University of Southampton Research Repository ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON FACULTYOFENGINEERING,SCIENCEANDMATHEMATICS SchoolofCivilEngineeringandtheEnvironment Two-dimensional Cut Plan Optimization for Cutter Suction Dredgers MarcusJ.M.deRuyter AdissertationsubmittedforthedegreeofDoctorofPhilosophy April2009

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTYOFENGINEERING,SCIENCEANDMATHEMATICS SchoolofCivilEngineeringandtheEnvironment

DoctorofPhilosophy

Two-dimensional Cut Plan Optimization for Cutter Suction Dredgers

byM.J.MdeRuyter

Optimalcutplansforcuttersuctiondredgersaimtomaximizeoperationalefficiency. Maximizingoperationalefficiencyinvolvesminimizationofstoppagetimeresultingfrom nonproductivedredgermovements.Toautomateasystematicsearchforoptimaltwo dimensionalcutplansforcuttersuctiondredgerstwomodelswithanadaptivesimulated annealingbasedsolutionapproachweredeveloped. Thefirstmodel,thedredgecutnestingmodel,optimizesirregularstockcuttingproblems wherestencilsrepresentdredgecutsandsheetsrepresentdredgingareas.Stencilsare collectionsofunitdredgecutswithdimensionsrelatedtoaneffectivecuttingwidthwhich canbeachievedwiththecuttersuctiondredgerconsidered.Theobjectivesofthedredge cutnestingmodelaretomaximizesheetcoverageandtominimizestenciloverlap. Centroidsofunitdredgecutsoffinalnestlayoutsareextractedandusedasgridnodesin thesecondmodel. Thesecondmodel,thedredgerroutingmodel,optimizesasymmetrictravelling salespersonproblemswithturningcosts.Theobjectivesofthedredgerroutingmodelare tominimizetotalroutelengthandsumofturningangles,andtomaximizeaveragelink length.Alinkconsistsoftwoormorerouteedgeswhicharealignedwitheachotherto withinspecifiedlimits. Asignificantresultofthisresearchisthatanengineeringapplicationofbothmodels showedthattwodimensionalcutplansforcuttersuctiondredgerscanbesystematically optimizedandthatdredgerrouteswithminimumturningcostscanbefound.However, resultsalsoshowedthatthedredgerroutingmodelisnotyetsophisticatedenoughtofind cutplansforcuttersuctiondredgersforwhichoverallprojectexecutiontimeisminimal.

List of Contents ListofContents...... i ListofFigures...... iii ListofTables ...... v ListofSymbols ...... vii Author’sDeclaration ...... xii Acknowledgements...... xiii 1 Introduction ...... 1 2 Background...... 3 2.1 CutterSuctionDredgerOperation ...... 3 2.2 ResearchProblem...... 8 3 LiteratureReview ...... 12 3.1 EarthworkOptimization ...... 12 3.2 DredgingOptimization...... 19 3.3 NestingProblems...... 26 3.3.1 ApplicabilityofCuttingandPackingResearch...... 26 3.3.2 DiversityofRealworldCuttingandPackingProblems...... 26 3.3.3 ComplexityofCuttingandPackingProblems...... 27 3.4 RoutingProblems...... 37 3.5 OptimizationMethods...... 40 3.5.1 StockCuttingProblemOptimization ...... 41 3.5.2 TravellingSalespersonProblemOptimization ...... 43 3.5.3 GeneticAlgorithms...... 47 3.5.4 SimulatedAnnealingAlgorithms...... 50 4 Hypothesis,ObjectiveandScope...... 63 5 MaterialsandMethods...... 64 5.1 ExperimentalEquipment ...... 64 5.2 DredgeCutNestingModel ...... 64 5.3 DredgerRoutingModel ...... 68 5.4 ExperimentalDesign ...... 75 5.4.1 ModelValidation...... 75 5.4.2 VariationofNestingProblemVariables ...... 79 5.4.3 VariationofRoutingProblemVariables...... 84 5.4.4 EngineeringApplication...... 86 6 ResultsandDiscussion...... 91 6.1 ValidationofDredgeCutNestingModel...... 91 6.2 ValidationofDredgerRoutingModel...... 99 6.3 DredgeCutNesting–RelaxedSheetBoundaries...... 103

i 6.4 DredgeCutNesting–ReducedSheetAreas ...... 109 6.5 DredgeCutNesting–ReducedSheetAreasforSquareStencils...... 118 6.6 DredgeCutNesting–CostPenaltyIncreaseforSquareStencils...... 126 6.7 DredgerRouting–64NodeSquareGridProblem...... 130 6.8 DredgerRouting–256NodeSquareGridProblem...... 133 6.9 DredgeCutNesting–EngineeringApplication...... 137 6.10 DredgerRouting–EngineeringApplication...... 142 7 Conclusion ...... 155 8 FutureWork ...... 157 AppendixA–MassHaulDiagram–WorkedExample ...... 160 AppendixB–DailyReportCutterSuctionDredger“Cyrus” ...... 164 AppendixC–MainCharacteristicsCutterSuctionDredger“Cyrus” ...... 165 AppendixD–SheetsEngineeringApplicationDredgeCutNesting ...... 166 AppendixE–PreliminaryEngineeringApplicationDredgeCutNesting...... 167 AppendixF–FinalNestLayoutEngineeringApplication...... 168 AppendixG–RouteNodesEngineeringApplication ...... 169 References ...... 170

ii List of Figures Figure1.1Mediumsizecuttersuctiondredger ...... 1 Figure2.1Overviewmediumsizecuttersuctiondredger...... 3 Figure2.2Routineinspectionofasand/claycutterhead...... 4 Figure2.3Typicalcutterheadswingtrack...... 5 Figure2.4Singlecutdredgingproject...... 8 Figure2.5Hypotheticaldredgingareadividedintocuts...... 10 Figure2.6Hypotheticaldredgingsequences...... 10 Figure3.1OperationsResearchmodellingoverview ...... 13 Figure3.2SingleperiodTransportationProblemasanetwork...... 15 Figure3.3Decision,knapsackandbinpackingproblems ...... 28 Figure3.4Strippackingproblem ...... 28 Figure3.5Nestingproblemclassification...... 29 Figure3.6Onedimensionalstockcuttingproblem ...... 31 Figure3.71.5dimensionalstockcuttingproblem ...... 32 Figure3.8TwodimensionalStockCuttingProblem...... 32 Figure3.9Threedimensionalstockcuttingproblem...... 33 Figure3.10Travellingsalespersonproblem ...... 37 Figure3.11Principleworkingsofgeneticalgorithms ...... 48 Figure3.12SimulatedAnnealingalgorithmoverview...... 52 Figure3.13Parameterrangemultiplicationfactors...... 57 Figure3.14AdaptiveSimulatedAnnealingalgorithmoverview...... 59 Figure5.1Stencilmotionfreedom ...... 66 Figure5.2Twooptedgeexchangemechanism ...... 68 Figure5.3Optimalroutingproblemsolutions...... 71 Figure5.4Edgelengthreductionfactors...... 74 Figure5.5Nestingvalidationproblem...... 75 Figure5.6Routingvalidationproblem...... 77 Figure5.7Sheetarrangementswithrelaxedboundaries...... 80 Figure5.8Reducedinnersheetareaarrangements...... 81 Figure5.9Squaregridroutingproblemwith64nodes...... 84 Figure5.10Squaregridroutingproblemwith256nodes...... 85 Figure5.11Engineeringapplication–Dredgingarea...... 86 Figure5.12Engineeringapplication–Innerandoutersheets...... 87 Figure5.13Engineeringapplication–Stencilset...... 88 Figure5.14Engineeringapplication–Routenodeselection...... 89 Figure6.1Randominitialnest–Irregularnesting–Validation...... 91 Figure6.2Overviewirregularnestingresults–Validation...... 93

iii Figure6.3Suboptimalnest–Irregularnesting–Validation...... 96 Figure6.4Localminimumnest–Irregularnesting–Validation...... 96 Figure6.5Percentagesglobalminima–Validation...... 97 Figure6.6Globalminimumnest–Irregularnesting–Validation...... 97 Figure6.7Randominitialroute–Regularrouting–Validation...... 99 Figure6.8Optimalroute–Regularrouting–Validation...... 100 Figure6.9Nearoptimalroute–Regularrouting–Validation–Localsearch1...... 101 Figure6.10Suboptimalroute–Regularrouting–Validation–Localsearch8...... 101 Figure6.11Overviewirregularnestingresults–Relaxedsheetboundaries...... 106 Figure6.12Percentagesglobalminima–Relaxedsheetboundaries...... 107 Figure6.13Bestnest–2Relaxedsheetboundaries...... 108 Figure6.14Overviewirregularnestingresults–Reducedsheets...... 113 Figure6.15Minimumfinalcostnests–Irregularnesting–Reducedsheets...... 115 Figure6.16Secondbestnest–Irregularnesting–Sheettostencilarearatio1:1.2...... 117 Figure6.17Randominitialnest–Regularnesting...... 118 Figure6.18Overviewregularnestingresults–Reducedsheets...... 123 Figure6.19Bestnest–Regularnesting–Sheettostencilarearatio1:1.3...... 124 Figure6.20Minimumnonplacement–Original(14)andrevised(58)costpenalties. .128 Figure6.21Randominitialroute–Regularrouting–64Nodes...... 130 Figure6.22Optimaldredgerroutes–Regularrouting–64Nodes...... 132 Figure6.23Randominitialroute–Regularrouting–256Nodes...... 133 Figure6.24Solutionqualityforincreasedlocalsearch–Regularrouting–256Nodes.134 Figure6.25Optimaldredgerroutes–Regularrouting–256Nodes...... 135 Figure6.26Solutiontimesforincreasedlocalsearch–256Nodes–Regularrouting. .136 Figure6.27Preliminarynestingresults–Engineeringapplication...... 137 Figure6.28Finalnestforroutenodeselection–Engineeringapplication...... 140 Figure6.29Routenodes–Engineeringapplication...... 141 Figure6.30Randominitialroute–Engineeringapplication–228Nodes...... 142 Figure6.31Dredgerroutes–Engineeringapplication–228Nodes...... 144 Figure6.32Bestdredgerroute–Engineeringapplication–228Nodes...... 146 Figure6.33Dredgerroutedetail–Engineeringapplication...... 147 Figure6.34Dredgingintopreviouslyexcavatedareas–Engineeringapplication...... 148 Figure6.35Manuallymodifieddredgerroute–Engineeringapplication–228Nodes. .151

iv List of Tables Table3.1RedefinitionTransportationProblemvariables–Earthworkoptimization ...... 16 Table3.2AssignmentandTransportationProblemvariables ...... 22 Table3.3AdaptiveSimulatedAnnealingparameterrangemultiplicationfactors ...... 56 Table5.1DredgeCutNestingandStockCuttingProblemvariables...... 65 Table5.2Optimalrouteattributes–64NodeSquareGrid...... 73 Table5.3DredgeCutNestingmodelsettings–Validation ...... 76 Table5.4DredgerRoutingmodelsettings–Validation...... 78 Table5.5MainDredgeCutNestingmodelsettingsforalladditionalnestingproblems....79 Table5.6Specificmodelsettings–Irregularnesting–Relaxedsheetboundaries ...... 80 Table5.7Specificmodelsettings–Irregularnesting–Reducedinnersheets...... 82 Table5.8Specificmodelsettings–Regularnesting–Increasedcostpenalties...... 83 Table5.9MainDredgerRoutingmodelsettingsforalladditionalroutingproblems ...... 84 Table5.10Specificmodelsettings–Regularrouting–64Nodes ...... 85 Table5.11Specificmodelsettings–Regularrouting–256Nodes ...... 86 Table5.12Specificmodelsettings–Irregularnesting–Engineeringapplication...... 88 Table5.13Specificmodelsettings–Irregularrouting–Engineeringapplication ...... 89 Table5.14Experimentationsummarywithobjectives...... 90 Table6.1Irregularnesting–Sheettostencilarearatio1:1 ...... 92 Table6.2AdaptiveSimulatedAnnealingsettingsfordifferentapplications...... 94 Table6.3RegularRouting–32Nodes ...... 99 Table6.4Irregularnesting–1Relaxedsheetboundary...... 103 Table6.5Irregularnesting–2Relaxedsheetboundaries ...... 104 Table6.6Irregularnesting–3Relaxedsheetboundaries ...... 105 Table6.7Minimumaveragesirregularnesting–Relaxedsheetboundaries...... 107 Table6.8Irregularnesting–Sheettostencilarearatio1:1.1 ...... 109 Table6.9Irregularnesting–Sheettostencilarearatio1:1.2 ...... 110 Table6.10Irregularnesting–Sheettostencilarearatio1:1.3 ...... 111 Table6.11Irregularnesting–Sheettostencilarearatio1:1.4 ...... 112 Table6.12Minimumaveragesirregularnesting–Variablesheetareas ...... 114 Table6.13Zerooverlapinstancesirregularnesting–Variablesheetareas ...... 115 Table6.14Regularnesting–Sheettostencilarearatio1:1.1 ...... 119 Table6.15Regularnesting–Sheettostencilarearatio1:1.2 ...... 120 Table6.16Regularnesting–Sheettostencilarearatio1:1.3 ...... 121 Table6.17Regularnesting–Sheettostencilarearatio1:1.4 ...... 122 Table6.18Overviewirregularandregularnestingresults ...... 125 Table6.19Revisedcostpenalties–LeatherandDredgeCutNesting...... 126 Table6.20Effectofrevisedcostpenaltiesonnonplacement–Regularnesting...... 127

v Table6.21RegularRouting–64Nodes ...... 131 Table6.22RegularRouting–256Nodes ...... 134 Table6.23Localsearchsolutionqualitygains–256Nodes–Regularrouting...... 135 Table6.24Localsearchoptimalroutesfound–Regularrouting–256Nodes...... 136 Table6.25Overlapandnonplacementofpreliminarynests–Engineeringapplication.138 Table6.26Irregulardredgecutnesting–Engineeringapplication...... 140 Table6.27Dredgerrouting–Engineeringapplication–228Nodes ...... 142 Table6.28Firstrankingofdredgerroutes–Engineeringapplication–228Nodes...... 145 Table6.29Secondrankingofdredgerroutes–Engineeringapplication–228Nodes...149 Table6.30Modifieddredgerroute–Engineeringapplication–228Nodes ...... 152 Table6.31Mainresultssummary ...... 154

vi List of Symbols TransportationProblems(pp1516) xij Numberofunitstransportedfromonelocationtoanother,decisionvariable. Z Totaltransportationcost. cij Unittransportationcost,costtotransportaunitfromonelocationtoanother. ai Supplyoftransportationunitsavailableatasource. bj Demandoftransportationunitsrequiredatadestination. EarthworkTransportationProblems(p16) xij Volumeofearthtransportedfromonelocationtoanother,decisionvariable. Z Totalhaul. cij Transportdistance. ai Cutvolumeavailableatasource. bj Fillvolumerequiredatadestination. AssignmentProblems(p22) xij Assignmentofanagenttoatask,decisionvariable. cij Costofassigninganagenttoatask. DredgedMaterialDisposalModelling(p23) V Totalvolumeofdredgedmaterialinadisposalarea. F Reductionfactorappliedtototalvolumeofdredgedmaterialinadisposal areatoallowforshrinkage,swellingorbulking. NestingProblems(pp3536)

Aescape Totalescapearea,thetotalareaofstencilssituatedoutsidesheetprofile(s), decisionvariable.

Aoverlap Totaloverlaparea,thetotalareaofoverlapbetweenstencils,decision variable.

Anonplacement Totalnonplacementarea,thetotalareaofsheetprofile(s)notcoveredby placedstencils,decisionvariable.

αescape Escapepenaltyfactor,toinfluencetheweightoftotalescapeareainthe objectivefunction.

αoverlap Overlappenaltyfactor,toinfluencetheweightoftotaloverlapareainthe objectivefunction.

αnonplacement Nonplacementpenaltyfactor,toinfluencetheweightoftotalnonplacement areaintheobjectivefunction. sescapei Areaofastencilsituatedoutsidethesheetprofile(s).

vii Larea Totalareaofsheetprofile(s)inwhichstencilsaretobeplaced. si Areaofastencil. soverlapij Areaofoverlapareabetweentwostencils. TravellingSalespersonProblems(pp3839) xij Arrivalatacityfromanother,problemdecisionvariable. dij Distancebetweentwocities. SimulatedAnnealingTheory(pp5051) P(E) Probabilityofathermodynamicsysteminequilibriumassumingahigher energystate. E Increaseinenergyforathermodynamicsysteminequilibriumtoassumea higherenergystate. k Boltzmann'sconstant,usedforcopingwithdifferentmaterials. T Temperatureorcostannealingtemperature. P Acceptanceprobabilityforamodelledsystemassumingaworsestate. L Changeinobjectivefunctionvalue. r Randomnumberbetween0and1. SimulatedAnnealingAlgorithmPseudocode(p53) ω Initialorcurrentsolution. ω' Modifiedsolution. Solutionspacecomprisingallpossiblesolutions. p Temperaturechangecounter. T(p) Temperaturecoolingscheduleasafunctionoftemperaturechangecounter. T(0) Initial(cost)temperature. N(p) Repetitionscheduleasafunctionoftemperaturechangecounter. q Repetitioncounter. g(T) Probabilitygenerationfunctionusedformodifyingasolution. η(T) Neighbourhoodfunctionusedformodifyingasolution. δ Differenceinobjectivefunctioncostofinitial/currentandmodifiedsolution. f(ω) Totalobjectivefunctioncostofinitialorcurrentsolution. f(ω') Totalobjectivefunctioncostofmodifiedsolution.

viii AdaptiveSimulatedAnnealingTheory(pp5458) k Costannealingtime. i α n Valueofaproblemparameterinadimensionatcurrentcostannealingtime.

Ai Lowerlimitofthefiniterangeofvaluesaproblemparametercanassume.

Bi Upperlimitofthefiniterangeofvaluesaproblemparametercanassume. yi Randomvariablebetween1and1. ui Randomvariablebetween0and1. t0i Initialproblemparametertemperature. tin Currentproblemparameterannealingtemperature. n Parameterannealingtime. sgn (x) Signfunction:Equalto1forallx<0;0forx=0;and1forallx>0. ci Parametertuningfactor,toinfluenceannealingoftheproblemparameter temperature. mi Controlcoefficient,toinfluencethevalueoftheparametertuningfactor. ni Controlcoefficient,toinfluencethevalueoftheparametertuningfactor. D Totalnumberofdimensionsofproblemparameterspaceorproblem parameters.

∂αi Smallchangeinproblemparametervalue. si Problemparametersensitivity. smax Largestproblemparametersensitivityfoundduringsensitivityanalysis.

∂L Changeinobjectivefunctionvalueresultingfrom ∂αi. n' i Rescaledproblemparameterannealingtime. StencilMotion(p66) xi Initialorcurrentxcoordinateofstencilreferencepoint. xi+1 Modifiedxcoordinateofstencilreferencepoint. yi Initialorcurrentycoordinateofstencilreferencepoint. yi+1 Modifiedycoordinateofstencilreferencepoint.

δx Translationofstencilreferencepointinxdirection.

δy Translationofstencilreferencepointinydirection.

δr Rotationofstencilaroundstencilreferencepoint.

ix DredgeCutNestingProblems(p67)

Aescape Totalescapearea,thetotalareaofdredgecutssituatedoutsidesheet profile(s),decisionvariable.

Aoverlap Totaloverlaparea,thetotalareaofoverlapbetweendredgecuts,decision variable.

Anonplacement Totalnonplacementarea,thetotalareaofsheetprofile(s)notcoveredby placeddredgecuts,decisionvariable. si Areaofadredgecut,representedbyastencil. ej Areaofanescaperegionwheredredgecutscanbeplacedoutsidethe dredgingarea(s).

Lk Totalareaofdredgingarea(s),representedbysheetprofile(s).

αesc Escapepenaltyfactor,toinfluencetheweightoftotalescapeareainthe objectivefunction.

αovl Overlappenaltyfactor,toinfluencetheweightoftotaloverlapareainthe objectivefunction.

