inspired important work in both theoret- foundation and limits of computing and who was a ical computer science and mathematics.
    [Show full text]
  • Welcome to AI Matters 5(1)
    AI MATTERS, VOLUME 5, ISSUE 1 5(1) 2019 Welcome to AI Matters 5(1) Amy McGovern, co-editor (University of Oklahoma; [email protected]) Iolanda Leite, co-editor (Royal Institute of Technology (KTH); [email protected]) DOI: 10.1145/3320254.3320255 Issue overview receiving the 2018 ACM A.M. Turing Award! Welcome to the first issue of the fifth vol- ume of the AI Matters Newsletter! This issue opens with some news on a new SIGAI Stu- Submit to AI Matters! dent Travel Scholarship where we aim to en- Thanks for reading! Don’t forget to send courage students from traditionally underrep- your ideas and future submissions to AI resented geographic locations to apply and at- Matters! We’re accepting articles and an- tend SIGAI supported events. We also sum- nouncements now for the next issue. De- marize the fourth AAAI/ACM SIGAI Job Fair, tails on the submission process are avail- which continues to grow with the increasing able at http://sigai.acm.org/aimatters. popularity of AI. In our interview series, Marion Neumann interviews Tom Dietterich, an Emer- itus Professor at Oregon State University and one of the pioneers in Machine Learning. Amy McGovern is co- In our regular columns, we have a summary editor of AI Matters. She of recent and upcoming AI conferences and is a Professor of com- events from Michael Rovatsos. Our educa- puter science at the Uni- tional column this issue is dedicated to “biduc- versity of Oklahoma and tive computing”, one of Prolog’s most distinc- an adjunct Professor of tive features.
    [Show full text]
  • Turing's Influence on Programming — Book Extract from “The Dawn of Software Engineering: from Turing to Dijkstra”
    Turing's Influence on Programming | Book extract from \The Dawn of Software Engineering: from Turing to Dijkstra" Edgar G. Daylight∗ Eindhoven University of Technology, The Netherlands [email protected] Abstract Turing's involvement with computer building was popularized in the 1970s and later. Most notable are the books by Brian Randell (1973), Andrew Hodges (1983), and Martin Davis (2000). A central question is whether John von Neumann was influenced by Turing's 1936 paper when he helped build the EDVAC machine, even though he never cited Turing's work. This question remains unsettled up till this day. As remarked by Charles Petzold, one standard history barely mentions Turing, while the other, written by a logician, makes Turing a key player. Contrast these observations then with the fact that Turing's 1936 paper was cited and heavily discussed in 1959 among computer programmers. In 1966, the first Turing award was given to a programmer, not a computer builder, as were several subsequent Turing awards. An historical investigation of Turing's influence on computing, presented here, shows that Turing's 1936 notion of universality became increasingly relevant among programmers during the 1950s. The central thesis of this paper states that Turing's in- fluence was felt more in programming after his death than in computer building during the 1940s. 1 Introduction Many people today are led to believe that Turing is the father of the computer, the father of our digital society, as also the following praise for Martin Davis's bestseller The Universal Computer: The Road from Leibniz to Turing1 suggests: At last, a book about the origin of the computer that goes to the heart of the story: the human struggle for logic and truth.