αnpl Nonplacementpenaltyfactor,toinfluenceweightoftotalnonplacement areaintheobjectivefunction.

βesc Escapepenaltyexponent,toinfluencetheweightoftotalescapeareainthe objectivefunction.

βovl Overlappenaltyexponent,toinfluencetheweightoftotaloverlapareainthe objectivefunction.

βnpl Nonplacementpenaltyexponent,toinfluenceweightoftotalnonplacement areaintheobjectivefunction. DredgerRoutingProblems(pp6970) xij Arrivalofdredgerataroutenodefromanother,decisionvariable. yijk Arrivalanddepartureofdredgerataroutenodefrom/toothernodes, decisionvariable.

LTOUR Totallengthofadredgerroute. dij Distancebetweentwonodesvisitedinadredgerroute.

Fj Reductionfactorappliedtotherouteedgeswhichmakeupadredgerroute.

ATOUR Sumofturninganglesinadredgerroute,measuredbetweenconsecutive routeedges.

γ j Differenceinplaneanglesofincomingandoutgoingrouteedgeatanode visitedinadredgerroute.

αlength Lengthpenaltyfactor,toinfluencetheweightoftotalroutelengthinthe objectivefunction.

αangle Anglepenaltyfactor,toinfluencetheweightofthesumofturninganglesin theobjectivefunction.

x βlength Lengthpenaltyexponent,toinfluencetheweightoftotalroutelengthinthe objectivefunction.

βangle Anglepenaltyexponent,toinfluencetheweightofthesumofturningangles intheobjectivefunction. OptimalDredgerRoutesonRegularSquareGrids(p72)

LMIN Minimumdredgerroutelength.

AMIN Minimumsumofturningangles. d Squaregridspacing. nL Numberofnodesalongthelengthofacontinuousrectangulargrid. nW Numberofnodesalongthewidthofacontinuousrectangulargrid.

MMAX Maximumlinklength,themaximumnumberofrouteedgesinastraightline.

NMAX Maximumnumberofmaximumlengthlinks. DredgerRouteEdgeLengthReductionFactor(p74)

Fj Reductionfactorappliedtotheedgesofadredgerroute. w Reductionconstant,userdefined. n Numberofaligneddredgerrouteedgesbeforenodevisitedinadredger route. nmax Maximumexpectednumberofalignededgesinadredgerroute.

xi Author’s Declaration I,MarcusJ.M.deRuyter,declarethatthedissertationtitled: Two Dimensional Cut Plan Optimization For Cutter Suction Dredgers andtheworkpresentedthereinarebothmyown,andhavebeengeneratedbymeasthe resultofmyownoriginalresearchandconfirmthefollowing:

• This work was done wholly while in candidature for research degree at this University.

• Whereanypartofthisdissertationhaspreviouslybeensubmittedforadegreeor any other qualification at this University or any other institution, this has been clearlystated.

• Where I have consulted the published work of others, this is always clearly attributed.

• WhereIhavequotedfromtheworkofothers,thesourceisalwaysgiven.Withthe exceptionofsuchquotations,thisdissertationisentirelymyownwork.

• Ihaveacknowledgedallmainsourcesofhelp.

• Wherethethesisisbasedonworkdonebymyselfjointlywithothers,Ihavemade clearexactlywhatwasdonebyothersandwhatIhavecontributedmyself.

• Noneofthisworkhasbeenpublishedbeforesubmission.

Signed: . Date: .

xii Acknowledgements Mysincerestgratitudegoesouttothefollowingpersons: Tomymotherforallhersupport,notjustduringthecompletionofthisresearch. TomysupervisorDrArifAnwarforhissteadyenthusiasm,hisseeminglyunlimited availabilityfordiscussionandhismuchvaluedopinionsthroughoutmycandidature. TomyinternalexaminerDrDerekClarkforhisconstructivefeedbackgivenatthe intermediatestagesofthisresearch. Tomyallmyfellowcandidates,inparticularDanielProuty,LukeBlundenandSally Brown,forthealwaysfruitfulexchangesofideas,notonlyonmattersofresearch. Tomyformercolleagueswhosharedtheirpracticalknowledgeofoperationaland technicalaspectsofcuttersuctiondredgingwithme,mostnotably:CaptPietroPuddu; MrGaetanoRossi;MrJanHonkoop;andMrGerardSchreuders. Lastly,myappreciationgoesouttothosewhointhepastagreedtoemploymeinthe dredgingindustry,inparticular:MrJohnnyMadsen;MrFabioDeBernardis;and MessrsMarcoMulandHendrikJandeKluiver.

xiii Introduction

1 Introduction Theworkinthisdissertationaddressestwodimensionalcutplanoptimizationforcutter suctiondredgers.Thedredgingindustryisaspecializedandcapitalintensivesectorofthe constructionindustry(Dolmans,2001).In2007theworldmarketfordredging,including maritimeconstruction,wasworthandestimated12.8billioneuroswithstronggrowth predictedfor2008(Tewes,2007).DredgingitselfisdescribedbyWilliams(2003)asa complextaskthatiscarriedoutusingvaryingtypesofequipmenttoaccomplishdiverse goals. Bray etal .(1997)definestheactofdredgingastheexcavationormovementofsoilor rockwithvesselsorfloatingplantknownasdredgers.Dredgingisdonetodeepen waterways,tocreateorprotectland,tosubstituteorwinmaterialforconstruction,towin mineralsandtoimprovetheenvironment( ibid .).Overtimedredgingprojects, environmentalconcernsandcompetitivepressureshavebecomemorecomplex.Assuch thereisneedforthedredgingindustrytocontinuallyinvestigateupdatedmanagement proceduresandtoolsthatcanimprovetheeconomyofdredgingactivities(Mayer etal ., 2002). CutterSuctionDredgersareoftenusedfordredgingnavigablewaterways(Randall etal ., 2000).Thetotalinstalledpoweroncuttersuctiondredgersvariesfrom200towellin excessof20,000kilowatts(Bray etal .,1997,Vercruijsse,2007).Largecuttersuction dredgerscanexcavatetodepthsinexcessof35metresbelowwaterlevelandachieve singlecutwidthsinexcessof100metres(Katoh etal .,1985).Figure1.1depictsa mediumsizecuttersuctiondredgerworkingoffshoreintheUnitedArabEmirates.

Figure1.1Mediumsizecuttersuctiondredger(CourtesyGulfCoblaL.L.C.). 1 Introduction Between2005and2008theBelgiandredgingcontractorDredging,Environmental& MarineEngineeringreportedlyinvested460millioneurosinthebuildingof7new dredgers(Bertrand etal .,2008).Thesamecontractorplannedtoinvestanother500 millioneurostobuild10morenewdredgersbetween2008and2011( ibid .),amountingto anaveragecostofaround55millioneurosperdredgeroverbothperiods.Thehighcosts ofbuilding,operatingandmaintainingdredgers(Dolmans,2001,Wang etal .,2006)have ledtocontinuousattemptstoincreaseoperationalefficienciesandproductivitiesofsuch plant(VanOostrum,1979).Reducingstoppagetimefordredgersisconsideredimportant becauseincreasingtheoperationalefficiencyofadredgerequatestoincreasinga dredger’sproductivity(Brouwer,1986).Whendredgingworkispaidforbyafixedamount perunitvolumeexcavated,stoppagesnotonlyequatetoalossofproductivitybutalsoto alossofincome(Miertschin etal .1998).Lessstoppagetimemeanslesstimespentona dredgingprojectwhichinturnmeanslesswearonmachineryandfeweroverheads,such asfuelandwages( ibid .). Onmanyprojectsdonewithcuttersuctiondredgers,thefirstpartofpreparingadredge planconsistsofdividingalargerdredgingareaintosmalleradjoiningdredgecutsof varyinglengthandwidthsequaltoorlessthanthecutwidthwhichcanbeachievedbythe cuttersuctiondredgeremployed(Tang etal .,2008).Afterthat,asequenceinwhichthe smallerdredgecutsaretobeexcavatedneedstobedetermined.Whenmultipledredge cutshavetobedredged,thenatsomepointthecuttersuctiondredgeremployedislikely toberelocatedand/orchangeitsworkingdirectionfromonecuttoanother.Whenacutter suctiondredgerisrelocatedorchangesitsworkingdirectionitisconsideredidle.Thetime spentonmovingacuttersuctiondredgerisunproductiveastheactualdredgingprocess itselfisinterrupted(Swart,1995,Dirks etal .,1999,Blasquez etal .,2001).Therefore preparingadredgeplanwhichminimizesthetotalexpectedstoppagetimeresultingfrom unproductivedredgermovementscanincreasetheproductivityofcuttersuctiondredgers. Theaimoftheworkpresentedhereistoinvestigatehowoptimaldredgeplansforcutter suctiondredgerscanbedeterminedsystematically. Thenextsectionofthisthesispresentsabackgroundofcuttersuctiondredgeroperation andtheresearchproblem.Thebackgroundsectionisfollowedbyareviewofliteratureon earthworkanddredgingoptimizationtoseeiftheresearchproblemhasbeenstudied before.Nextareviewofliteratureonsocallednestingandroutingproblemsispresented, specialformsofwhichbearrelevancetotheresearchproblem.Theliteraturereviewends withareviewofanumberofoptimizationmethods.Aftertheliteraturereviewthemodels oftheresearchproblemarepresentedandseriesofexperimentsaredescribedtoseeif optimalsolutionstothesemodelscanbefound.Theresultsoftheexperimentsarethen presentedanddiscussed.Finallyconclusionsaredrawnandfurtherworkissuggested. 2 Background

2 Background Thissectionaddressescuttersuctiondredgeroperationandtheresearchproblem.

2.1 Cutter Suction Dredger Operation Cuttersuctiondredgersareversatiledredgers(Herbich,2000)withhullsconsistingof pontoonsandusuallytheydonothavetheirownmeansofpropulsion(Bray etal.,1997). Tomoveacuttersuctiondredgerwhenitisnotdredginguseofsupportvessels,suchas workboats,ismade(Bray etal.,1997,Tang etal .,2008).Therotatingcutterapparatusof acuttersuctiondredger,thecutterhead,canbedesignedtocopewithavarietyof materials:Peat,clay,silt,sand,gravelandboulderstosedimentaryrocksuchas limestone,dolomiteandcarbonaceousrocks(Herbich,2000).Largermorepowerfulcutter suctiondredgerscandredgerocklikeformationssuchascoralandsoftertypesofbasalt withoutpretreatmentbyblastingand/ordrilling(ibid.).In2000asinglecuttersuction dredgerdredgedaround7,000,000cubicmetresoflimestone,glacialtillsandsandand graveldepositstoexcavatea3.5kilometrelongtunneltrenchbetweenDenmarkand Sweden(Maddrell etal .,1998,Dirks etal .,1999).Figure2.1depictsthemainfeaturesof atypicalmediumsizecuttersuctiondredger.

Figure2.1Overviewmediumsizecuttersuctiondredger(CourtesyGulfCoblaL.L.C.). Whendredgingacuttersuctiondredgeriskeptinpositionwithsideanchorsatitsfront andoftenaspudsystematitsback(Bray etal .,1997,Herbich,2000,Tang etal .,2008). Onceinposition,thepivotingladder–afabricatedsteelstructureattheendofwhichthe cutterheadismounted–isloweredbelowthewaterleveltostartdredging.Upon immersionofthecutterhead,oneormoreonboarddredgepumpsareengagedinorder tocreateadesiredflowrateinthedredger’ssuctionanddischargepipes(Bray etal ., 3 Background 1997,Wang etal .,2006).Thecutterheadissetinmotionbeforecontactwiththeseabed ismade(Tang etal .,2008).Figure2.2depictsacutterheaddesignedfordredgingsands andclays.

Figure2.2Routineinspectionofasand/claycutterhead. Onceincontactwiththeseabed,thecutterheadloosensthebedmaterialandamixtureof soilandwaterisdrawnintothesuctionintakeasaresultofthevacuumcreatedbythe firstdredgepumpbehindthecutterhead(Randall etal .,2000,Herbich,2000,Tang etal ., 2008).Suctionintakesareusuallylocatedinsidethelowerhalfofthecutterhead.To ensurecontinuedexcavationofbedmaterialthedredgerismadetoswingfromsideto sideusingwinches,wiresofwhichareconnectedtothedredger’ssideanchors(Bray et al .,1997,Tang etal .,2008).Sideanchorsarepositionedoutsidethecutbeingdredged, oneithersideofthefrontofthedredger.Figure2.3depictsatypicalswingtrackmadeby thecutterheadofadredgerfittedwithacentralspudcarriagewhilstdredgingasingle layerinplanview.

4 Background

Cutcentreline

Figure2.3Typicalcutterheadswingtrack(CorrectedafterBray etal .,1997). Figure2.3showsthatthetrackattheexcavationfaceacrosswhichthecutterheadis traversedissemicircular(Bray etal .,1997).Theradiusofthearcacrosswhichthe cutterheadistraversedhasitscentrepointatthepositionofthemainspudofthedredger. Themainspud’spositionisnormallyonthecentrelineofthecutbeingdredged.Oncean archasbeendredgedoverthefullwidthofthecut,theswingingmotionofthedredgeris temporarilysloweddownnearto,orisstoppedaltogetherontheedgeofthecutto advancefurtherintotheexcavationface.Thedredgerandcutterheadareadvancedby pushingbackthespudcarriagewhichholdsthemainspud(Tang etal .,2008). Newercuttersuctiondredgersusuallyhaveahydraulicramcylinderwithwhichthespud carriageholdingthemainspudispushedoutorpulledbackagainstthehull(Herbich, 2000).Whenaspudcarriagecylinderhasbeenfullyextended,forexampleoverdistance AinFigure2.3,dredgingisstoppedinthecentrelineofthecut,oronalineparalleltoit,to changespuds(Bray etal .,1997).Tochangespudstheauxiliaryspudisfirstloweredafter whichthemainspudisraised.Thenthespudcarriagecylinderisretractedwhilethe groundedauxiliaryspudkeepsthedredger’saftinposition.Whenthespudcarriage cylinderisfullyretractedthemainspudisloweredandgroundedafterwhichtheauxiliary spudisraised(Bray etal .,1997).Afterchangingspudsthecuttersuctiondredgerisready tocontinuedredginganewlengthofcut,forexampleoverdistanceBinFigure2.3.

5 Background Thecorefunctionofacuttersuctiondredger’smainspudsystemistoresistthebackward thrustgeneratedbythecutterheadasitistraversedacrossandadvancedintoacutface (Steinbusch etal .,2001).Asacuttersuctiondredgeradvances,sideanchorsare periodicallymovedahead(Randall etal .,2000)tokeeptheangleofpullonthesidewires withintheallowablelimits.Usuallyanglesarekeptwithin40degreestothecutcentreline (Bray etal .,1997).Theanchorsusedcanvarybuttheirmainpurposeistoresistthe pullingforcesofthedredger’ssidewinchesandadditionalsidewaysforcesgeneratedby therotatingcutterhead(Degenkampetal .,1992). Dredgedsoilwatermixturesaredischargedfromcuttersuctiondredgersintoaseriesof floatingpipelinesectionsconnectedtothedredgerorintohopperbargesforfurther transport(Bray etal .,1997,Randall etal .,2000,Tang etal .,2008).Todepositdredged soilsintoacontainmentareadirectlyfromthedredgerusecanbemadeoffloating, submergedand/orlandbasedpipelinesections.Suchpipelinenetworkscanincorporate auxiliarypartssuchasballjointsand/orrubberhosestoincreaseflexibility,ypieceswith valvesforbranchingoffsecondarypipelinesandbends(Bray etal .,1997). Withinthelimitationsofvacuum,pressure,criticalvelocityandavailablepowerofa particularcuttersuctiondredgingsystem,fieldexperienceindicatesthatforagivensoil thedredgingproductivityofacuttersuctiondredgerisafunctionofdepthofcutand lateralandrotationalspeedsofthecutterhead(Herbich,2000).Thesoilwatermixture dredgedbyacuttersuctiondredgercancontainasmuchas20%solidsbyvolume (Randall etal .,2000).Cuttersuctiondredgersareusuallyratedeitheraccordingtothe internaldiameteroftheirdischargepipeorbythepowerdrivingtheircutterhead(Bray et al .,1997).Internaldischargepipediametersrangefromunder150millimetrestoover 1,100millimetresandcutterheadpowercanvaryfrom15kilowattstoover4,500kilowatts (ibid .).Generally,smallcuttersuctiondredgersarepoweredbydieselhydraulicsystems andlargeronesbydieselelectricsystems(ibid .). Awelldesignedcuttersuctiondredgerwithaninternaldischargepipediameterof750 millimetres,1,500kilowattspoweringitscutterheadand3,500to6,000kilowattsdrivingits dredgepumpwilldischargebetween1,500to3,500cubicmetresperhourinsoftmaterial and150to1,500cubicmetresperhourinsofttomediumhardrockthroughpipeline lengthsofupto4,500metres(Herbich,2000).Toassesstheperformanceofcutter suctiondredgerstheiroperationalanddredgingproductivitiescanbecalculated: Operationalproductivitiesofacuttersuctiondredgerarecalculatedbydividingthetotal volumeremoveddividedbythesumofoperationaltime(Herbich,2000),where operationaltimeisdefinedastimewhenadredgerisfullymanned(Bray etal .,1997). Dredgingproductivitiesarecalculatedbydividingthetotalvolumeremovedbythesumof 6 Background operationaltimelessstoppagetime,wherestoppagetimeisdefinedastimewhenthe dredgerisfullymannedbutnotdredging( ibid .).Onmostdredgingprojectsaverage operationalanddredgingproductivitiesofcuttersuctiondredgersarecalculatedand recordedonadailybasis. Forawellmanagedcuttersuctiondredger,underaveragesiteconditions,thetotal stoppagetimeincurredcanbeintherangeof20to30percentofthetotaloperational time(Bray etal .,1997).However,specificsiteconditionscanresultinhigherlosses (ibid .).Stoppagetimescanbegroupeddependingonwhethertheyareconsidered avoidableorunavoidable.Stoppagescausinglossofproductivitywhichareunavoidable arethoseinherenttothecuttersuctiondredgingprocessitself.Examplesofunavoidable stoppagesarethoseincurredwhenchangingthepositionofanchorsandspuds,without whichprogresscannotbemade.Stoppagesresultingfromsubstandardmaintenance, operationand/ormanagementofthedredgercanbeconsideredasavoidable. Unnecessarydredgermovementsresultingfrompooroperationand/ormanagementof thedredgerareavoidable. Ananalogycanbemadewiththe LawnMowingProblem (Arkin etal .,2005),wherethe lawnmowerrepresentsacuttersuctiondredgerandthelawnequatestoadredgingarea. Forasinglecoveringexerciseandconstantmowingrate,anobjectivecanbetoachieve thehighestpossibleoperationalproductivitywiththelawnmower.Toachievethisthelawn hastobecutsuchthatstoppingthelawnmowertochangeitsworkingdirectionorto teleportittoanotherpartofthelawnisminimizedsincestoppagesaddtothetotaltime themannedlawnmowerisoperational:Thetotalareatobecutisfixedsoanyincreasein operationaltimereducestheoperationalproductivityofthelawnmower.Usingalawn mowerislesscomplexthanoperatingacuttersuctiondredger,butthelawnmowing problem,asdescribedhere,canserveasamodelfortheworkdonewithsuchadredger. Thefollowingsectiondescribestheresearchproblemoftwodimensionalcutplanningfor cuttersuctiondredgersinmoredetail.

7 Background

2.2 Research Problem Capitaldredgingnormallydenotesprojectswhichinvolvedredgingasaoneoffoperation (Bray etal .,1997).Maintenancedredgingisusedtodescribedredgingwhichisofa recurrentnature( ibid .).Usuallythescopeofcapitaldredgingworksisdescribedindetail bycontractualdocumentsspecifyinghorizontalandverticalexcavationlimits,including tolerancesifapplicable( ibid .).Figure2.4depictsacuttersuctiondredgerdredginga singlestraightcutaspartofacapitaldredgingprojecttowidenanexistingchannel.

Figure2.4Singlecutdredgingproject(CourtesyGulfCoblaL.L.C.). Usually,asinglecutdredgedbyacuttersuctiondredgerisofconstantwidthandofa lengthgreaterthanitswidth.Unlesspurposelydredgedotherwise,thestartandendofa dredgecutresemblenearidenticalarcsinplanview.InFigure2.4thesemicircularendof thesinglecutcanbeseenontheleftwherechannelwideningisinprogressandthe dredgeradvances.Preparingacutplanforasinglestraightcutrequirestheselectionof onecutcentreline.Theprojectcanbecompletedasthedredgerprogressesnaturally alongthatsinglecentreline.Onlyiftherequireddepthsorwidthsofcutarenotachieved willthedredgerhavetobemovedbackorturnedaroundintheoppositedirection. However,sucheventsarenottakenintoaccountinthiswork.Theresearchproblemof twodimensionalcutplanningforcuttersuctiondredgerspresentsitselfwhenadredging areacannotbeexcavatedinasingledredgecut.

8 Background Preparingaplantoexcavateacontinuousdredgingareawhichcannotbecoveredwitha singlecutofacuttersuctiondredgerconsistsoftwostages.Inthefirststagethelarger dredgingareaisdividedintosmalleradjoiningdredgecutsinplanview.Thefirstplanning stagewillbereferredtohereastheDredgeCutNestingProblem .Thesecondplanning stageconsistsofdeterminingasequenceinwhichtoexcavateadjoiningdredgecutsand willbereferredtohereasthe DredgerRoutingProblem .Inordertomodeldredgecuts theycanbeapproximatedbyrectangleswithlengthsandwidthsequaltoexactmultiples orfractions,oracombinationofboth,ofeffectivecutwidthswhichcanbeachievedwith cuttersuctiondredgers.Insuchanapproximationthesemicircularshapeofthestarts andendsofrealcutsdredgedbycuttersuctiondredgersisneglected. Inpractice,thedredgingoftwoadjoiningcutsismadetooverlaptosomedegreetoavoid leavingbehindundredgedridges.Theselectedamountofoverlapusuallydependsonthe typeofmaterialbeingdredged.Equallyso,additionaldredgingisusuallycarriedouton theedgesofdredgingareastoensuretherequiredslopeprofilesarerealized.Effective cutwidthsofcuttersuctiondredgersaredefinedhereasexcludingtheextrawidths dredgedtoachieveoverlaporsideslopeprofiles.Themaximumeffectivecutwidthofa cuttersuctiondredgeristhereforelessthanthemaximumcutwidthwhichcanbe achievedwiththesamedredger. Toillustratethetwoplanningstageswhichmakeuptheresearchproblemahypothetical dredgingprojectisconsidered.Thedredgingareaofthisprojectisarectangleof300 metreswideand400metreslong.Acuttersuctiondredgerselectedtoexcavatethearea iscapableofachievinganeffectivecutwidthof100metres.Itisassumedthedredgercan floatanywhereinandaroundthedredgingarea.Therenoconstraintsonthelengthor totalnumberofdredgecutswhichcanbeselectedorontheorderinwhichdredgecuts, onceselected,canbedredged.Inaddition,itisgiventhatonepasswillsufficetoachieve requireddepthsandthatsiteconditionsarehomogeneousthroughoutsothatalldredging directionsareequallyproductive.Figure2.5depictstwoarrangementsof100metrewide cutsinthehypotheticaldredgingarea.

9 Background

Cut A1

Cut A2 Cut B1 Cut B2 Cut B3 Cut B4

Cut A3

CutArrangementA CutArrangementB Figure2.5Hypotheticaldredgingareadividedintocuts. Figure2.6depictstwohypotheticaldredgingsequences,oneforeachcutarrangement depictedinFigure2.5.DredgingsequencesinFigure2.6areshownwitharrowsindicating theworkingdirectionofthedredgeranddredgecutoutlinesareadjustedforclarity.

T T Start T T T S End

T T

Start T End DredgeSequenceA DredgeSequenceB

Figure2.6Hypotheticaldredgingsequences. CutplanAismadeupofcutarrangementAofFigure2.5anddredgingsequenceAof Figure2.6,andcutplanBismadeupofcutarrangementBofFigure2.5anddredging sequenceBofFigure2.6.Eachcutplancannowbeevaluatedbysummingthe associatedhypotheticaldredgermovements.Minordredgermovementsarethosewhen thedredgerturnsintothenextcutmoreorlessonthespot,whichareindicatedbyan encircled‘T’inFigure2.6.

10 Background Majordredgermovementsarethosewhenthedredgerhastoberelocatedoversome distancetothenextcut,whichareindicatedbyanencircled‘S’inFigure2.6.Thetotal numberandtypesofhypotheticaldredgermovementsforeachcutplanare:Onemajor movementandtwominormovementsforcutplanAandsixminormovementsforcutplan B. Ifitissaidthatamajordredgermovementequalstwohoursofstoppagetimeandaminor dredgermovementequalsonehourofstoppagetime,thenthetotalstoppagetime resultingfromdredgermovementsis:FourhoursforcutplanAandsixhoursforcutplan B.Allelsebeingthesame,executingcutplanBwouldresultintwohoursmorestoppage timethanifcutplanAwereexecuted.ExecutingcutplanA,therefore,willresultinthe cuttersuctiondredgerachievingahigheroveralloperationalefficiencyandproductivity sincelessoperationaltimeislost. Thehypotheticalexampleanditsoutcomereflecttheessenceoftheresearchproblem. However,inthehypotheticalexampleonlytwopossiblesolutionsoutofmanywere considered.Tofindthebestsolutionallpossiblecombinationsofdredgecutsandcutting sequencesneedtobeevaluatedandcompared.Thehypotheticalcutplanningproblemis acombinatorialproblemwithasearchspacedependingonproblemsize.Thedredger routingproblemaloneisacombinatorialproblemdependingonthetotalnumberof locationsthroughwhichthedredgercanpass.Foradredgerroutingproblemwith n locations,wherethedredgerhastoreturntowhereitstartedfrom,thereare( n 1)!/2 possibletours:If nis21,therearemorethan10 18 possibletours(Helsgaun,2000). Findingoptimalsolutionstocombinatorialproblemswithverylargesearchspacescanbe madeeasierbymodellingtheproblemandusingcomputerprogrammedoptimization methods(Winston,1994).Themainobjectivesoftheresearchpresentedhereareto developamodeloftwodimensionalcutplanningforcuttersuctiondredgersanduseand evaluateacomputerbasedsolutionapproachwhichsystematicallyoptimizesthe developedmodel. Nextaliteraturereviewconsistingoffivesectionsispresented.Inthefirsttwosections literatureonoptimizingearthworksanddredgingisreviewedtoseeiftheresearch problempresentedherehasbeenidentified,modelledand/oroptimizedbefore.Inthe thirdandfourthsectionliteratureonnestingandroutingproblemsisreviewedtoseehow theycanbeusedtomodelthe DredgeCutNestingProblem andthe DredgerRouting Problem .Inthelastsectionliteratureonoptimizationmethodsisreviewedtoseehowthe developedmodeloftheresearchproblemcanbeoptimized.

11 LiteratureReview

3 Literature Review Thissectionreviewsliteraturewhichisofdirectrelevanceorprovidescontexttothework presentedhere.

3.1 Earthwork Optimization Literatureonearthworkoptimizationisconsideredrelevanttotheworkpresentedhere sincedredging,asdefinedbyBray etal .(1997),concernsthemovementofsoilandrock, albeitdoneunderwater.Constructionprojects,whichofteninvolvesignificantamountsof earthwork,possessuniquecharacteristicswhichmaketheindividualplanningofeach projectessential(Askew etal .,2002).Earthworksarecostlyandreducingthetotal distancetravelledbyearthmovingvehiclesleadstocostsavingsinfuelconsumption,time andequipmentmaintenance(Henderson etal .,2003).Planningandestimating earthmovingoperationsinvolvesthreesteps:Formulation,representationandthe evaluationofaplan(Kannan etal .,1997).Theapplicationofautomationtechnologiesto planningearthmovingoperationsisdesirablebecausetheyaremachineoriented, repetitive,tedious,andconsistofphysicallydemandingtasks(Kim etal .,2003a).In addition,automatedapproachestoearthworkplanningbenefitworkersafety,skilled workerrequirementsandproductivities( ibid .). Acommontoolusedforfindingthemosteconomicaldistributionofearthworkonroad, railandrunwayprojectsisthemasshauldiagram(Easa,1988a).Amasshauldiagram graphicallyrepresentsthecumulativevolumeofearthalongaproject(Oglesby etal ., 1982),wherehaulisdefinedasthemovementofaunitvolumeoveraunitofdistance (Mayer etal .1981).AppendixAgivesanumericalexampleofaconventionalmasshaul diagram.Stark etal .(1972)suggestsusinga LinearProgramming modeltooptimize earthworkallocationproblemsinsteadofmasshauldiagrams.Linearprogrammingisa classical OperationsResearch optimizationmethod(Lirov,1992). OperationsResearchoriginatedinEnglandwhenitwasusedformakingdecisionshowto bestusewarmaterialduringWorldWarII(Taha,2003).Afterthewartheideasonmilitary operationswereadaptedtoimproveefficiencyandproductivityintheciviliansector( ibid .). Taha(1982)describesOperationsResearchasaproblemsolvingapproach,involvingthe useofmathematicaltechniquestomodeldecisionproblems,whichseeksthe determinationofthebest(optimum)courseofactionfordecisionproblemsunderthe restrictionoflimitedresources. Modelsareabstractionsofassumedrealsystems:Theysimplifythecomplexityofareal systembyconcentratingprimarilyonidentifyingthedominantvariables,parametersand

12 LiteratureReview constraintswhichcontrolthebehaviouroftherealsystem(Taha,1982).Figure3.1 depictsthemodellingprocessusedinOperationsResearchschematically.

Real world system

Model Assumed real world system

Figure3.1OperationsResearchmodellingoverview(Taha,1982). InOperationsResearchamodelofanassumedrealsystemisstatedasanobjective subjecttoconstraints:Theobjectivereflectsthedesiredendresultandtheconstraints identifyimportantrelationshipsofthemodelledsystem(Taha,1982).Forexample,the commonobjectiveinmoneymakingendeavoursistomaximizeprofitorminimizecost (ibid .).Constraintsofamoneymakingendeavourcanbe,forexample,thelimitedamount ofcomponentsavailableformakingfinishedproducts.Whentheobjectiveandconstraints ofadecisionproblemareknown,theoptimumcourseofactioncanbedecideduponby identifyingvaluesofvariableswhichbestmeettheobjective( ibid .).Thequalityof solutionsarrivedatdependonhowaccurateamodelrepresentsarealproblem(Taha, 2003). ThreemaintypesofOperationsResearchmodelsexist:Exact(ormathematical)models; simulationmodels;andheuristic(orapproximation)models(Taha,1982,Winston,1994). Exactmodelsassumethatalltherelevantvariables,parameters,andconstraintsaswell astheobjectivearequantifiable,andaregenerallysuccessfulatoptimizingtheproblems theymodel( ibid. ).Simulationmodelsimitatethebehaviourofasystemovertimesothat informationabouttheperformanceofthesystemcanbecollectedwhenpredefined eventsoccur( ibid. ).Forexample,abusinessmaydecidetosimulatedifferentinventory systemsratherthanexperimentwiththerealworldsystem(Winston,1994).The informationindicatingtheperformanceofthesimulatedsystemisaccumulatedandstored asasetofstatisticalobservations(Taha,1982).Becausesimulationmodelsdonotneed explicitmathematicalfunctionstorelatevariables,itisusuallypossibletosimulate complexsystemsthatcannotbemodelledorsolvedexactly( ibid .).Themaindrawbackof 13 LiteratureReview simulationisthattheanalysisofasystemisequivalenttoconductingexperimentsand thereforeissubjecttoexperimentalerror( ibid .).Inaddition,althoughoptimizationwith simulationispossible,simulationisnotanoptimizationmethod:Simulationmodelsare mostlyusedtoanalyze‘whatif’questions(Winston,1994).Optimizationofsimulation modelsisgenerallyaslowprocessandcanbecostly(ibid .). Whenforanexactformulationofaproblemthedeterminationofanoptimalsolutionis problematic,heuristicmodelscanbeusedtodetermineoptimalornearoptimalsolutions (Taha,1982).Heuristicmodelsmakeuseoflocalsearchtechniquesthatintelligently movefromonesolutionpointtoanotherwiththeaimofimprovingthevalueofthemodel’s objectivefunction(ibid .).Whennofurtherimprovementscanbeachieved,thebest attainedsolutionisanoptimalornearoptimalsolutiontothemodel( ibid. ). Linearprogramsareexactmodelsofproblemswhichhavealinearobjectivefunction subjecttolinearequalityandinequalityconstraints(Taha,2003).Solvinglinear programmingmodelsgivesvaluesofpreviouslyunknownvariableswhichresultina minimumormaximumvalueoftheobjectivefunction( ibid .).Mayer etal .(1981)usesa linearprogrammingmodeltooptimizeanearthworkallocationprobleminwhichthree categoriesofcostaredefined:Thefirstforexcavationandloading,thesecondforhaul, andthethirdforplacementandcompaction.Thecostsofexcavationandplacementona constructionprojectaretypicallyconsideredtobeproportionaltotheearthworkquantities involved( ibid .).Thecostofhaul,however,isproportionaltobothearthworkquantityand hauldistance.Whenforagivenquantityofearthtobemoved,thecostsofexcavation andplacementarefixed,Mayer etal .(1981)statesthatthemosteconomicaldistribution ofcutandfillisthatwhichminimizeshaul.Mayer etal .(1981)optimizesanearthwork allocationproblembymodellingitasa TransportationProblem . Thetransportationproblemisrepresentativeofmanylinearprogramswhichmodelthe movementofspecificamountsofidenticalitemsfromadiscretenumberofsourcestoa discretenumberofdestinations(Kannan etal .,1997).Figure3.2depictsamodelofa transportationproblemasanetworkwith msourcesand ndestinations.Eachsourceand destinationisrepresentedbyasquare,alsoreferredtoasanode.

14 LiteratureReview

Figure3.2SingleperiodTransportationProblemasanetwork(Schrage,1999). ThenetworkinFigure3.2onlyhastwonodelevelsindicatingactivitiesareplannedovera singleperiod.Morecomplexmultiperiodtransportationproblemscanbemodelledby addinglevelsofnodes(Schrage,1999).Theroutesalongwhichproductscanbe transportedarerepresentedbylineswitharrowsjoiningthenodes.Thetotalcostof transportalongagivenrouteistheproductoftheunittransportationcostforthatroute andthenumberofunitstransportedalongthatroute.Howaunitoftransportationis defineddependsontheitemtransported.Aunitoftransportationcanbeasingleitemora multiplethereof,forinstanceaconsignmentrequiredfortheassemblyofalargeritem. Theunitsofsupplyanddemandmustcorrespondtothedefinitionofthetransportedunit. Tomodelatransportationproblem,theamountofsupplyavailableateachsource,the amountofdemandpresentateachdestination,andtheunittransportationcostfromeach sourcetoeachdestinationmustbeknown.Theunknownvariablesofatransportation problemaretheamountsofitemstransportedfromeachsourcetoeachdestination, expressedastheproblemdecisionvariable, xij .Sinceallitemsareidentical,adestination canreceiveitsdemandfrommorethanonesource.Taha(2003)statesthatthelinear programofthetransportationproblemdepictedinFigure3.2isgenerallyformulatedas follows:

M N minimize Z =∑ ∑cij xij (3.1) i =1 j =1 where:Z=totalcost; cij =unittransportationcostfrom ito j; xij =unitstransportedfrom ito j; M= totalnumberofsources;andN=totalnumberofdestinations.

15 LiteratureReview Subjecttothefollowingconstraints:

N ∑ xij ≤ ai , i =1, 2,...,m (3.2) j =1

M ∑ xij ≥ b j , j =1, 2,..., n (3.3) i =1

xij ≥0 ,forall iand j (3.4)

N M ∑ai ≥ ∑b j (3.5) i =1 j =1 where:ai=thesupplyavailableatsourcei;andbj=thedemandpresentatdestinationj. Equation3.1statestheobjectiveoftheproblemistominimizethetotalcostofthe transportprocess.Equation3.2specifiesthatthesumofunitstransportedfromasource cannotexceedsupply;Equation3.3stipulatesthatthesumofunitstransportedtoa destinationmustsatisfyitsdemand;andEquation3.4ensuresunitstransportedarenot negative.Lastly,Equation3.5specifiesthattotalsupplymustbeequalorgreaterthan totaldemand,whichisconsideredanoptionalconstraint.Ifforatransportationproblem totalsupplyequalstotaldemandtheproblemissaidtobeabalancedtransportation problem(Winston,1994). Table3.1redefinesvariablesofEquations3.1to3.5sothatthetotalamountofhaulcan beminimizedforearthworkallocationproblemsforwhichtransportationcostislinearly proportionaltotransportdistance.Mayer etal .(1981)defineshaulasthemovementof oneunitvolumeoveroneunitofdistance. Table3.1RedefinitionTransportationProblemvariables–Earthworkoptimization Variable TransportationProblemDefinition EarthworkProblemDefinition Z Totalcost Totalhaul