    [Show full text]
  • Single-To-Multi-Theorem Transformations for Non-Interactive Statistical Zero-Knowledge
    Single-to-Multi-Theorem Transformations for Non-Interactive Statistical Zero-Knowledge Marc Fischlin Felix Rohrbach Cryptoplexity, Technische Universität Darmstadt, Germany www.cryptoplexity.de [email protected] [email protected] Abstract. Non-interactive zero-knowledge proofs or arguments allow a prover to show validity of a statement without further interaction. For non-trivial statements such protocols require a setup assumption in form of a common random or reference string (CRS). Generally, the CRS can only be used for one statement (single-theorem zero-knowledge) such that a fresh CRS would need to be generated for each proof. Fortunately, Feige, Lapidot and Shamir (FOCS 1990) presented a transformation for any non-interactive zero-knowledge proof system that allows the CRS to be reused any polynomial number of times (multi-theorem zero-knowledge). This FLS transformation, however, is only known to work for either computational zero-knowledge or requires a structured, non-uniform common reference string. In this paper we present FLS-like transformations that work for non-interactive statistical zero-knowledge arguments in the common random string model. They allow to go from single-theorem to multi-theorem zero-knowledge and also preserve soundness, for both properties in the adaptive and non-adaptive case. Our first transformation is based on the general assumption that one-way permutations exist, while our second transformation uses lattice-based assumptions. Additionally, we define different possible soundness notions for non-interactive arguments and discuss their relationships. Keywords. Non-interactive arguments, statistical zero-knowledge, soundness, transformation, one-way permutation, lattices, dual-mode commitments 1 Introduction In a non-interactive proof for a language L the prover P shows validity of some theorem x ∈ L via a proof π based on a common string crs chosen by some external setup procedure.
    [Show full text]
  • 1 Introduction
    Logic Activities in Europ e y Yuri Gurevich Intro duction During Fall thanks to ONR I had an opp ortunity to visit a fair numb er of West Eu rop ean centers of logic research I tried to learn more ab out logic investigations and appli cations in Europ e with the hop e that my exp erience may b e useful to American researchers This rep ort is concerned only with logic activities related to computer science and Europ e here means usually Western Europ e one can learn only so much in one semester The idea of such a visit may seem ridiculous to some The mo dern world is quickly growing into a global village There is plenty of communication b etween Europ e and the US Many Europ ean researchers visit the US and many American researchers visit Europ e Neither Americans nor Europ eans make secret of their logic research Quite the opp osite is true They advertise their research From ESPRIT rep orts the Bulletin of Europ ean Asso ciation for Theoretical Computer Science the Newsletter of Europ ean Asso ciation for Computer Science Logics publications of Europ ean Foundation for Logic Language and Information publications of particular Europ ean universities etc one can get a go o d idea of what is going on in Europ e and who is doing what Some Europ ean colleagues asked me jokingly if I was on a reconnaissance mission Well sometimes a cow wants to suckle more than the calf wants to suck a Hebrew proverb It is amazing however how dierent computer science is esp ecially theoretical com puter science in Europ e and the US American theoretical
    [Show full text]
  • Annual Report
    ANNUAL REPORT 2019FISCAL YEAR ACM, the Association for Computing Machinery, is an international scientific and educational organization dedicated to advancing the arts, sciences, and applications of information technology. Letter from the President It’s been quite an eventful year and challenges posed by evolving technology. for ACM. While this annual Education has always been at the foundation of exercise allows us a moment ACM, as reflected in two recent curriculum efforts. First, “ACM’s mission to celebrate some of the many the ACM Task Force on Data Science issued “Comput- hinges on successes and achievements ing Competencies for Undergraduate Data Science Cur- creating a the Association has realized ricula.” The guidelines lay out the computing-specific over the past year, it is also an competencies that should be included when other community that opportunity to focus on new academic departments offer programs in data science encompasses and innovative ways to ensure at the undergraduate level. Second, building on the all who work in ACM remains a vibrant global success of our recent guidelines for 4-year cybersecu- the computing resource for the computing community. rity curricula, the ACM Committee for Computing Edu- ACM’s mission hinges on creating a community cation in Community Colleges created a related cur- and technology that encompasses all who work in the computing and riculum targeted at two-year programs, “Cybersecurity arena” technology arena. This year, ACM established a new Di- Curricular Guidance for Associate-Degree Programs.” versity and Inclusion Council to identify ways to create The following pages offer a sampling of the many environments that are welcoming to new perspectives ACM events and accomplishments that occurred over and will attract an even broader membership from the past fiscal year, none of which would have been around the world.