ai Sourcesupply Cutvolume bi Destinationdemand Fillvolume cij Unittransportationcost Transportdistance xij Transporteditems Transportedvolume Solvinganearthworkallocationproblemmodelledasatransportationproblemusinglinear programmingidentifiesvolumestransportedbetweencutandfilllocationsforwhichthe totalhaulisminimal.Masshauldiagramsarebestforoptimizingrelativelynarrowworks suchasroad,railandrunwayprojectsbutcannotcopewithhaulcostsandsoil propertieswhichvaryalongtheroadway(Easa,1988a).Usinglinearprogramsof transportationproblems,linearearthworkallocationproblemscoveringwideareascanbe modelledandoptimized,asMayer etal .(1984)demonstrateswithahypotheticalexample ofadredgedmaterialallocationproblem. 16 LiteratureReview Linearprogramscanalsotakeintoaccountprojectsetupcostsassociatedwiththeuseof borrowpitsandlandfills.ThemodelproposedinMayer etal .(1981)usesconstantunit costsofhaulforborrowpitsandlandfills.Constantunitcostsforhaulmakehaulcosts linearlyproportionaltohauldistance.Easa(1987)proposesamixedintegerlinear programforoptimizinganearthworkallocationproblemwhichusesnonconstantunit costsforhaulforborrowpitsandlandfills.Mixedintegerlinearprogramsdescribe problemswithamixoflinearandintegervariables(Taha,2003).ThemodelinEasa (1987)usescostfunctionswiththreecostlevelsfortheuseofborrowpits. Easa(1988a)determinesroadwaylevelswhichminimizeearthworkcostusinglinear programmingandconstantunitcostsofhaul.Easa(1988b)optimizesearthworkallocation problemswhereprojectsetupcostsaregovernedbyaquadraticfunctionwhichdefines nonconstantunitcostsofhaulfortheuseofborrowpits.So,inadditiontolinear programmingmodels,a QuadraticProgramming model–amodelwhichhasaquadratic objectivefunctionofseveralvariablessubjecttolinearconstraintsonthesevariables (Taha,2003)–canalsobeusedtooptimizeearthworkallocationproblems. Jayawardane etal .(1994)proposesamultistagedsolutionapproach,alsoreferredtoas a DynamicProgramming model,tooptimizeearthworkforroadconstructionprojects. Problemswhichexhibitoverlappingsubproblemsandanoveralloptimalsubstructure canbeformulatedasdynamicprogrammingmodels(Taha,1982).Dynamicprogramming primarilyservestoenhancethecomputationalefficiencyofsolvinglargeproblemsand usuallytakesoneoftwoforms:A‘topdown’ora‘bottomup’approach( ibid .).Ina‘top down’approachalargeproblemisbrokenintosubproblems,whicharesolved separately,rememberingtheirsolutionsincasetheyneedtobesolvedagain( ibid .).Ina ‘bottomup’approachrelevantsubproblemsaresolvedinadvanceandthenusedtobuild upsolutionstolargerproblems( ibid .). ThedynamicprogrammingmodelusedinJayawardane etal .(1994)foroptimizing earthworksisabottomupapproachconsistingofthreestages:Simulation,mixedinteger linearprogrammingandnetworkscheduling.Thefirststage,thatofsimulation,generates realisticunitearthmovingcostscorrespondingtoanoptimalcombinationofplantforeach haulageoperationconsidered( ibid .).Thesimulateddatathenservesasinputforthenext stage,amixedintegerlinearprogram,withwhichthemosteconomicaldistributionofcut andfillforthechosencombinationofplantisdetermined(ibid .).Inthethirdandfinal stage,thenetworkschedulingstage,themosteconomicaldistributionofcutandfillis appliedtogetherwiththesequentiallogicoftheconstructionoperationsadoptedinthe secondstagetoobtainaconstructionscheduleintheformofanetworkandabarchart describingtheearthworkallocationplan(ibid .).Jayawardane etal .(1994)concludesthat 17 LiteratureReview thecomprehensivemodelproposedcansuccessfullyaccommodateconstraintsinplant availability,projectcompletiontime,availabilityofdifferentsoilstrataatcutsectionsand borrowpits,variousdegreesofcompactionatvariouslayers,andvariousborrowpitsand landfills. Henderson etal .(2003)solvestheproblemoflevellingaconstructionsitebyredefining theassociatedearthworkallocationproblemasashortestroutecutandfillproblem.The shortestroutecutandfillproblemisformofTravellingSalespersonProblem .Henderson etal .(2003)usesa SimulatedAnnealing algorithmtofindoptimalsolutionsto90 hypotheticalearthworkallocationproblems.Atravellingsalespersonproblemisan assignmentproblemwiththeadditionalconditionthattheassignmentschosenmust constituteatourandtheobjectiveistominimizethetotaldistancetravelled(Schrage, 1999).Simulatedannealingisanoptimizationmethodusingastochasticlocalsearch techniquewhichisanalogoustotheannealingofsolidswhere,astheprocessadvances increasinglybettersolutionsarefound,eventuallyconvergingto,orcloseto,aglobal optimum(Henderson etal .,2003).Solvingtheshortestroutecutandfillproblemequates tofindingaroute,beginningandendingatthesamecutlocation,forasingleearthmoving vehiclewhichminimizesthetotaldistancetravelledbetweencutandfilllocations( ibid .). Asingleperiodtransportationproblemmodelsthemovementofidenticalunitsalongarcs betweennodesandassuchitisnotconsideredsuitableasamodelfordredgecutnesting problems.OtherOperationsResearchproblemswhichcanbeusedtomodeldredgecut nestingproblemswithgreatereasearereviewedSection3.3.Theapplicabilityofasingle periodtransportationproblemtomodeldredgerroutingproblemsislimitedtodredger routingproblemsconsistingoftwonodesconnectedwithonearc.Multiperiod transportationproblemscanbeusedtomodeldredgerroutingproblems.However,a travellingsalespersonproblem,asusedinHenderson etal .(2003)tomodela transportationproblem,isconsideredabetterchoiceformodellingdredgerrouting problems,whichisexplainedinSection3.4. Adynamicprogrammingsolutionapproach,asusedinJayawardene etal .(1994)tosolve earthworkallocationproblems,isofdirectrelevancetosolvingtheresearchproblemsince itismadeupoftwoproblems:Dredgecutnestinganddredgerrouting.Theapplicabilityof optimizationmethodssuchaslinear,mixedintegerlinear,quadraticprogrammingand simulatedannealingtooptimizingtheresearchproblemisdiscussedinSection3.5.To seeiftheproblemoftwodimensionalcutplanningforcuttersuctiondredgershasbeen identified,modelledand/oroptimizedbefore,literatureondredgingoptimizationis reviewednext.

18 LiteratureReview

3.2 Dredging Optimization Theliteraturereviewedintheprevioussectionsupportstheviewputforwardin Jayawardene etal .(1994)thatearthworkoptimization,especiallyinroadconstruction,has drawnconsiderableattentionfromresearchers,particularlyintheUSAandCanada. Somecommentarysuggeststheoppositewithregardtothelevelsofattentionthesubject ofdredgingasawholehasreceivedfromresearchers.TheprefaceofHerbich(1975) quotesHoustonashavingsaidthefollowingin1968: “Onpremisethataprofessionisknownbyitsliterature,dredging mightwellbeeliminated.Itsliteratureisalmostnil. ” IntheforewordofHerbich(1975)Taylorobservesthat: “…thereisapaucityofcomprehensiveliteratureinthedredging industry. ” Morerecently,intheprefaceofBray etal .(1997),Murdenstatesthat: “…thenumberofpublishedmanuscriptswhichfullyaddresstheentire scopeofdredgingtechnologycontinuestobelimited. ” Althoughprefacesandforewordstendtopromotetheworkinwhichtheyreside,a perceivedlackofpublishedresearchofdredgingcanbetheresultofthedredgingindustry havingbeensomewhatsecretiveformanyyears(Riddel,2000).Thedredgingindustry usedtobeinsularandinwardlooking,andsawlittleadvantageinsharinginformation aboutprojects,problemsornewtechniques( ibid .).Althoughthedredgingindustryhas changed,technicalsecrecyremains,which,itisclaimed,isnecessaryformaintaining commercialcompetitiveness(ibid .).Commercialconfidentialitycontinuestopreventthe sharingofdetailedinformationonproductionmethodsandrates(Riddell,2000).However, MurdenstatesintheprefaceofBray etal .(1997)that: “SincetheinceptionoftheWorldOrganizationofDredgingAssociationsin 1967thenumberoftechnicalpapersondredgingpresentedatseminars, conferencesandpublishedinjournalshassignificantlyincreased.” InsteadofclassifyingOperationsResearchmodelsbymodeltype(exact,simulation; andheuristicmodels)asdoneinTaha(1982)andWinston(1994),Denes(1991)refersto theoptimizationmethodsused,distinguishingbetweentwomaingroups:Quantitativeand

19 LiteratureReview qualitativemethods.Quantitativeoptimizationmethodsaimtoprovidevaluesofpreviously unknownvariableswhichresultinoptimalornearoptimalvaluesofanobjectivefunction. Quantitativeoptimizationmethodsareassociatedwithexactformulationsofproblems. LinearprogrammingisaquantitativeoptimizationmethodaccordingtoDenes(1991), whileTaha(2003)doesnotgrouplinearprogrammingwithmodelswhichgivenear optimalsolutions.Qualitativeoptimizationmethodsontheotherhand,aimtoprovide descriptivesolutionswhicharerecommendationsforbestpractices.Qualitative optimizationmethodsrelyonthecollectionandstatisticalanalysisoffielddataordata generatedwithphysicalorcomputersimulationmodels.Literatureonthequalitative optimizationofdredgingproblemsprovidesrecommendationsfor: • reducingenvironmentalimpactsofdredgingoperationsasdoneinClarke etal . (2002)andBarth etal .(2004), • reducingmaintenancedredginginportsandwaterwaysasdoneinDeMeyer etal . (1987), • increasingstoragecapacityofdisposalareasasdoneinMoritz etal .(1995),Van Mieghem etal .(1997),andMcKee etal .(2005), • reducingrisksandcostsofdredgingprojectsasdoneinHenshawetal .(1999), Zhu etal .(1999),Creed etal .(2000),andDemir etal .(2004), • improvingdredgerperformanceasdoneinDenes(1993),Deketh(1995),and Blasquez etal .(2001). Otherdredgingresearchpresentsmodelssimulatingrealdredgingsystems,butwithout evaluating‘whatif’scenariosoroptimizingthemodelledsystems.Examplesofsimulation modelsofrealdredgingsystemsarethoseofsoilcuttingmechanisms(He etal .1998, Miedema,2004),sedimenttransportinpipes(Luca,1995,Matousek,1998),suctionpipe dynamics(TenHeggeler etal .2001,Liu etal .,2003)andhopperloadingprocesses( etal .,1996). Itcanbesaidthatthereappearstobenoshortageofliteraturewhichpresentsmodelsof varyingcomplexityofrealdredgingproblemsandsystems.Somesimulationmodels,for instancethosepresentedinBlasquez etal .(2001)andClarke etal .(2002),canbe suitableforquantitativeoptimization.However,noneoftheliteraturesummarizedsofarin thissectionidentifies,modelsoroptimizestheresearchproblem.Literatureonthe quantitativeoptimizationofdredgingproblems,asisdoneforearthworkallocation problemsreviewedinSection3.1,canbesubdividedaccordingtowhetherstochasticor deterministicmodelsareused.

20 LiteratureReview Stochasticmodelsareexactformulationsofproblemswherecertaindataismodelledasa randomvariable,theprobabilitydistributionofwhichdependsonparametervalues (Winston,1994).Theoutcomesofstochasticmodelsdependonavarietyofdrawsfrom theprobabilitydistributionsusedandthereforecontainuncertainties,whichiswhythey aresometimesdescribedasmodelswithrisk(ibid .).Dredgingproblemsoptimized quantitativelyusingstochasticmodelsincludetheplanningofmaintenancedredging (Lund,1990,Lansey etal .,1993,Mayer etal .2002),dredgedmaterialdisposal (Stansbury etal .,1999),andsandnourishment(Bruun,1991,VanNoortwijk etal .,2000). However,noneofthestochasticmodelsintheliteraturereferredto,modeltheoperation ofindividualdredgers.Insteadthesestochasticmodelsprovideoptimalsolutionsasto whenorhowtocarryoutdredgingactivitiesingeneral. Deterministicmodelsareexactformulationsofproblemswhichdonotcontainrandomor stochasticcomponentsandassuchtheiroutcomesarefreeofrisk:Solutionstothe problemstheymodelcanbecalculatedaccordingtosomeprespecifiedlogic(Winston, 1994).Dredgingproblemsoptimizedquantitativelyusingdeterministicmodelsincludethe following: • bidproposals(Mayer etal .,1984), • managingdredgedmaterialdisposal(Mayer etal .,1984,Ford,1984and1986, Schroeder etal .,1995), • allocatingdredgingfleets(Denes,1991), • planningmaintenancedredging(Mayer etal .,2002), • loadingofhopperdredgers(Howell etal .2002). Mayer etal .(1984)useslinearprogrammingtooptimizeabiddingproposalfora hypotheticaldredgingprojecttherebymaximizingpresentworthofanticipatedproject revenue.Inaddition,Mayer etal .(1984)useslinearprogrammingtooptimizeasingle perioddredgedmaterialallocationproblemmodelledasatransportationproblemasdone inMayer etal .(1981)forearthworkallocationproblems.Howell etal .(2002)states economicalloadingofhopperdredgerscanbeoptimizedbylinearprogrammingbutdoes notformulatethelinearprogramtobeused. Denes(1991)modelstheproblemallocatingafleetofdredgerstoanumberofprojectsas an AssignmentProblem withtheobjectivetominimizethetotalassociatedcost.Thetotal costofundertakingadredgingprojectismadeupoffixedcostelements,suchas mobilizationandlabour,andvariablecostelements,suchasfuel,suppliesandrepair costs.

21 LiteratureReview Thelinearprogramofanassignmentproblemhasanobjectivefunction,Equation3.6, whichisverysimilartothatofatransportationproblem:

M N minimize Z =∑ ∑cij xij (3.6) i =1 j =1 where:Z=totalcost; cij =costofassigningagent itotask j; xij =agent iassignedtotask j; M= totalnumberofagents;andN=totalnumberoftasks. Theconstraintsofthelinearprogramrepresentinganassignmentproblemare:

M ∑ xij = ,1 i =1, 2,...,m (3.7) i =1

N ∑ xij ≤ 1, j =1, 2,..., n (3.8) j =1

xij ≥0 , forall iand j (3.9)

xij =(0,1), forall iand j (3.10) Equation3.7specifiesthateachtaskisassignedoneagent;Equation3.8stipulatesthat eachagentisnotassignedtomorethanonetask;andEquation3.9ensuresthatnumbers ofassignedagentsarenotnegative.Lastly,Equation3.10specifiesthatvaluesforagents assignedtotaskscanonlybe0or1sinceanagentiseitherassignedtoataskornot. Thelinearprogramofanassignmentproblemcanincludeadditionalconstraints,which, forexample,specifythatthetotalnumberofagentsmustbeequalorgreaterthanthe numberoftasks.Table3.2givesobjectivefunctionvariablesoftheassignmentandthe transportationproblemforcomparison. Table3.2AssignmentandTransportationProblemvariables Variable AssignmentProblemDefinition TransportationProblemDefinition Z Totalcost Totalcost M Totalnumberofagents Totalnumberofsources N Totalnumberoftasks Totalnumberofdestinations

cij Costofassigningagent itotask j Unittransportationcostfrom ito j

xij Agent iassignedtotask j Unitstransportedfrom ito j Throughsubstitutionofagentswithdredgers,andtaskswithdredgingprojectsDenes (1991)solvesahypotheticaldredgerallocationproblem.Thehypotheticalcutplanning problemgiveninSection2.2cannotbedirectlymodelledasanassignmentor transportationproblem,atleastnotasasingleperiodone.However,aspecialformof 22 LiteratureReview assignmentproblem,thetravellingsalespersonproblem,canbeusedtomodeldredger routingproblems,whichisdiscussedinmoredetailinSection3.4. Ford(1984)presentsadredgedmaterialdisposalmanagementmodelwhichcanbeused todeterminetheminimumnetcostoperationpolicyforsystemsofdisposalsitesover futureperiodsbyoptimizingtheassociateddredgedmaterialallocationproblem.The associateddredgedmaterialallocationproblemismodelledasamultiperiod transportationproblem.AbasicversionoftheequationusedinFord(1984)tocalculate volumesofdredgingmaterialineachdisposalareaoverasingleperiodoftimeisas follows:

VEnd =V Start +F ×(V DredgedIn) + (V TransferredOut –V TransferredIn)–V ReusedOut (3.11) where:V=totalvolume;and F=reductionfactor. InEquation3.11:Thetotalincomingvolumeofdredgedmaterialcanbemadeupof volumesarrivingfrommorethanonesource;thetotalvolumestransferredintooroutofa disposalareaisthesumofvolumesofdredgedmaterialarrivingfromordepartingtoother disposalareaswithinthesystemconsidered;andthetotalvolumereusedrepresentsthe sumofvolumestakenoutofadisposalareaforreuseoutsideofthesystemconsidered. Despiteanabsenceoferrataordiscussioninsubsequentliterature,itisthoughtthatFord (1984)meanttostateEquation3.11asfollows:

VEnd =V Start +F ×(V DredgedIn) – (V TransferredOut –V TransferredIn)–V Reused (3.12) InEquation3.12thesecondplussignfromtheleftinEquation3.11isreplacedwitha minussign.ThedredgedmaterialdisposalsystemoperationmodelofFord(1984)hasa linearobjectivefunctionandlinearconstraints.Theobjectivefunctiontobeminimized includesunitcostsfortransport,storageandtransferofdredgedmaterialaswellasunit benefitsforthereuseofdisposeddredgedmaterialandtheseunitcostsandbenefitsare consideredconstantovertime.Theobjectivefunctionissubjectedtotwosetsof constraints.Thefirstsetofconstraintsspecifiesthemaximumvolumesofdredged materialwhichcanbetransportedfromasourcetoadisposalarea.Thesecondsetof constraintsstipulatesthatthemaximumavailablestoragecapacityofeachdisposalarea cannotbeexceeded. Sincetheobjectivefunctionandconstraintsarelinear,Ford(1984)statesthatlinear programmingcanbeusedtooptimizethemultiperioddredgedmaterialdisposalsystem operationmodel.However,Ford(1984)arguesthatfortransportationproblemsother 23 LiteratureReview optimizationmethodshavebeenfoundtobemoreefficientthanlinearprogramming.Ford (1984)usesanetworkwithgainsalgorithm,allowingforreductionfactors,combinedwith aflowaugmentationalgorithmtooptimizedredgedmaterialallocationproblemsmodelled asmultiperiodtransportationproblems. ThefirststepsofthealgorithmusedinFord(1984)consistofsettingalltransported volumestozeroandidentifyingtheminimumcosttransportationpath.Thenthealgorithm increasesthevolumetransportedalongtheminimumcosttransportationpathuntila maximumallowabletransportedvolumealongoneormoretransportationpathsis reached.Theprocessofidentifyingthenextminimumcosttransportationpathand increasingthevolumetransportedalongituntilthenextlimitisreachedisrepeateduntil eitherthemaximumvolumesofdredgedmaterialhaveallbeentransportedorthe maximumallowablevolumeofdredgedmaterialwhichcanbetransportedwithinthe networkisreached.AccordingtoFord(1984)thealgorithmusedfindsfeasibleandglobal optimatothemodelleddredgedmaterialmanagementproblemifsuchasolutionexists. ThedredgedmaterialdisposalmanagementmodelpresentedinFord(1984)isusedina computerprogramtitled“OptimizationofLongTermOperationandExpansionofMultiple DisposalSitesIncorporatingDredgingSites,DisposalSites,TransportationFacilities,and ManagementRestriction(D2M2)”inSchroederetal .(1995).TheD2M2computer programisamoduleoftheAutomatedDredgingandDisposalAlternativesModeling System(ADDAMS)usedbytheUnitedStatesCorpsofEngineers( ibid .). Mayer etal .(2002)proposesanadaptationofa ClassicInventoryProblem tomodeland optimizetheplanningandcostofmaintenancedredgingoperations.Classicinventory problemsinvolveoptimaldecisionswithrespecttoinventorymanagement:Whento replenishinventoriesandbyhowmuch,suchthatreplenishment,storageandshortage costsareminimalforagiveninventorysystem(ibid .). Mayer etal .(2002)presentsthe SedimentInventoryModel wherethetotalcostof maintainingadequatenavigationdepthsinawaterwaysystemismadeupofmaintenance dredgingcosts,inefficiencycostsfromhavinginadequatenavigationdepths,andoffset costs,orbenefits,fromhavingexcessnavigationdepths.Mayer etal .(2002)analyzes threemodelsofmaintenancedredgingscenariosandfindsquantitativeoptimalsolutions foreachbyeithersettingthederivativeoftheobjectivefunctiontozerotosolveforone variableorbypartialdifferentiationtosolvefortwoormorevariables.

24 LiteratureReview Mayer etal (2002)concludesthattheinsightsprovidedbytheanalysisisusefulbutthat neitherofthethreemodelsarefitforindiscriminateapplicationtorealproblemsor substitutesforgooddesignpractice.Mayer etal (2002)addsthisremainsthecaseeven whenthemodelsaremademoresophisticatedbytheinclusionofstochasticvariables. Noneoftheliteratureondredgingoptimizationreviewedinthissectionidentifiesthetwo dimensionalcutplanningproblemforcuttersuctiondredgers.Thereforemodelsfor dredgecutnestinganddredgerroutingproblemsaresetupaspartoftheworkpresented here.Insummary,likewithtransportationandassignmentproblems,itisnotobvioushow aninventoryproblemcouldbeusedtomodeldredgecutnestingproblems.Asmentioned attheendofSection3.1,aspecialformofassignmentproblemcanbeusedtomodel dredgerroutingproblems:Thetravellingsalespersonproblem.Howdredgerrouting problemscanbemodelledasatravellingsalespersonproblemisdiscussedinmoredetail inSection3.4,butfirstliteratureonaparticulargroupofOperationsResearchproblems withpotentialtomodeldredgecutnestingproblemsisreviewed.

25 LiteratureReview

3.3 Nesting Problems Theinclusionofareviewofresearchonsocallednestingproblemsistheresultof similaritiesbetweentheseproblemsanddredgecutnestingproblems.Thesesimilarities wereresponsiblefordescribingthefirststageoftwodimensionalcutplanningforcutter suctiondredgersas‘dredgecutnesting’.Nestingproblemstraditionallyinvolveanon overlappingplacementofasetofshapeswithinsomelargerregion(s),buttheobjective canvary(Nielsen etal .,2003).Usuallytheobjectiveofanestingprocessistomaximize utilizationofstockmaterial(Hopper etal.,2001).Nestingproblems,orcuttingandpacking problems,areconsideredcombinatorialproblemswithverylargesearchspaces(Lirov, 1992)andhavereceivedsubstantialamountsofattentionfromresearcherstheworldover (Bischoff etal .,1995,Elmghraby etal .,2000). Variantsofthe StockCuttingProblem ,aspecialformofnestingproblem,arestatedand treatedinOperationsResearchaswellasinotherdisciplinessuchasengineering, informationandcomputerscience,andmathematics(Elmghraby etal .,2000).Tosolvea stockcuttingproblemanumberofgeometricalpatternsareselectedandarrangedsothat thetotalcostoftheunderlyingprocessisminimized(Lirov,1992).Theunderlyingprocess canbedescribedasageneralresourcesallocationproblemwheretheobjectiveisto subdivideagivenquantumofaresourceintoanumberofpredeterminedallocationsso thattheleftoveramountisminimized( ibid .).Dyckhoff(1990)notesthatstockcutting problemsarealsosometimesreferredtoastrimlossproblems.AccordingtoBischoff et al .(1995)andElmghraby etal .(2000)thewideinterestinnestingorcuttingandpacking problemscanbeattributedtothefollowingaspects:

3.3.1 Applicability of Cutting and Packing Research Cuttingandpackingproblemsareencounteredinvariousindustries.Forexample,in steel,glassandpapermanufacture,whereoptimalsolutionstorealworldproblemshave beendetermined.Inaddition,manyotherindustrialproblemsexistwhichpossessa structuresimilartocuttingandpackingproblems.Forexample,capitalbudgeting, assemblylinebalancingandprocessorscheduling.

3.3.2 Diversity of Real-world Cutting and Packing Problems Commonstructurescanbefoundinrealworldcuttingandpackingproblems.However, theseproblemsoftendiffersignificantlywithrespecttospecificgoalsorconstraintsand otheraspects,suchasthedegreeofintegrationintowiderplanningsystems.Therefore standardmodelsoftenneedtobereformulatedandalgorithmsadjustedtothespecific needsofagivenproblem.

26 LiteratureReview

3.3.3 Complexity of Cutting and Packing Problems Themajorityofcuttingandpackingproblemsareknowntobecombinatorialoptimization problemswhicharetermedNPhard(NondeterministicPolynomialtimehard),meaning theycannotbesolvedinpolynomialtime,butpossiblyinexponentialtime(Helsgaun, 2000).Itisdifficulttomathematicallydetermineoptimalsolutionswithinreasonabletime forNPhardcuttingandpackingproblems(Kim etal.,2003b).Inotherwords,many algorithmscurrentlyknownforfindingoptimalsolutionsrequireanumberofcomputational stepsthatgrownonpolynomiallywiththeproblemsizeratherthanaccordingtoa polynomialfunction(Hopper etal.,2001).Consequently,thedevelopmentoffasterexact (oroptimal)algorithmsandheuristic(orapproximation)algorithmsprovidingsolutions nearertooptimaisamajorresearchtopic(ibid .).Hopper etal.(2001)arguesthatforthe morecomplexcuttingandpackingproblems,withmanyunderlyingcombinatorial conditions,itisoftennotworthwhiletosearchforanexactalgorithmandthattherefore solutionqualityissacrificedtogaincomputationalefficiencybyusingheuristicalgorithms. Wang etal .(2002)observesthatnestingproblemstypicallytaketheformoftraditional oneandtwodimensionalstockcuttingproblemsandthreedimensionalcontainer/pallet loadingproblems.FortwodimensionalstockcuttingproblemsNielsen etal .(2003) distinguishesbetween DecisionProblems , KnapsackProblems , BinPackingProblems andStripPackingProblems .Indecisionproblems,asthenamesuggests,ithastobe decidedwhetheragivensetofshapesfitswithinagivenregionornot( ibid .).Inknapsack problemsasetofshapesandasingleregionaregivenandaplacementofasubsetof shapesissoughtafterwhichmaximizestheuseoftheregion(ibid .).Inbinpacking problemssetsofshapesandregionsaregiven,andthenumberofregionsneededto placeallshapesistobeminimized.Instrippackingproblemsthelengthofastripoffixed widthistobeminimizedsuchthatalltheshapesofagivensetarecontainedwithinthe stripregion(ibid .). Decision,knapsackandbinpacking problemsinvolvetwodimensionalpackingof regularand/orirregularshapeswithinsomeregularand/orirregularregion(s)without overlap( ibid .).Theregionsinwhichtwodimensionalshapesaretobeplacedcanconsist oftwodimensionalrepresentationsofanimalhides(intheleatherindustry),rectangular plates(inthesteelindustry)ortreeboards(inthefurnitureindustry).Figure3.3depictsa schematicrepresentationtypicalofirregulardecision,knapsackandbinpacking problems.

27 LiteratureReview

Figure3.3Decision,knapsackandbinpackingproblems(Nielsen etal .,2003). InFigure3.3thegreyregionsrepresentirregularshapestobenestedinthelargerregion representedbytheouterpolygon.Anexampleofastrippackingproblemwouldbethatof cuttingasetoftwodimensionalshapesoutofastripofclothinthetextileindustry.Figure 3.4depictsatypicalstrippacking problem.

Figure3.4Strippackingproblem(Nielsen etal .,2003). InFigure3.4thegreyareasagainrepresentirregularshapestobenestedinthelarger regionwhichisastripofmaterialoffixedwidth.ThearrowinFigure3.4indicatesthe directionintowhichtheleftmostedgeoftheadjustableregionismovedtocompactthe shapestobenestedwithoutoverlap.Figure3.5depictsamorecomprehensivescheme forclassifyingnesting problems,asoriginallyproposedinDyckhoff(1990).

28 LiteratureReview

NestingProblems

Spatialdimensions Non spatialdimensions

Real/Applied Abstract Cutting&Packing Cutting&Packing

Cutmaterial Packmaterial Packspace Cutspace

Weight Time

Cuttingstockof Packingof Vehicleloading Linebalancing Knapsacking Multiprocessor Paper&pulp Vehicles scheduling Metal Pallets Glass Containers Financial Other Wood Bins Budgeting Memory Plastics Coinchange allocation Textiles Leather

Figure3.5Nestingproblemclassification(Dyckhoff,1990). TheclassificationschemedepictedinFigure3.5canbeappliedtocuttingaswellas packingproblemssinceittakesintoaccountthedualityofmaterialandspace.Cuttingcan beseenaspackingsmallerpiecesofmaterial/spaceintolargerpiecesofmaterial/space (Karelahti,2002).Packingcanbeseenascuttinglargerpiecesofmaterial/spaceinto smallerpiecesofmaterial/space( ibid .).Dyckhoff’sclassificationscheme,unlikethebroad categorizationofNielsen etal .(2003),isnotlimitedtotwodimensionalspatialproblems. Figure3.5showsthattheclassificationschemeproposedinDyckhoff(1990)distinguishes betweennestingproblemsinvolvingspatialdimensionsandthoseinvolvingnonspatial dimensions.Thefirstgroup,ontheleft,consistsofrealorappliedcuttingandpackingor loadingproblemsthataredefinedinEuclideanspaceuptothreedimensions.Thesecond group,ontheright,coversabstractproblemswithnonspatialdimensionssuchasweight, timeorfinancialdimensions(Hopper etal .,2001).Dyckhoff(1990)classifiesknapsacking

29 LiteratureReview asanabstractnestingproblem,whereasNielsen etal .(2003)doesnotconsiderweightas beingadecisionvariableofknapsackproblems.Theclassificationschemeproposedin Dyckhoff(1990)isusedheretoseeifthefirstpartoftheresearchproblem,the subdivisionofadredgingareaintosmallerdredgecuts,canindeedbereferredtoasa dredgecutnestingproblem. ThefirstpartofthehypotheticalexamplegiveninSection2.2,wherealargerrectangular dredgingareawassubdividedintosmalleradjoiningdredgecuts,essentiallyequatesto theappliedcuttingorpackingoftwodimensionalmaterial/space.Theoperationofcutter suctiondredgers,asdescribedinSection2.1,involvesthecuttingofmaterialinthree dimensions,whichemphasizescuttingratherthanpacking.Therefore,intheclassification proposedbyDyckhoff(1990),asgiveninFigure3.5,thedredgecutnestingproblemfits bestintheleftmostbottommostgroupofnestingproblems,collectivelyknownasstock cuttingproblems.Oneoftheearliestreportedformulationsofthestockcuttingproblem wasproducedbytheRussianeconomistKantorovichforthepaperindustryin1939 (Elmaghraby etal .,2000),andalthoughitwasn’tpublishedinEnglishuntil1960,it becameknownforbeingthefirstrealapplicationoflinearprogramming(Lirov,1992). Dyckhoff(1990)statesthatstockcuttingproblemshavefourmainvariablecharacteristics, whichareasfollows: 1) Dimensionality: • numberofdimensions. 2) Typeofassignment: • allofthe(large)stockobjectsmustbeusedandaselectionof(smaller)items istobeorderedorplaced, • aselectionof(large)stockobjectsisavailable,butwastagecanbeaccepted aslongasall(smaller)itemsareorderedorplaced. 3) Assortmentofstock: • onelargestockobject, • manyidenticallargestockobjects, • manydifferentlargestockobjects(including,forexample,residualstock). 4) Assortmentofsmallitemstobeorderedorplaced: • fewsmallitemsofdifferingdimensions, • manysmallitemsofmostlydifferingdimensions, • manysmallitemsofmostlyidenticaldimensions, • manysmallitemsofidenticaldimensions.

30 LiteratureReview Theelementarytypesofdimensionalityofstockcuttingproblemsareone,twoand threedimensional.However,anumberofstockcuttingproblemswithacomplexity betweenoneandtwodimensionalproblemsexistandthesearereferredtoas1.5 dimensionalproblems(Hinxman,1979,Haessler etal .,1991).Onedimensionalstock cuttingproblemswereinitiallyconcernedwithpaperproductionbutlateronwerealso foundtobeapplicabletothecoilsplittingandfibreglassindustries(Lirov,1992).Another exampleofaonedimensionalstockcuttingproblemisthecuttingofsteelbarswherethe lengthofthestockbarsisfixed(Karelahti,2002).Figure3.6depictsaschematicexample ofaonedimensionalstockcuttingproblem.

l l l

B

Figure3.6Onedimensionalstockcuttingproblem(Karelahti,2002). IntheonedimensionalstockcuttingproblemdepictedinFigure3.6thewidth, B,ofthe stockreelandthelength, l,oftheshapestobecutarebothfixedandthegreyareas representtrimloss.Theonedimensionalproblemconsistsoffindingsumsofvarying widthsoftheshapestobecutwhichareasnearaspossibleto,butnotgreaterthan,the fixedwidthofthestock.Ina1.5dimensionalstockcuttingproblemthewidthofthestock reelisvariablewhilethelengthoftheshapestobecutremainsfixed.Thecuttingofsteel reelsofvariablewidth,butoffixedlength,isanexampleofa1.5dimensionalstock cuttingproblem(Karelahti,2002).Figure3.7depictsaschematicexampleofa1.5 dimensionalstockcuttingproblem.

31 LiteratureReview

l l l

B’

Figure3.71.5dimensionalstockcuttingproblem(Karelahti,2002). Inthe1.5dimensionalstockcuttingproblemdepictedinFigure3.7,thewidth, B’ ,ofthe stockreelisvariableandthelength, l,oftheshapestobecutisfixed.Again,thegrey arearepresentstrimloss.Tominimizetrimlossthesumofvaryingwidthsoftheshapesto becuthastocomeasnearaspossible,butnotexceedthevariablestockwidth.Figure 3.8depictsaschematicexampleofatwodimensionalstockcuttingproblem.

l1 l2 l3

B’

Figure3.8TwodimensionalStockCuttingProblem(Karelahti,2002).

InFigure3.8thewidth, B’ ,ofthestockreelandthelengths, ln,oftheshapestobecutare allvariable.Twodimensionalstockcuttingproblemswerefirstappliedtoglasscutting.

32 LiteratureReview Subsequentlytwodimensionalstockcuttingproblemswerealsofoundusefulinthe clothing,leatherandplasticfilmindustries(Lirov,1992).Theformulationandsolutionof threedimensionalstockcuttingproblemshasbeenusedinthecargoloadingandlumber cuttingindustries( ibid .).Figure3.9depictsanexampleofathreedimensionalstock cuttingproblem.

Figure3.9Threedimensionalstockcuttingproblem(Nielsen etal .,2003). InFigure3.9threedimensionalitemsshadedingreyaretobecutoutofcylindricalstock item,representedbythestackedcircles.Forthreedimensionalstockcuttingproblemsin thelumbercuttingindustrytheorientationofshapestobecutcanbeimportantbecause ofthegrainofthewood(Dowsland etal .,1995).Figure3.9highlightsthedualitybetween materialandspaceinstockcuttingproblems:Theobjectivetominimizetrimlossequates tofindingthedensestpackingconfigurationofsmallerobjectsinalargercontainer.

33 LiteratureReview ThesecondmaincharacteristicofstockcuttingproblemsidentifiedinDyckhoff(1990)is thetypeofassignmentrequiredbyaparticularproblem.Thetwotypesofassignment identifiedinDyckhoff(1990)differinwhetherwastageisallowedornot.Thethirdand fourthmaincharacteristicsofstockcuttingproblemsidentifiedinDyckhoff(1990)referto thesizesandquantitiesofstockitemsanditemstobecut.FurthertoDyckhoff(1990),the hypotheticaldredgecutnestingproblemgiveninSection2.2canbedefinedasfollows: 1) Twodimensional:Thedredgingareaanddredgecutsareconsideredinplanview. 2) Allofalargestockobjectmustbeused,trimlossmustbezero,andaselectionof smalleritemsistobeorderedorplaced:Allofthedredgingareamustbe excavatedbydredgingsmalleradjoiningdredgecutsinsuccession. 3) Thestockobjectisasinglelargeobject:Thedredgingarea. Withtheabovedefiningcharacteristicsitisarguedthatthefirstpartoftheresearch problem,thedredgecutnestingproblem,canindeedbetreatedasatwodimensional stockcuttingproblem.Whatremainstobedefinedisthetypeofassortmentofsmallitems tobeorderedorplacedinthedredgingarea.Thetypeofassortmentrepresentativeofthe dredgecutnestingproblemconsideredgivesadditionalinformationaboutthedegreeof irregularityoftheproblem.Thedegreeofirregularityofadredgecutnestingproblem dependsonwhethera)thedredgingarea,andb)thedredgecutstobenestedareof regularorirregularshape.Itisknownthattheplanviewofthedredgingareaofthereal dredgingprojecttobemodelledhereaspartofanengineeringapplicationisofirregular shape.Itisalsoknownthatinthehypotheticalexampleofdredgecutnestinggivenin Section2.2therewerenorestrictionsonthelengthsofindividualdredgecutsandthethat selectionoftheirwidthsuptothemaximumeffectivecuttingwidthwasalsoamatterof choice.Inaddition,beforethehypotheticalexamplewasgiven,itwassaidthatdredge cutscanbeapproximatedbyrectangleswithlengthsandwidthsequaltoexactmultiples orfractions,oracombinationofboth,ofeffectivecutwidthswhichcanbeachievedwith cuttersuctiondredgers.Therefore,sincebothdredgingareasandaswellasassortments ofdredgecutscanbeirregular,twodimensionaldredgecutnestingproblemscanbe highlyirregular. AccordingtoDowsland etal .(1995)problemsinvolvingirregularshapesaredifficultto solve.Highlyirregularstockcuttingproblemsareencountered,forexample,inthe manufactureofleatherproducts.Often,whereleatherisusedinthefurniture,car, clothingandshoeindustry,thenestingproblemconsistsofarrangingasetoftwo dimensionalirregularlyshapedpartsonatwodimensionalirregularlyshapedsurface (Heistermann etal .,1995,Yuping etal .,2005). 34 LiteratureReview Heistermann etal .(1995)notesthatnestingonleatherisfurthercomplicatedby restrictionsimposedbytheresourcestobeused.Inleathermanufacturingthestockis representedbyananimalhide.Partsofhidescanvaryinqualitybecauseofjointsorthe effectsofinjuriesandhidescanhaveholescausedbybarbedwirefencesortickbites (ibid .).Inaddition,hidesarenonidenticalsoeachnestcanonlybecutonce.Because eachhidehasauniqueshapeHeistermann etal .(1995)statesitisnotevenpracticalto maintainalibraryofpartialnestsfromwhichpreliminarysolutionscanbechosen. TosolveleathernestingproblemsYuping etal .(2005)modelsirregularleatherhidesand irregularshapestobecutaspolygonsintwodimensionalspace.Twodimensional polygonsrepresentinghidesarecalledsheetsandthoserepresentingtheshapestobe cutarecalledstencils.Yuping etal .(2005)evaluatesanestlayoutbycalculatingthree quantities:Thetotalareaof escape (thetotalareaofstencilsoutsidesheetprofiles);the totalareaof nonplacement (thetotalsheetareanotoccupiedbystencils);andthetotal areaof overlap betweenstencils.Thetermsstenciloverlapandoverlapwillused synonymouslyfromhereonwards.Yuping etal .(2005)calculatesareasofescape,non placementandoverlapusingapolygoncomparisonalgorithmdevelopedbyWeiler (1980).Yuping etal .(2005)modelsirregularleathernestingproblemswiththefollowing objectivefunction:

minimizeZ= αescape Aescape + αnonplacement Anonplacement + αoverlap Aoverlap (3.13) where:Z=totalcost; αescape =escapeweightfactor; αnonplacement =nonplacementweight factor; αoverlap =overlapweightfactor; Aescape =totalescapearea; Anonplacement =totalnon placementarea;and Aoverlap =totaloverlaparea. Yuping etal .(2005)statesthatfeasiblesolutionstoleathernestingproblemsmusthave zeroescapeandzerooverlap,whichcanbeachievedbyselectingappropriatevaluesfor theweightfactors, αn,inEquation3.13.Forthehypotheticalleathernestingproblem solvedinYuping etal .(2005)weightfactorsof50wereusedforescapeandoverlapand aweightfactorof4wasusedfornonplacement.Yuping etal .(2005)definesescape area, Aescape ,withEquation3.14:

N A = s 2 (3.14) escape ∑[ escape i ] i =1 where:N=totalnumberofstencils;andsescapei =areaofstencil ioutsidethesheet profile(s). 35 LiteratureReview ToavoidinfeasiblenestsolutionsYuping etal .(2005)increasestheseverityofthe penaltyforescapebysquaringstencilareasoutsidethesheetprofile(s)inEquation3.14.

Yuping etal .(2005)definesnonplacementarea, Anonplacement ,withEquation3.15:

N N A = L − s + s (3.15) non−placement area ∑ i ∑ escape i i =1 i =1 where:Larea =totalareaofsheet(s);N=totalnumberofstencils; si=areaofstencili;and sescapei =areaofstencil ioutsidethesheetprofile(s).

Finally,Yuping etal .(2005)definesoverlaparea, Aoverlap ,withEquation3.16:

N N A = s 2 (3.16) overlap ∑ ∑[ overlap ij ] i =1j =i + 1 where:N=totalnumberofstencils;and Soverlapij =areaofoverlapbetweenstencil iand j. ToavoidinfeasiblenestsolutionsYuping etal .(2005)alsoincreasestheseverityofthe penaltyforoverlapbysquaringoverlappingstencilareasinEquation3.16.Tosearchfor optimalsolutionstoirregularleathernestingproblemsHeistermann etal .(1995)and Sharma etal .(1997)usea GeneticAlgorithm whileYuping etal .(2005)usesanAdaptive SimulatedAnnealing algorithm.Geneticalgorithmsareoptimizationmethodswhichusea stochasticlocalsearchtechniquewhichisanalogoustoevolutiontheorywhere,asthe processadvances,increasinglyfitterorbettersolutionsarefound,eventuallyconverging to,orcloseto,aglobaloptimum(Knaapen etal .,2002).Adaptivesimulatedannealingisa specialformofsimulatedannealing,whichallowsfortheoccasionalwideningofthe stochasticlocalsearchtechniqueemployedandconvergestoglobaloptimafasterthan simulatedannealing(Yuping etal .,2005). Becausegeneticandadaptivesimulatedannealingalgorithmshavebothbeenused successfullytooptimizeirregulartwodimensionalstockcuttingproblems(Heistermann et al .,1995,Yuping etal .,2004)theyarenaturalcandidatesforoptimizingirregulardredge cutnestingproblems.Geneticandadaptivesimulatedannealingalgorithmsarediscussed inmoredetailinSection3.5.Firstliteratureonroutingproblemsisreviewed,tofindoutif thedredgerroutingproblemcanbemodelledasatravellingsalespersonproblem.