    [Show full text]
  • Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University
    Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University. Linda A. Cicero/Stanford News Service. Whitfield Diffie Martin E. Hellman ernment–private sector relations, and attracts billions of Whitfield Diffie, former chief security officer of Sun Mi- dollars in research and development,” said ACM President crosystems, and Martin E. Hellman, professor emeritus Alexander L. Wolf. “In 1976, Diffie and Hellman imagined of electrical engineering at Stanford University, have been a future where people would regularly communicate awarded the 2015 A. M. Turing Award of the Association through electronic networks and be vulnerable to having for Computing Machinery for their critical contributions their communications stolen or altered. Now, after nearly to modern cryptography. forty years, we see that their forecasts were remarkably Citation prescient.” The ability for two parties to use encryption to commu- “Public-key cryptography is fundamental for our indus- nicate privately over an otherwise insecure channel is try,” said Andrei Broder, Google Distinguished Scientist. fundamental for billions of people around the world. On “The ability to protect private data rests on protocols for a daily basis, individuals establish secure online connec- confirming an owner’s identity and for ensuring the integ- tions with banks, e-commerce sites, email servers, and the rity and confidentiality of communications. These widely cloud. Diffie and Hellman’s groundbreaking 1976 paper, used protocols were made possible through the ideas and “New Directions in Cryptography,” introduced the ideas of methods pioneered by Diffie and Hellman.” public-key cryptography and digital signatures, which are Cryptography is a practice that facilitates communi- the foundation for most regularly used security protocols cation between two parties so that the communication on the Internet today.
    [Show full text]
  • Jeremiah Blocki
    Jeremiah Blocki Current Position (August 2016 to present) Phone: (765) 494-9432 Assistant Professor Office: 1165 Lawson Computer Science Building Computer Science Department Email: [email protected] Purdue University Homepage: https://www.cs.purdue.edu/people/faculty/jblocki/ West Lafayette, IN 47907 Previous Positions (August 2015 - June 2016) (May 2015-August 2015) (June 2014-May 2015) Post-Doctoral Researcher Cryptography Research Fellow Post-Doctoral Fellow Microsoft Research Simons Institute Computer Science Department New England Lab (Summer of Cryptography) Carnegie Mellon University Cambridge, MA UC Berkeley Pittsburgh, PA 15213 Berkeley, CA Education Ph.D. in Computer Science, Carnegie Mellon University, 2014. Advisors: Manuel Blum and Anupam Datta. Committee: Manuel Blum, Anupam Datta, Luis Von Ahn, Ron Rivest Thesis Title: Usable Human Authentication: A Quantitative Treatment B.S. in Computer Science, Carnegie Mellon University, 2009. (3.92 GPA). Senior Research Thesis: Direct Zero-Knowledge Proofs Allen Newell Award for Excellence in Undergraduate Research Research Research Interests Passwords, Usable and Secure Password Management, Human Computable Cryptography, Password Hash- ing, Memory Hard Functions, Differential Privacy, Game Theory and Security Journal Publications 1. Blocki, J., Gandikota, V., Grigorescu, G. and Zhou, S. Relaxed Locally Correctable Codes in Computa- tionally Bounded Channels. IEEE Transactions on Information Theory, 2021. [https://ieeexplore. ieee.org/document/9417090] 2. Harsha, B., Morton, R., Blocki, J., Springer, J. and Dark, M. Bicycle Attacks Consider Harmful: Quantifying the Damage of Widespread Password Length Leakage. Computers & Security, Volume 100, 2021. [https://doi.org/10.1016/j.cose.2020.102068] 3. Chong, I., Proctor, R., Li, N. and Blocki, J. Surviving in the Digital Environment: Does Survival Processing Provide and Additional Memory Benefit to Password Generation Strategies.