36 LiteratureReview

3.4 Routing Problems Oneofthemorewellknownroutingandcombinatorialoptimizationproblemsisthe travellingsalespersonproblem(Schrage,1999,Voudouris etal .,1999).Choi etal .(2003) statesthatbecauseoftheirstructuretravellingsalespersonproblemsaredifficulttosolve. Schrage(1999)describesthetravellingsalespersonproblemasbeinganassignment problemwiththeadditionalconstraintthattheassignmentschosenmustconstituteatour andwheretheobjectiveistominimizethetotaldistancetravelled.Therefore,atravelling salespersonisanoptimizationproblemoftryingtofindtheshortestHamiltoniancycle (Mulder etal .,2003).HamiltoniancyclesarenamedafterSirWilliamRowanHamilton, whodevisedtheIcosiangameorKnight’stourpuzzle,inwhichagraphcycleorclosed loopissoughtwhichconnectsallnodesandvisitseachnodeexactlyonce(Skiena,1990, Marcotte etal .,2004). Byconvention,thetrivialgraphonasinglenodeisconsideredtopossesaHamiltonian cycle,whiletheconnectedgraphoftwonodesisnot.AgraphpossessingaHamiltonian cycleissaidtobeaHamiltoniangraph.Garey etal .(1983)statesthattheproblemof findingaHamiltoniancycleisNPhardandthattheonlyknownwayofdetermining whetheragivengraphhasaHamiltoniancycleistoundertakeanexhaustivesearch. SincetheproblemoffindingaHamiltoniancycleisNPhard,thetravellingsalesperson problemisalsoNPhard.Forthisreasonnewoptimizationmethodsareoftentestedon travellingsalespersonproblems(Voudouris etal .,1999,Tsai etal .,2003).Figure3.10 depictsasolutiontoatravellingsalespersonproblem.

Figure3.10Travellingsalespersonproblem(Schrage,1999).

37 LiteratureReview ThesolutiontourdepictedinFigure3.10,representedbythelinesconnectingtwelve cities,isaclosedtourwhereeachcityisvisitedexactlyonce.Choi etal .(2003)statesthat manyscientificandengineeringproblemscanbemodelledastravellingsalesperson problems.Likas etal .(2002)mentionsthatfieldsofstudywhereproblemsaremodelled astravellingsalespersonproblemsincludeeconomy,complexsystemsadministration, decisionmaking,mechanics,physics,chemistryandbiology. ThefieldofchemistryisnotedinChoi etal .(2003)asanexamplewherethetravelling salespersonproblemhasreceivedsubstantialattentionfromresearchersbecauseofits relationshiptobatchschedulingproblems.Choi etal .(2003)statesthatmultiproduct batchschedulingproblemscanbecharacterizedastravellingsalespersonproblems becausetransitioncostsortimepenaltiesareincurredwhentransformingmaterialsfrom onestateintoanother. AsmentionedinSection3.1,Henderson etal .(2003)modelsashortestroutecutandfill problemasatravellingsalespersonproblemtooptimizeearthworks.Gimadi etal .(2004) modelavehicleroutingandloadingproblemasatravellingsalespersonproblem.Inthe problemmodelledinGimadi etal .(2004)thetotalprofitrealizedfrompurchasingand sellingcommoditiesloadedbyavehicle(withlimitedcapacity)atlocationsinaclosedtour hastobemaximized.Bosch etal .(2003)usesinstancesoftravellingsalesperson problemstocreatecontinuouslinedrawingsoftargetpicturesofMarilynMonroeandpart oftheMonaLisa. Helsgaun(2000)statesthattravellingsalespersonproblems,wheredistancemeasured betweennodesisEuclidean,arealsoreferredtoasEuclideantravellingsalesperson problems.Thevalueofatouredgebetweennodesintravellingsalespersonproblemscan alsobeexpressedasacost.Whenthecostofatouredgeisequalforbothdirectionsof travelthenthetravellingsalespersonproblemissaidtobesymmetric,otherwiseitissaid tobeasymmetric( ibid .).Euclideantravellingsalespersonproblemsaresymmetric.To modelaEuclideanNcitytravellingsalespersonproblemTaha(2003)definesthe problem’sdecisionvariableasfollows: 1,ifcity jisreachedfromcity i

xij = (3.17) 0,otherwise

38 LiteratureReview Taha(2003)statestheobjectivefunctionofasymmetrictravellingsalespersonproblem asfollows:

N N minimise Z = ∑∑d ij xij dij = ∞for i= j (3.18) i =1 j =1 where; N=totalnumberofcities;and dij =distancefromcity itocity j. Subjecttotheconstraints:

N ∑ xij = 1 i=1,2,3,…, N (3.19) j =1

N ∑ xij = 1 j=1,2,3,…, N (3.20) i =1

xij =(0,1) forall iand j (3.21) Solutionformsatour. (3.22) Constraints3.19and3.20ensurethateachcityisarrivedat,anddepartedfromonly once.Iflocationsondredgecutsthroughwhichadredgerhastopasscanbedefinedby nodes,thenthedecisionvariablestatedinEquation3.17,theobjectivefunctionstatedin Equation3.18andtheconstraintsstatedinEquations3.19,3.20,3.21and3.22canallbe directlyappliedtoadredgerroutingproblem.Methodsforoptimizingtwodimensional stockcuttingandsymmetrictravellingsalespersonproblemsarediscussedinmoredetail next.

39 LiteratureReview

3.5 Optimization Methods InSection3.3itisarguedthatthedredgecutnestingproblemcanbemodelledasan irregulartwodimensionalstockcuttingproblemandSection3.4concludeswithstating thatthedredgerroutingproblemcanbemodelleddirectlyasatravellingsalesperson problem.Thenextstepistosearchforoptimalsolutionstothemodelledproblems.For thisasuitableoptimizationmethodhastobeidentified.Aspartofclassifyingmethods usedforsolvingcombinatorialoptimizationproblems,Voudouris etal .(1999) distinguishesbetweenheuristicsandmetaheuristics,definingheuristicsasoptimization methodsusinglocalsearchalgorithmsandmetaheuristicsasoptimizationmethodsusing tabusearch,geneticandsimulatedannealingalgorithms. Voudouris etal .(1999)notesthatmanyheuristicmethodsuselocalsearch,also sometimesreferredtoasneighbourhoodsearchorhillclimbing,tosolvecombinatorial optimizationproblems.Hillclimbingisaniterativemethodwheretrialanderrorisusedfor findinggoodapproximationsofoptimalsolutions( ibid .).Ahillclimbingalgorithm repeatedlycomparessolutions,theveryfirstbeingarbitrary,withneighbouringsolutions, continuallystoringthebettersolutionsuntilnofurtherimprovementispossible( ibid .). Acceptingabettersolutioncanbedoneinvariousways:Forexample,firstimprovement localsearchacceptsabettersolutionwhenitisfound,whereasbestimprovement (greedy)localsearchreplacesacurrentsolutionwiththemostimprovedsolutionof searchedneighbourhoodsolutions(ibid .).Ingeneral,thelargertheneighbourhood searchedaroundaparticularsolutionis,themoretimeisrequiredtosearchit,butthe betterthefinalsolutionarrivedatis(ibid .).AccordingtoVoudouris etal .(1999)heuristics cangetstuckinlocaloptima,whichcangivegoodsolutionsbutarenotglobaloptima. Voudouris etal .(1999)statesthatmetaheuristicsaimatenhancingtheperformanceof heuristicsbyallowingforthepossibilityofescapingfromlocaloptimasothatglobal optimacanbefound(ibid .).Tabusearch,geneticandsimulatedannealingalgorithmsare metaheuristicswhichmakeuseofsuchstochasticlocalsearchtechniques( ibid .).Tabu searchalgorithmscontainbuiltinmemorymechanismswhichpreventreturningto recentlyexecutedchangestosolutionsforanumberofiterations(Hopper etal .2001). Geneticandsimulatedannealingalgorithmsdonotcontainsuchmechanisms.However, tabusearch,geneticandsimulatedannealingalgorithmsallallowforselectingasolution worsethanthecurrentone,anditisthiscommonfeaturewhichreducesthepossibilityof gettingstuckinlocaloptima(Voudouris etal .1999).Theselectionofaheuristicora metaheuristicoptimizationmethodisproblemdependent( ibid .).

40 LiteratureReview InSections3.5.3and3.5.4geneticandsimulatedannealingalgorithmsarediscussedin moredetail.First,twosectionsarepresentedinwhichliteratureontheoptimizationof stockcuttingandtravellingsalespersonproblemsisreviewed.

3.5.1 Stock Cutting Problem Optimization Elmghraby etal .(2000)notesthatmorethan800papershavebeenpublishedonsolving stockcuttingproblemsofvaryingcomplexity.Sharma etal .(1997)distinguishedbetween twomainapproachesforsolvingstockcuttingproblems:Onewherestencilsareplaced onthesheet(s)oneatatimeandtheotherwhereallstencilsareplacedonthesheet(s) simultaneously.Sharma etal .(1997)statesthatsimultaneousplacementofallstencils leadstobettersolutions.Lirov(1992)pointsoutthatwhenstockcuttingproblemsare optimizedusinglinearprogrammingtwodifficultiesareencountered:Howtogeneratethe setofpatternstobenestedandhowtocomputeanintegersolutionfromthegenerally fractionaloptimalsolutionreturnedbylinearprogrammingsolvers.Theseconddifficulty, however,canbeovercomebyaroundingalgorithmproposedinJohnston(1986). Bennell etal .(2001)statesthatresearchershavehadconsiderablesuccessinsolving twodimensionalstockcuttingproblemswithirregularstencilsandregularsheetsbyusing linearprogrammingcompactionmethods.However,Bennell etal .(2001)notesthatgood startingsolutionsarerequiredsincelinearprogrammingcompactionmethodshave difficultyinallowingforsignificantchangestostencilpositionssuchasthemovementofa stencilfromoneendofasheettoanother.Agoodstartingsolutioncanbedetermined withaheuristicmodelwhichmimicsthestrategiesemployedbyhumanexperts(ibid. ). Degraeve etal .(2001)proposestwomixedintegerlinearprogrammingmodelsforsolving twodimensionalstockcuttingproblemsinthegarmentindustryanddemonstratesthat bothoutperformanearlierproposedmixedintegerlinearprogrammingmodel.Thestock cuttingproblemsolvedinDegraeve etal .(2001)involvesthestackingandcuttingof multiplelayersoffabricoffixedlengthandwidthintogroupsofstencilsofequallength. Degraeve etal .(2001)overcomestheproblemposedbyanonlinearvariable,which definesthenumberofcopiesofagroupofstencils,byapplyingadiscreteexpansiontoit andbylinearizingtheproductofthisvariablewiththenumberoffabriclayers. Chen etal .(2002)proposesrectilinearrepresentationofirregularlyshapedstencilstobe nestedonarectangularsheetinordertolimitspatialcalculationstointegercoordinates andtomakecheckingforoverlapbetweenstencilseasier.Afterrectilinearrepresentation ofstencils,Chen etal .(2002)appliesatwostageheuristicmethodtofindsuitable combinationsoftwostencils.Inthefirststage,thefitnessofeachcombinationoftwo stencilsinvaryingpositionsisratedbysummingthestraightedgesofcombinedshapes,a

41 LiteratureReview valueof4–signifyingarectangle–beingbest.Inaddition,thefitnessofeach combinationofstencilsisratedintermsofwastedsheetarea.Afteridentifyingthebest combinationofstencilsthesecondstageoftheoptimizationmethodiseffected,which consistsofa‘leftmostbottommost’compactionproceduretonestcombinationsof stencils.Chen etal .(2002)reportsthattheheuristicoptimizationmethodpresentedfinds bettersolutionstotwodimensionalstockcuttingproblemthanthegeneticalgorithm optimizationmethodproposedinbySakait etal .(1998). ToovercomethecomplexityofcalculatingoverlapofirregularlyshapedstencilsKim etal . (2003b)includesapolygonclippingalgorithminaheuristicoptimizationmethodfor solvingtwodimensionalstockcuttingproblems.Thepolygonclippingalgorithmusedin Kim etal .(2003b)calculatesareasofunion,intersection,anddifferencebetweentwo polygons,andisverysimilartothealgorithmproposedinWeiler(1980).Asmentionedin Section3.3.3,Yuping etal .(2005)usestheWeileralgorithmtocalculateoverlap,non placementandescapeforleathernestingproblems. Milenkovic etal .(1992)usesadynamicprogrammingmodelwithatopdownsolution approachtooptimizetwodimensionalstockcuttingproblemsinthegarmentindustry. ThedynamicprogrammingmodelproposedinMilenkovic etal .(1992)condenses constraintsofpreviouslysolvedsubproblemsintoconstraintsforsolvingthelatestsub problem,whichinturnareusedtoobtainconstraintsforfollowingsubproblems. Elmaghraby etal.(2000)alsousesadynamicprogrammingmodelwithahierarchical structure,thehighestlevelofwhichisanexpertsystem,tooptimizetwodimensional stockcuttingproblems.Expertsystemscontainsubjectspecificintelligenceand informationfoundintheintellectofexpertstranslatedintoasetofruleswithwhichspecific problemsareanalyzedandaredesignedtocarryknowledgetoothermembersofan organizationforproblemsolvingpurposes( ibid .).Computerprogramsofexpertsystems usuallyrecommendacourseofuseractioninordertoimprovesolutionstoaproblem (ibid .).Expertsystemsusewhatappeartobereasoningcapabilitiestoreachconclusions andarevaluabletoorganizationswherehighlevelsofexperienceandexpertisearenot easilytransferable( ibid .).Thecomputerprogramoftheexpertsystemproposedin Elmaghraby etal.(2000)consistsofagraphicinterfacewheretheuserisrequiredtogive anaccuratedescriptionofthecuttingproblemtobesolved.Thecomputerprogramthen decideswhichsolutionapproachisbesttoadopttosolvetheproblemgivenbytheuser. Hopper etal .(2001)reviewstheapplicationofmetaheuristicalgorithms,inparticular geneticalgorithms,totwodimensionalpackingproblemsandcitesover70referencesof which15areotherreviewsandsurveysofpackingproblems.Smith(1985)givesoneof theearliestproposalsforusinggeneticalgorithmstosolveregulartwodimensionalbin 42 LiteratureReview packingproblems.Laterapplicationsofgeneticalgorithmstooptimizestrippacking problemscanbefoundinJakobs(1996)andLiu etal.(1999).Smith(1985)comparesthe performanceofgeneticalgorithmswithheuristicanddynamicprogrammingoptimization methodsandconcludesthatgeneticalgorithmsachieveverysimilarpackingdensities,but inlesstime.Itmustbenoted,however,thattheoptimizationmethodsusedinSmith (1985),Jakobs(1996)andLiu etal.(1999)onlypermitrotationofstencilsinstepsof90 degrees. Outof36paperspresentingmethodsforoptimizingcuttingandpackingproblems comparedinHopper etal .(2001)30papersproposemethodswhicheitherdonotallow, oronlyallowforrestrictedrotationofpartstobenested,while6paperspresentsolution approacheswhichallowforfreerotationofstencils.Ofthe6solutionapproacheswhich allowfreerotationreviewedbyHopperetal .(2001),oneusesageneticalgorithm,three usehybridgeneticalgorithmsandtheremainingtwousesimulatedannealingalgorithms tosearchforglobaloptima. TheendofSection3.3suggeststhatgeneticandadaptivesimulatedannealingalgorithms arenaturalcandidatesforoptimizingirregulardredgecutnestingproblemsasboth algorithmshavebeensuccessfullyusedtooptimizeirregulartwodimensionalstock cuttingproblems(Heistermann etal .,1995,Yuping etal .,2004).Theliteraturereviewedin thissectioncanbesaidtosupportthisview:Geneticandsimulatedannealingalgorithms canarriveatsolutionswhichareglobaloptimaanddonotgiverisetocomplicationsin representingstencilsasexperiencedwhenusinglinearprogrammingorrequirethe formulationofaspecificsetofnestingrulesaswithexpertsystems.Literatureonmethods foroptimizingtravellingsalespersonproblemsisreviewednext.

3.5.2 Travelling Salesperson Problem Optimization Helsgaun(2000)statestravellingsalespersonproblemshavebeenproventobeNPhard problemsandthatattemptstoconstructageneralalgorithmforfindingoptimalsolution toursinpolynomialtimeareunlikelytosucceed.Helsgaun(2000)dividesalgorithmsused forsolvingtravellingsalespersonproblemsintotwogroups:Exactalgorithms;and heuristic(orapproximation)algorithms.Schrage(1999)notesthatthedifficultywith optimizingtravellingsalespersonproblemswithlinearprogrammingliesinthefactthat solutionstolargemodelstendtocontainsubtours.Asubtourisatourofasubsetof assignmentswhichisnotconnectedtothemaintour.Constraintscanbeaddedtobreak subtours,butthenumberofconstraintsrequiredgrowsdisproportionatelyasthenumber ofassignmentsincrease.

43 LiteratureReview Lin etal .(1973)statesthatsolvinglargetravellingsalespersonproblemmodelsisbest approachedusingheuristicalgorithms.Voudouris etal .(1999)examineshowguidedlocal search,aformoftabusearch,combinedwithfastlocalsearchcanbeappliedtotravelling salespersonproblems.Guidedlocalsearchisametaheuristicoptimizationmethod applicabletoawiderangeofcombinatorialoptimizationproblems( ibid .).Guidedlocal searchhasbeensuccessfullyappliedtooptimizepracticalproblemssuchasworkforce schedulingandvehiclerouting( ibid .).Guidedlocalsearchsitsontopoflocalsearch,the mainaimofwhichistoefficientlyandeffectivelyexplorelargesearchspacesof combinatorialoptimizationproblems( ibid .).Voudouris etal.(1999)combinesguidedlocal searchwithfastlocalsearchtooptimizetravellingsalespersonproblemstolimitthe amountofneighbouringsolutionsexplored. InVoudouris etal .(1999)theguidedlocalsearchtechniqueincreasesthecostof solutionstotravellingsalespersonproblemsbyapplyingasetofpenaltyterms,similarto whatYuping etal .(2005)doesforirregularleathernestingproblems.InVoudouris etal . (1999)thecostfunctionofatravellingsalespersonproblem,insteadofthepenalties,is passedontothelocalsearchtechniqueforoptimization.Thelocalsearchalgorithmis confinedbythepenaltytermsofthecostfunctionandthereforefocusesonpromising regionsofthesearchspace,hencethenamefastlocalsearch( ibid .).Eachtimefastlocal searchgetscaughtina(local)minimum,thepenaltiesaremodifiedbyguidedlocalsearch andthefastlocalsearchtechniqueiscalledagaintooptimizethemodifiedcostfunction (ibid .).Fastlocalsearchbreaksdownthecurrentneighbourhoodintosub neighbourhoods,eachofwhichisassigneda0or1( ibid .).Thefastlocalsearchscans subneighbourhoodsinagivenorder,searchingonlyactivesubneighbourhoods,those whichareassigneda1denotingtheyareactive( ibid .). InthefastlocalsearchtechniqueofVoudouris etal .(1999),allsubneighbourhoodsare initiallyactive,butwhenasubneighbourhoodisexaminedanddoesnotcontainany improvingsolutionchanges,toatourforexample,itbecomesinactive.Onlysub neighbourhoodsfromwhichimprovingsolutionchangesareacceptedremainactive (ibid .).Whenanimprovedsolutionisaccepted,subneighbourhoodsfromwhichother solutionimprovementsareexpectedarereactivated( ibid .).Improvedsolutionsare accepteduntilthefastlocalsearchprocessdiesoutasaresultofallsubneighbourhoods graduallybecominginactiveandatthatmomentthesolutionfoundisreturnedasan approximatelocalminimum( ibid .). Although,accordingtoVoudouris etal .(1999),fastlocalsearchtechniquesdonot generallyfindverygoodsolutions,whentheyarecombinedwithguidedlocalsearchthey acceleratetheoptimizationofcombinatorialproblemsbecausefastlocalsearchfocuses 44 LiteratureReview onremovingthepenalizedfeaturesfromthesolutioninsteadofconsideringallpossible solutions.Voudouris etal .(1999)findsthataparticularvariantoftheproposedcombined guidedandfastlocalsearchtechniqueperformsbetterthanvariantsofothersearch methodssuchassimulatedannealingandtabusearch. Likas etal .(2002)presentsamodifiednearestneighboursearchstrategyforoptimizing travellingsalespersonproblems,wheresearchstrategiesencodedinastringareusedfor tourconstruction.Atgivenpointsintime,thesearchstrategycanbeformulatedto overrulethenearestneighbourselectionrulebyspecifyingtheselectionof,forexample, thesecondorthirdnearestavailableneighbourorcityinstead( ibid .).Thealgorithmused inLikas etal .(2002)consistsoftwostages.First,randomizedlocalsearchwitha specifiedsearchstrategyisusedtofindthecityfromwheretobeststartvalidtoursand thiscityisthenconsideredastheonlyinitialcityinthesecondstage.Inthesecondstage, thetravellingsalespersonproblemisfurtheroptimizedbyrepeatedlyevaluatingminor changestocurrentbeststates.Likas etal .(2002)effectsminorchangestocurrentbest statesinamanneranalogoustothemutationoperationofgeneticalgorithms.Likas etal . (2002)teststhemodifiedgreedyheuristicapproachonanumberoftravellingsalesperson problems,rangingfrom10upto2428cities.For428smallertravellingsalesperson problemsLikas etal .(2002)findsoptimalsolutions95%ofthetimewhilefor325larger problemsoptimalsolutionsarefound71%ofthetime. Helsgaun(2000)statestheLinKernighanheuristicisconsideredtobeoneofthemost effectivemethodsforgeneratingoptimalornearoptimalsolutionsforsymmetrictravelling salespersonproblems.However,Helsgaun(2000)addsthatthedesignand implementationofanoptimizationmethodincludingtheLinKernighanalgorithmisnot straightforward.Helsgaun(2000)statesthattheLinKernighanheuristicusesavariable touredgeexchangealgorithm,wheretouredgeconnectstwonodesofatravelling salespersonproblem. TheoriginalLinKernighanalgorithmstartsbyconsideringarandominitialtourandthen executesasearchstrategywhichattemptstofindtwosetsofvalidtouredges,for increasingvaluesoflambda(signifyingthenumberoftouredgestobeexchanged),which whenexchanged,possiblyreversingsometouredges,resultinashortervalidsolution tour( ibid .).Theimprovedtourbecomesthecurrentsolutiontourandtheprocessof findinganimprovedsolutiontourisrepeated( ibid .).

45 LiteratureReview ToshortensolutiontimestheLinKernighanalgorithmcontainsadditionalheuristicrules suchas:Apreviouslybrokentouredgemustnotbeadded;apreviouslyaddedtouredge mustnotbebroken;thesearchforatouredgetobeaddedislimitedtobeingwithin5 nodesofthecurrenttournodeunderconsideration;andthealgorithmisstoppedwhenthe currenttouristhesameastheprevioussolutiontour( ibid .).LinKernighanalgorithmsare usuallyexecutedmorethanoncewithdifferentrandominitialtourstoobtainbetterfinal results( ibid .). Helsgaun(2000)proposesamodifiedLinKernighanalgorithmforoptimizingsymmetric travellingsalespersonproblems.ThealgorithmproposedinHelsgaun(2000)differsfrom theoriginalLinKernighanalgorithmbyadoptingadifferentsearchstrategy:Ituseslarger andmorecomplexsearchsteps,andusessensitivityanalysistodirectandrestrictthe search.Helsgaun(2000)statesthatalthoughthemodifiedLinKernighanalgorithm presentedisanapproximationalgorithmitfindsglobaloptimafortravellingsalesperson problemsofupto13,509cities. Otheroptimizationmethodsappliedtotravellingsalespersonproblemshaveusedneural networks(Hasegawa etal .,2002,Cochrane etal .,2003,Mulder etal .,2003)andant colonysystems(Tsai etal .,2003).Hasegawa etal .(2002)demonstratesthatextending tabusearchtoincludeneuralnetworkoptimizationtechniquescanbeusedtosolvelarge travellingsalespersonproblemsofupto85,900cities,andresultsinfindingbetter solutionsthantheuseofconventionaltabusearchalone. Cochrane etal .(2003)proposesaselforganizingneuralnetworkoptimizationtechnique, whichistestedonvarioustravellingsalespersonproblems,thelargestofwhichinvolves 85,900cities.TheneuralnetworkoptimizationtechniqueMulder etal .(2003)proposesfor solvingahypotheticalmillioncitytravellingsalespersonproblemdoesnotgivesolutions whicharebetterthanobtainedwithotherheuristicoptimizationmethodsderivedfromthe LinKernighanalgorithm. Tsai etal .(2003)describesantcolonysystemsasmetaheuristicoptimizationmethodsfor solvingcombinatorialoptimizationproblemswhichsimulatetheabilityofantcoloniesto determinetheshortestpathstofood.Tsai etal .(2003)concludesantcolonysystemsare bestcoupledwithnearestneighboursearchalgorithms. Henderson etal .(2003)solvesshortestroutecutandfillproblemsbyapplyinganearest neighbouralgorithmwhichbeginsatanarbitrarycutlocation,thenmovestothenearest filllocation,fromwhereamoveismadetothenearestremainingcutlocation,andsoon untiltheprojectsiteislevelled.Henderson etal .(2003)comparessolutionsobtainedwith 46 LiteratureReview thenearestneighbouralgorithmtothoseobtainedwithasimulatedannealingalgorithm andconcludesthesimulatedannealingalgorithmperformsbetterthanthenearest neighbouralgorithm.Hurkens etal .(2004)statesthatevenforsmallEuclideantravelling salespersonproblemssolutionsdeterminedwithnearestneighbouralgorithmscanbeof lowquality. Insummary,geneticalgorithmsdonotappeartobethepreferredchoiceofheuristic algorithmforresearcherstooptimizingtravellingsalespersonproblems.Simulated annealinghasbeenusedtosolvetravellingsalespersonproblemsinHenderson etal . (2003),butaccordingtoHurkens etal .(2004)simulatedannealingalgorithmscanonly slightlyimproveonlowqualitysolutionsarrivedatwithnearestneighbouralgorithms.As statedattheendofSection3.3,itisthoughtgeneticandsimulatedannealingalgorithms canbesuccessfulatsolvingdredgecutnestingproblems.However,itisnotsureifthe samecanbesaidforsolvingdredgerroutingproblems.Toseeifgeneticandsimulated annealingalgorithmscanbeusedtosolvedredgecutnestingaswellasdredgerrouting problems,thesealgorithmsarelookedatinmoredetailinSections3.5.3and3.5.4,which arenext.

3.5.3 Genetic Algorithms Sharma etal .(1997)definesgeneticalgorithmsassearchalgorithmswhichusetools inspiredbynaturalselectionandgenetics.Thesetoolsconsistofconceptssuchas inheritance,mutation,selection,andcrossover.Sharma etal .(1997)statesthatingenetic algorithmscandidatesolutionstoanoptimizationproblemarereferredtoasphenotypes (individuals)andabstractrepresentationsofthesearereferredtoasgenotypes (chromosomesorgenomes)wherecandidatesolutionsareoftenrepresentedbybinary stringsof0sand1s. Ageneticalgorithmusuallystartswithalargeanddiverseinitialpopulationofrandom solutionsfromwhichsubsequentpopulationsaregenerated.Thisisdoneby:Evaluating thefitnessofeachindividualinthecurrentpopulation;followedbystochasticselectionof individualsfromthecurrentpopulationaccordingtotheirfitness;andlastlybymodifying theselectedindividualsthroughcrossoverandmutationtoformthenextpopulationof individuals.Thegradualimprovingfitnessofgeneratedpopulationseventuallyallowsfor theidentificationofanoptimalornearoptimalsolution( ibid .).Figure3.11depictshowa geneticalgorithmcanbeusedtoarriveatnewpopulationgenerations.

47 LiteratureReview

1010 1111 1001 0001 generation i

1010 11 11 1001 0001

Crossover Crossover Crossover Mutation

1011 1101 0001 000 0

Reproduction

1010 1111 1001 0001

1011 1101 0001 000 0

Selection

1011 1111 1001 0001 generation i+1 Figure3.11Principleworkingsofgeneticalgorithms(Knaapen etal .,2002). Knaapen etal .(2002)statesgeneticalgorithmsarerobustoptimizationmethodswhich findsolutionsneartoglobaloptimabecausetheselectionofworsesolutionsispossible andthereforeallowforescapingfromlocaloptima.Gradientorhillascentordescent methodsontheotherhandonlyacceptimprovedsolutions,whichiswhytheycanget stuckinlocaloptima.Hinterding etal .(1994)andWagner(1999)usegeneticalgorithms tosolveonedimensionalstockcuttingproblems.Heistermann etal .(1995)andSharma etal .(1997)usegeneticalgorithmstosolveirregulartwodimensionalstockcutting problems.Heistermann etal .(1995)andSharma etal .(1997)bothrepresentstencilsand sheetsaspolygonswhichcanbeconvexornonconvex.WhileHeistermann etal .(1995) optforplacingstencilssequentially,Sharma etal .(1997)placestencilssimultaneously.

48 LiteratureReview BothmethodsinHeistermann etal .(1995)andSharma etal .(1997)canaccommodate holesinstocksheetsandareasofvaryingqualityasfoundin,forinstance,leatherstock sheets.ThegeneticalgorithmsolutionapproachesproposedinHeistermann etal .(1995) andSharma etal .(1997)dohoweverrelyonotheralgorithmsto,forexample: Decomposenonconvexstencilsintoconvexparts;translateandrotatestencilpolygons; anddetermineiftwopolygonsintersect. Heistermann etal .(1995)reportsthattrialswithacomputerprogramusingasimulated annealingalgorithmtosolveirregulartwodimensionalstockcuttingproblemsgaveworse resultsthanwhenageneticalgorithmwasused.Heistermann etal .(1995)statesthat simulatedannealingalgorithmsrequiremoreruntimeand/orcomputerresourcesandlack flexibilityincomparisontogeneticalgorithms.Sharma etal .(1997)andHeistermann etal . (1995)bothmakegoodcasesforusingageneticalgorithmsolutionapproachtooptimize irregulartwodimensionalstockcuttingproblems,especiallysinceHeistermann etal . (1995)statesthatthegeneticalgorithmmethoditproposeshasbeeninindustrialusefor leathermanufacturingsince1992. TheindustrialsoftwarepackageforleathernestingdescribedinHeistermann etal .(1995) consistsof115,000linesofcodeinthestandardClanguage.However,asstatedatthe endofSection3.5.2,geneticalgorithmsarenotthepreferredsolutionapproachfor travellingsalespersonproblems.SinceYuping etal .(2005)andHenderson etal .(2003), respectively,usesimulatedannealingalgorithmstosolveirregulartwodimensionalstock cuttingproblemsandsymmetrictravellingsalespersonproblems,itisthoughtasimulated annealingalgorithmcanbeusedtosolvedredgecutnestingaswellasdredgerrouting problems.SimulatedannealingalgorithmsarereviewedinmoredetailinSection3.5.4, whichisnext.

49 LiteratureReview

3.5.4 Simulated Annealing Algorithms Metropolis etal .(1953)firstintroducedtheideaofsimulatedannealing.TheMetropolis algorithmsimulatestheprocessofcoolingmaterialinaheatbath,knownasannealing. Whenasolidsystemofatomsisheatedpastitsmeltingpointandthencooled,the structuralpropertiesoftheparticlesystemduringcooling,orhowitcrystallizes,dependon therateofcoolingapplied.Theenergyofatomsistemperaturedependent:Thehigherthe temperatureofamaterial,thehighertheenergyoftheatomsinthatmaterial.Thehigher energiesofatomsathighertemperaturesenablethemtorestructurethemselveswith greatereasethanatlowertemperatureswheretheyhavelowerenergies. Whentemperatureisreducedtheenergyofatomsisalsodecreased.Ifcooledslowly enoughlargecrystalstendtoform,butifcooledtooquick,orquenched,risksofcrystal formationwhichcontainimperfectionsincrease.Agradualfalltolowerenergystatesis saidtoallowfortheformationofamoreregularcrystallinestructure.Inthermodynamics, theprobabilityofasysteminequilibriumassumingahigherenergystateisgivenby: P(∆E)=exp(∆E/kT) (3.23) where:P=probability; ∆E =energyincrease; k=Boltzmann’sconstantand T= temperature. TheMetropolisalgorithmcomparestheenergiesoftwosuccessivestatesofagiven systemofparticles,thenewstatebeingamodifiedversionoftheprecedingstate.Ifthe energyofthemodifiedstateislowerthenthesystemisautomaticallymovedtothenew state.However,iftheenergyofthemodifiedstateishigherthenthenewstateisaccepted onlywhentheprobabilityreturnedbyEquation3.23satisfiesanacceptancecriterion.The Metropolisalgorithmrepeatedlycomparestheenergiesofoldandnewstatesofasystem ofparticlesateverdecreasingtemperaturesuntilasteady,orfrozen,stateisarrivedat. Thefinalsteadystatearrivedatisastateatwhichthesystemofparticleshasaverylow, possiblythelowest,energylevel.

50 LiteratureReview ThreedecadesaftertheMetropolisalgorithmwasproposedKirkpatrick etal .(1983)used itforoptimizingOperationsResearchproblemsbymodellingvariablesoftheseproblems astheparticlesinasystemofatoms:Athightemperaturessystemvariablesaregiven widerangesofrandomvalueswhichtheycanassume,andastemperaturesaregradually reducedtherangesofvalueswhichcanbeassumedarealsoreduced.Kirkpatrick etal . (1983)useEquation3.24togivetheprobabilityofacceptingaworsestateinthe simulatedannealingprocess. P=exp( L /T) (3.24) where:P=acceptanceprobability; L =changeinobjectivefunctionvalue;andT= temperature. Kirkpatrick etal .(1983)callsEquation3.24the AcceptanceFunction .InEquation3.24 Boltzmann’sconstantofEquation3.23isleftoutasitservestocopewithvarying materials,whichisnotrequiredinthemodellingofOperationsResearchproblems. DespitetheomissionofBoltzmann’sconstant,simulatedannealingisoftenreferredtoas Boltzmann annealing.Kirkpatrick etal .(1983)definesthe AcceptanceCriterion of simulatedannealingalgorithmsasfollows: P>r (3.25) where:P=acceptanceprobability;and r=randomnumberbetween0and1. Equations3.24and3.25givesimulatedannealingalgorithmsthecapabilityofaccepting worsesolutions,which,aswithgeneticalgorithms,allowsforescapinglocaloptima. Figure3.12depictsanoverviewofthesimulatedannealingalgorithmafterHeaton(2005).

51 LiteratureReview

Figure3.12SimulatedAnnealingalgorithmoverview(Heaton,2005). Therandomizedprocessusedformodifyingcurrentsolutionsofamodelledproblem mentionedinFigure3.12istemperaturedependent.Henderson etal .(2003)statesthis processcombinestheuseofaneighbourhoodfunctionandaprobabilityfunction.

52 LiteratureReview FortheoptimizationofNPhardcombinatorialproblemsHenderson etal .(2003)givesthe followingpseudocodeofthesimulatedannealingalgorithm: Selectinitialsolution,ω,fromsolutionspace,; Settemperaturechangecounter, p,tozero; Selectnumberoftemperaturechanges,M; Selecttemperaturecoolingschedule, T(p); Selectinitialtemperature T(0) ≥0; Selectrepetitionschedule, N(p),i.e.numberofiterationsexecutedateachtemperature, T(p); Repeat………………………………………..[startouterloop] Setrepetitioncounter,q,tozero Repeat……………………………………..[startinnerloop] Generatemodifiedsolution,ω’ ,usingprobabilitygenerationfunction, g(T),and neighbourhoodfunction, η(ω); Calculatecostdifference, δ,fromobjectivefunctionvalues:f(ω’ )minusf(ω) If δ≤0,then ω←ω’ If δ>0,then ω←ω’ subjecttoprobability,e δ/T(p),satisfyingacceptancecriterion q←q+1 Until q= N(p)………………………………[endinnerloop] p←p+1, T←T(p) Until stoppingcriterionismetorp= M……[endouterloop] Thesimulatedannealingalgorithmhastwoloops:Anouterandaninnerloop.Theouter loopcarriesoutthetemperaturecoolingschedule:Itexecutesthepredefinednumberof annealingtemperaturereductionsandcontinuesuntilastoppingcriterionismetorthe lowertemperatureboundisreached.Astoppingcriterion,forexample,canrelatetothe occurrenceofacertainvalueofanobjectivefunction,forexample,theoptimumvalueifit isknown.Theinnerloopcarriesouttherepetitionschedule:Itexecutesthepredefined numberofiterationsateachannealingtemperature,therebydefiningthelengthofeach annealingtemperatureinterval. Desai etal .(1995)statesthatthesimulatedannealingalgorithmstatisticallypromisesto deliveraglobaloptimumproviding,asHenderson etal .(2003)states,thecooling scheduleisnottoofast.Theslowestcoolingschedulesforsimulatedannealingalgorithms forwhichtheyareguaranteedtofindaglobaloptimumofnonconvexcostfunctions dependonwhichprobabilitygenerationfunctionisusedtoidentifyneighbouringsolutions (Ingber,1989).

53 LiteratureReview Geman etal .(1984)provesthatforsimulatedannealingalgorithmswhichusethe Boltzmanndistributionastheirprobabilitygenerationfunctionaglobaloptimumcanbe obtainediftheannealingtemperatureTisnotannealedfasterthan:

T(k)= T(0) /ln M (3.26) where:T(0)=initialtemperature;andM=numberoftemperaturechanges. Ingber(1989)pointsoutthatsimulatedannealingalgorithmscanalsomakeuseofother “reasonable ”probabilitygenerationfunctions,whichdonotnecessarilyreflectprinciples underlyingtheergodicnatureofstatisticalphysics.Forexample,fastannealing,or Cauchy annealingusestheCauchydistributionasitsprobabilitygenerationfunction (ibid .).Szu etal .(1987)concludesthatusingtheCauchydistributionhasadvantagesover useoftheBoltzmanndistributionanddemonstratesstatisticallythatwhenusingthe Cauchydistributionasaprobabilitygenerationfunctionaglobaloptimumisfoundifthe annealingtemperatureTisnotannealedfasterthan:

T(k)= T(0) / M (3.27) where:T(0)=theinitialtemperature;andM=thenumberoftemperaturechanges. Equations3.26and3.27showthatCauchyannealinghasanannealingschedulewhichis exponentiallyfasterthanBoltzmannannealing.Ingber(1989)statesthatmany optimizationproblemshavemultipleparametersinvaryingdimensions,eachofwhich havetheirowndistinctfiniterangeofvalues,andwhichexhibitvaryingannealingtime dependentsensitivities.BoltzmannandCauchyannealinghaveprobabilitygeneration functionswhichsampleinfiniterangesandthereforecannotaccountforproblem parameterswithvaryingsensitivities(ibid .).Ingber(1989)thereforeproposesamodified simulatedannealingalgorithm,called AdaptiveSimulatedAnnealing ,toovercomethe limitationsofBoltzmannandCauchyannealingwhendealingwithmultipleparametersin varyingdimensionsandofdifferentsensitivities.