    [Show full text]
  • 2021 ACM Awards Call for Nominations
    Turing Award The A. M. Turing Award is ACM's oldest and most prestigious award. It is presented annually to an individual or a group of individuals who have made lasting contributions of a technical nature to the computing community. The long-term influence of a candidate’s work is taken into consideration, but there should be a singular outstanding and trend-setting technical achievement that constitutes the claim of the award. The award is presented each June at the ACM Awards Banquet and is accompanied by a prize of $1,000,000 plus travel expenses to the banquet. Financial support for the award is provided by Google Inc. ACM Prize in Computing The ACM Prize in Computing recognizes an early to mid-career fundamental and innovative contribution in computing theory or practice that through, its impact, and broad implications, exemplifies the greatest achievements of the discipline. The candidate’s contribution should be relatively recent (typically within the last decade), but enough time should have passed to evaluate impact. While there are no specific requirements as to age or time since last degree requirements, the candidate typically would be approaching mid-career. The Prize carries a prize of $250,000. Financial support for the award is provided by Infosys Ltd. ACM Frances E. Allen Award for Outstanding Mentoring The Frances E. Allen Award for Outstanding Mentoring will be presented for the first time in 2021. This award will recognize individuals who have exemplified excellence and/or innovation in mentoring with particular attention to individuals who have shown outstanding leadership in promoting diversity, equity, and inclusion in computing.
    [Show full text]
  • Leonard (Len) Max Adleman 2002 Recipient of the ACM Turing Award Interviewed by Hugh Williams August 18, 2016
    Leonard (Len) Max Adleman 2002 Recipient of the ACM Turing Award Interviewed by Hugh Williams August 18, 2016 HW: = Hugh Williams (Interviewer) LA = Len Adelman (ACM Turing Award Recipient) ?? = inaudible (with timestamp) or [ ] for phonetic HW: My name is Hugh Williams. It is the 18th day of August in 2016 and I’m here in the Lincoln Room of the Law Library at the University of Southern California. I’m here to interview Len Adleman for the Turing Award winners’ project. Hello, Len. LA: Hugh. HW: I’m going to ask you a series of questions about your life. They’ll be divided up roughly into about three parts – your early life, your accomplishments, and some reminiscing that you might like to do with regard to that. Let me begin with your early life and ask you to tell me a bit about your ancestors, where they came from, what they did, say up to the time you were born. LA: Up to the time I was born? HW: Yes, right. LA: Okay. What I know about my ancestors is that my father’s father was born somewhere in modern-day Belarus, the Minsk area, and was Jewish, came to the United States probably in the 1890s. My father was born in 1919 in New Jersey. He grew up in the Depression, hopped freight trains across the country, and came to California. And my mother is sort of an unknown. The only thing we know about my mother’s ancestry is a birth certificate, because my mother was born in 1919 and she was an orphan, and it’s not clear that she ever met her parents.
    [Show full text]
  • The Origins of Computational Complexity
    The Origins of Computational Complexity Some influences of Manuel Blum, Alan Cobham, Juris Hartmanis and Michael Rabin Abstract. This paper discusses some of the origins of Computational Complexity. It is shown that they can be traced back to the late 1950’s and early 1960’s. In particular, it is investigated to what extent Manuel Blum, Alan Cobham, Juris Hartmanis, and Michael Rabin contributed each in their own way to the existence of the theory of computational complexity that we know today. 1. Introduction The theory of computational complexity is concerned with the quantitative aspects of computation. An important branch of research in this area focused on measuring the difficulty of computing functions. When studying the computational difficulty of computable functions, abstract models of computation were used to carry out algorithms. The goal of computations on these abstract models was to provide a reasonable approximation of the results that a real computer would produce for a certain computation. These abstract models of computations were usually called “machine models”. In the late 1950’s and early 1960’s, the study of machine models was revived: the blossoming world of practical computing triggered the introduction of many new models and existing models that were previously thought of as computationally equivalent became different with respect to new insights re- garding time and space complexity measures. In order to define the difficulty of functions, computational complexity measures, that were defined for all possible computations and that assigned a complexity to each terminating computation, were proposed. Depending on the specific model that was used to carry out computations, there were many notions of computational complexity.
    [Show full text]