54 LiteratureReview Theadaptivesimulatedannealingalgorithmconsiderseachproblemparameterwitha finiterangeinadimensionatagivenannealingtimeseparatelybyallocatingititsown parameterannealingtemperature( ibid .).Themodifiedvalueofaparametervariableat annealingtimeplusoneiscalculatedbyaddingafractionofitsfiniterangetoitsprevious value.ToarriveatamodifiedvalueofaproblemparameterIngber(1989)firstdefines theirfiniteranges:

i α n ∈[Ai ,Bi ] (3.28)

i where:α n =problemparameterindimension iatannealingtime n; Ai =thelowerlimitof thefiniterangeofproblemparametervalues;and, Bi =theupperlimitofthefiniterangeof problemparametervalues. NextIngber(1989)definesthefiniterangeofarandomvariable,usedforcalculatingthe parameterrangefractionwithwhichaproblemparameter’svalueismodified: y i ∈ [−1,1] (3.29) Therandomvariable, yi,isarrivedatwiththehelpofanotherrandomvariable, ui,fromthe uniformdistributionrangingfromzerotoone,definedbyIngber(1989)asfollows: u i ∈U[0,1] (3.30) Tocalculatethevalueoftherandomvariable, yi,withwhichthefiniterangeofaproblem parameterismultipliedtoarriveatamodifiedvalueoftheproblemparameterIngber (1989)statesthefollowing:

2u i −1    i  i 1  1  y = sgnu − t i 1+  −1 (3.31)  2   t    i   where; ti=annealingtemperatureoftheproblemparameterindimensioni;andthe sgn functionis1forallnegativevalues,0for0,and1forallpositivevalues.

55 LiteratureReview Ingber(1989)thenproposesthefollowingannealingscheduleforaparameter temperature, ti:

1 D t i (n) = t0i exp(−ci n ) (3.32) where;t0i =initialparametertemperatureindimension i; ci=parametertuningfactor; n= parameterannealingtime;and, D=numberofdimensionsofparameterspace. Ingber(1989)statesthatEquation3.32isalsousedforannealingthecosttemperature, valuesofwhichinfluencetheoutcomeofEquation3.24–theacceptancefunction.When usingEquation3.32forannealingthecosttemperatureacosttuningfactorisused,which canhaveavaluedifferentfromthatusedfortheparametertuningfactor.Equations3.30 and3.31makeuptheprobabilitygenerationfunctionoftheadaptivesimulatedannealing algorithm.Table3.3givesroundedparameterrangemultiplicationfactorvaluesofyi, calculatedwithEquations3.30and3.31,forincreasingvaluesofparameterannealing timesandthecorrespondingparameterannealingtemperaturesforaonedimensional parameterspace.Theparametertuningfactorandinitialparameterannealing temperaturearebothequaltounity. Table3.3AdaptiveSimulatedAnnealingparameterrangemultiplicationfactors Parameter Parameter Annealing Annealing Randomvariable, ui Time Temperature n t(n) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1.00000 1.00 0.74 0.52 0.32 0.15 0 0.15 0.32 0.52 0.74 1.00 1 0.36788 1.00 0.68 0.44 0.25 0.11 0 0.11 0.25 0.44 0.68 1.00 2 0.13534 1.00 0.61 0.35 0.18 0.07 0 0.07 0.18 0.35 0.61 1.00 3 0.04979 1.00 0.52 0.26 0.12 0.04 0 0.04 0.12 0.26 0.52 1.00 4 0.01832 1.00 0.44 0.19 0.07 0.02 0 0.02 0.07 0.19 0.44 1.00 5 0.00674 1.00 0.36 0.13 0.04 0.01 0 0.01 0.04 0.13 0.36 1.00 6 0.00248 1.00 0.30 0.09 0.02 0.01 0 0.01 0.02 0.09 0.30 1.00 7 0.00091 1.00 0.25 0.06 0.01 0.00 0 0.00 0.01 0.06 0.25 1.00 8 0.00034 1.00 0.20 0.04 0.01 0.00 0 0.00 0.01 0.04 0.20 1.00 9 0.00012 1.00 0.17 0.03 0.00 0.00 0 0.00 0.00 0.03 0.17 1.00 Table3.3showsthatasparametertemperaturesarereducedthepossibilitythata problemparameterismodifiedbyamaximumrangevalueremainsthroughout.However, themagnitudeofmodificationstoproblemparametersforvaluesoftherandomvariable, ui,otherthan0,0.5and1graduallyreducesassimulatedannealingprogresses.Figure 3.13depictsaplotofthevaluesgiveninTable3.3.

56 LiteratureReview

1.00

0.80

0.60

0.40 n=0 n=1 0.20 n=2 n=3 n=4 0.00 n=5 n=6 0.20 n=7 n=8 0.40 n=9 Parameter Parameter MultiplicationRange Value Factor

0.60

0.80

1.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Random Variable Value Figure3.13Parameterrangemultiplicationfactors. Ingber(1989)statesthatfortheparametertemperatureannealingschedulegivenin Equation3.32,statisticallyaglobalminimumcanbefound.Tomaintainthisstatistical guaranteeIngber(1989)advisestocontrolthetuningfactor, ci,ofEquation3.32as follows:

ci = mi exp(− ni D) (3.33) where; miand niarecontrolcoefficients. Ingber(1989)statesthatithasprovenusefultoannealtheacceptancefunction(Equation 3.24)inawaysimilartothegenerationfunction,asdonewithEquation3.32,butusingthe numberofacceptanceeventsasavaluefortheannealingtimeinsteadofthenumberof generatedstates,asdoneforannealingparametertemperatures.Anacceptanceeventis definedasacceptingabettersolutionwithanimprovedobjectivefunctionvalue.Ingber (1989)alsoperiodicallyrescalesparameterannealingtimes,essentiallyreannealing, whenaprespecifiednumberofacceptanceeventshaveoccurred.Therescalingof parameterannealingtimesstretchesouttherangeoverwhichrelativelyinsensitive parametersarebeingsearchedinrelationtorangesofmoresensitiveparameters( ibid .).

57 LiteratureReview ForreannealingparametertemperaturesIngber(1989)calculatesparametersensitivities, si,atthecurrentvalueoftheobjectivefunctionasfollows:

i si = (Ai − Bi )∂L / ∂α (3.34) where: Aiand Biarethelowerandupperlimitsofproblemparameterrangevalues, respectively; ∂L =thechangeinobjectivefunctionvalueresultingfrom ∂α i ;and ∂α i = asmallchangeinproblemparametervalueindimension i. Ingber(1989)thenreannealstheparametertemperatureannealingtimeusinglinear rescalinginreferencetothelargestparametersensitivityfound,calculatingrescaled parameterannealingtimesasfollows:

D n'i = ((ln[ti 0 / tin )(smax / si )]) / ci ) (3.35) where; n'i =therescaledannealingtimeassociatedwiththeparametertemperature; t in = thecurrentparametertemperature; smax =thelargestparametersensitivity;and si =the parametersensitivity. Figure3.14depictsanoverviewoftheadaptivesimulatedannealingalgorithmafterChen etal .(1999).InFigure3.14showstheinnerandouterloopoftheadaptivesimulated annealingalgorithm:Theinnerloopcontinuesuntiltheupperlimitoftherepetition scheduleisreachedandtheouterloopexecutesthetemperaturecoolingscheduleuntila stoppingcriterionissatisfied.

58 LiteratureReview

Figure3.14AdaptiveSimulatedAnnealingalgorithmoverview(Chen etal .,1999). Thelastpartofthissectionconcludestheliteraturereviewbysummarizingapplicationsof theadaptivesimulatedannealingalgorithmtoawidevarietyofOperationsResearch problems.Yuping etal .(2005)solvesirregularleathernestingproblemsusingthe adaptivesimulatedannealingalgorithm.Yuping etal .(2005)findsthat,tosolvean irregularnestingproblemproposedinJain etal .(1998),theimplementationofanadaptive simulatedannealingalgorithmperformsbetterthanthatofageneticalgorithm.Yuping et al .(1998)statesoptimalsolutionswerefoundmorethantwentytimesfasterwithadaptive simulatedannealing.

59 LiteratureReview Rosen(1992)testsadaptivesimulatedannealingonfindingsolutionstoanondifferential samplefunctionwithatwodimensionalparameterspace.Rosen(1992)findsthat,forthe samplefunctiontested,adaptivesimulatedannealingvastlyoutperformsBoltzmannand Cauchyannealing:OnaverageBoltzmannandCauchyannealing,respectively,findfinal solutions90billiontimesand800milliontimeshigherthanadaptivesimulatedannealing, whilebestfinalsolutionsarrivedatwithBoltzmannandCauchyannealing,respectively, are100millionand17timeshigherthanthosefoundwithadaptivesimulatedannealing. Dykes etal .(1994)implementsaparalleluseofadaptivesimulatedannealingtooptimize nonlinear,multidimensionalfunctionswithmanylocalminima,whichincludethefive functionsofDeJong’s(1981)testsuite.DeJong’s(1981)testsuiteistypicallyusedfor benchmarkinggeneticalgorithms.Dykes etal .(1994)concludesthatadaptivesimulated annealingisapowerfultoolforoptimizingdifficultfunctionsandthatparallelization substantiallyimprovesperformance,especiallywhenoptimizinglargeparameterspaces ofupto30dimensions. Morril etal .(1995)usesadaptivesimulatedannealingtooptimizearadiationtherapy treatmentplan.Morril etal .(1995)optimizestreatmentsforthreeclinicalcaseswithtwo costfunctions:Thefirstisalinearcostfunction(minimumtargetdose)withnonlinear dosevolumeconstraintsfornormaltissue;andthesecondisafunctionoftheweighted productofnormaltissuecomplicationprobabilitiesandtumourcontrolprobability.Forboth costfunctionsMorril etal .(1995)findsthatadaptivesimulatedannealingcanbeusedfor optimizingradiationtreatmentplanninginclinicallyusefulexecutiontimes,arrivingat resultswithin3to10percentoftheoptimalsolutionfoundbymixedintegerprogramming. Wang etal .(1997)appliesadaptivesimulatedannealingtooptimizethestructure determinationofbiomolecules.Wang etal .(1997)optimizestheenergysurfaceofthe Metenkephalinmoleculewhichissubjecttoatotalof19variables.Wang etal .(1997) carriesout55independentadaptivesimulatedannealingrunstoexperimentwithvarying initialconfigurationsandcoolingschedulesettings.Wang etal .(1997)concludesthatthe adaptivesimulatedannealingisanefficientandrobustoptimizationtechniquewhich performsequallywellorbetterthantwoapplicationsofBoltzmannannealingpresentedin previousstudiesontheoptimizationofsurfaceenergiesofbiomolecules. Chen etal .(1999)notesthatmanysignalprocessingproblemsdependonmultiple parametersandhavenonsmoothcostfunctionsmakingthemdifficulttosolvebygradient ascent/descentoptimizationtechniquesbecauseofthepresenceoflocaloptimaand difficultiesincalculatinggradients.Chen etal .(1999)usesadaptivesimulatedannealing tooptimizethesignalprocessingproblemofinfiniteimpulseresponsefilterdesign.To 60 LiteratureReview reducethetimeoffindingoptimalsolutionsincomparisontoawelltunedgenetic algorithmChen etal .(1999)optsfortheadaptivesimulatedannealingalgorithm,which convergesfasterthanBoltzmannandCauchyannealingalgorithms.Chen etal .(1999) concludesthat,ingeneral,simulatedannealingalgorithmsareeasiertoprogramand requirelesstuningthangeneticalgorithms. Chen etal .(2001)usesadaptivesimulatedannealingtooptimizethesignalprocessing problemofmaximumlikelihoodjointchannelanddataestimation.Chen etal .(2001) concludesthattheefficiencyofadaptivesimulatedannealingisequaltothatofbetter knowngeneticalgorithmsandthat,therefore,adaptivesimulatedannealingisaviable alternativetothesegeneticalgorithmsforsolvingsignalprocessingproblemswith multimodalandnonsmoothcostfunctions. Zhang etal .(2002)usesadaptivesimulatedannealingtooptimizetheplacingofmacro cellsonananalogueintegratedcircuit,essentiallyanestingproblem.Zhang etal .(2002) notesthatonapplicationspecificintegratedcircuits,analoguecircuitsoccupysmaller areasthandigitalcomponents.However,analoguecircuitsrequireaninverselylarge proportionofdesigntimeandareoftenresponsiblefordesignerrorsandexpensive designchanges( ibid .).Zhang etal .(2002)statesthatanaloguecircuitdesignismore knowledgeintensiveandgenerallyhasmoredegreesoffreedomthandigitalcircuit design.Zhang etal .(2002)determinesanobjectivefunctionforanaloguecircuitdesign andusesadaptivesimulatedannealingtooptimizethelayoutofthreeintegratedcircuits. ForeachofthethreeintegratedcircuitlayoutsZhang etal .(2002)findsthatadaptive simulatedannealingoutperformsBoltzmannandCauchyannealingbyfindingbetter objectivefunctionvaluesinlesstime. Garg etal .(2002)optimizesthejointtrajectorybetweentheinitialandfinalpositionsofthe endeffectorofmanipulatorrobotssuchthatactuatortorquesappliedatrobotarmjoints areminimal.Garg etal .(2002)usesageneticalgorithmandadaptivesimulatedannealing foroptimizationandfindsthat,forbothsingleroboticmanipulatorsandtwocooperating roboticmanipulators,adaptivesimulatedannealingconvergedfastertoglobaloptimathan thegeneticalgorithm. Ingber(1992)comparestheperformanceofadaptivesimulatedannealingwithgenetic algorithmsbysolvingthefivefunctionsofDeJong’s(1981)testsuite.Ingber etal .(1992) findsthatforDeJong’s(1981)testsuiteadaptivesimulatedannealingconvergesfasterto globaloptimathangeneticalgorithms,andwithsmallervariances.

61 LiteratureReview Themajorityoftheliteraturereviewedherewhichcomparestheperformanceofadaptive simulatedannealingwiththatofgeneticalgorithmsisinfavourofusingadaptivesimulated annealing.Inadditiontobetterperformance,itisthoughtadaptivesimulatedannealingis tobechosenhereforoptimizingdredgecutnestinganddredgerroutingproblems becauseofthefollowing: • ThestatementinChen etal .(1999)thatsimulatedannealingalgorithmsareeasier toprogramandrequirelesstuningthangeneticalgorithms, • Thereportedlysuccessfulapplicationofadaptivesimulatedannealingtosolve irregularnestingproblemsinYuping etal .(2005), • Thesuccessfulapplicationofsimulatedannealingtoavariantofthetravelling salespersonprobleminHenderson etal .(2003). Basedontheabovethreefindingsofotherresearchtheuseofadaptivesimulated annealingasasolutionapproachisoptedfor.Thehypothesis,objectiveandscopeofthe researchundertakenherearepresentednext.

62 Hypothesis,ObjectiveandScope

4 Hypothesis, Objective and Scope Thehypothesisoftheresearchpresentedhereisthefollowing: Twodimensionalcutplanningforcuttersuctiondredgerscanbemodelledas acombinationofamodifiedstockcuttingproblemandamodifiedtravelling salespersonproblemandoptimizedwithadaptivesimulatedannealingina computerbasedsolutionapproach. Theobjectiveoftheresearchpresentedhereistocontributetoimprovingtheoperational efficiencyofcuttersuctiondredgersbyprovidingatoolwithwhichtheoptimizationoftwo dimensionalcutplanningforsuchdredgerscanbeautomated.Anoptimaltwo dimensionalcutplanforacuttersuctiondredgerisaplanforexcavatingadredgingarea inwhichtheamountofdowntimeresultingfromnonproductivedredgermovementsin betweendredgecutsisminimal. Thescopeoftheresearchundertakenheredoesnotaimtodeterminethemost computationallyefficientmethodforsolvingtheresearchproblemandappliestodredging areaswhichareassumedtobehomogenousthroughoutandwhichhaveunrestricted access.Itisassumeddredgingareasconsideredarehomogenousthroughoutbecause modelsdevelopedheredonottakeintoaccountvaryingsoilcharacteristics.Itispossible, forexample,thathigherdredgingproductionratescanbeachievedwhencertainsoil strataareexcavatedindirectionsotherthanthosesuggestedbythesolutionsarrivedat withthemodelsusedhere.Inaddition,withexceptionofareductionindredging productionexperiencedwhendredgingheadonintopreviouslyexcavatedareas,itis assumeddredgingproductionratesareconstantforanywidthofcutdredged. Itisassumeddredgingareashaveunrestrictedaccessbecauseinprinciplethemodels developedheredonottakeintoaccountspecificsiteconditionsrelatedto,forinstance, preexistinggroundandseabedlevels,obstructions,milestoneactivities,coordinationof dredgingwithotherconstructionactivitiesandtemporalvariationinseastates,whichcan affectaccesstodredgingareasandtheirsurroundings.Themethodsandmaterialsofthe researchundertakenherearepresentednext.

63 MaterialsandMethods

5 Materials and Methods Thissectionliststheexperimentalequipment,presentsthedredgecutnestingand dredgerroutingmodelsused,anddetailstheexperimentationcarriedouttotestthe researchhypothesis.

5.1 Experimental Equipment Theequipmentusedforrunningthedredgecutnestingmodelsconsistedoffourdesktop DellcomputerswithMicrosoftWindowsXPoperatingsystems,1.73gigahertzIntel Pentium4processorsand1gigabyteofrandomaccessmemoryeach.Thedredger routingmodelswererunonaportableHewlettPackardcomputerwithaMicrosoft WindowsVistaoperatingsystem,a2.00gigahertzAMDSempronprocessor,and2 gigabytesofrandomaccessmemory.Thedredgecutnestinganddredgerroutingmodels werecodedintheprogramminglanguageMicrosoftVisualC#2005ExpressEdition.At thetimeofwritingMicrosoft’sVisualC#2008ExpressEditionwasavailablefordownload atwww.microsoft.com/express/vcsharp/.Thenonstandardclassesandmethodsofthe dredgecutnestingprogramconsistofaround4,000linesofcodewhilethoseofthe dredgerroutingmodelprogramtotalaround3,500linesofcode.

5.2 Dredge Cut Nesting Model Twodimensionaldredgecutnestingproblemsaremodelledhereasamodifiedtwo dimensionalstockcuttingproblem.Themodificationconsistsofhowproblemdecision variablesaretreatedfordredgecutnestingincomparisontohowtheyaretreatedfor conventionalstockcutting.Inconventionaltwodimensionalstockcuttingproblems,stock itemstobecutarereferredtoassheetsandtheitemstobecutfromthestockare referredtoasstencils.Solutionsoftwodimensionalstockcuttingproblemsarequantified intermsofthreedecisionvariables:Escape,nonplacementandoverlap.Escapeis generallydefinedastheunionareaofstencilsoutsidethesheet(s);nonplacementasthe totalsheetareanotoccupiedbystencils;andoverlapasthetotalareaofoverlapbetween stencils.Traditionally,twodimensionalstockcuttingproblemsrequiretheminimizationof escape(ifpermitted),nonplacement,andoverlap(ifpermitted),wherefeasiblesolutions arethosewhichhavezeroescapeandzerooverlapsincepartiallycutstencilsarenot allowed. Fordredgecutnestingproblemsthesheetrepresentstheareatobedredgedandstencils representindividualdredgecutsorcombinationsthereof.Likestockcuttingproblems, dredgecutnestingproblemsrequireminimizationofescape,nonplacementandoverlap, butdredgecutnestingproblemsdifferfundamentallyfromconventionaltwodimensional stockcuttingproblemsinthreerespects:1)Whilefeasiblesolutionsoftwodimensional stockcuttingproblemscanexhibitnonzerononplacement,feasiblesolutionsofdredge 64 MaterialsandMethods cutnestingproblemsmusthavezerononplacement;2)Nonzerononplacementina solutionofadredgecutnestingproblemequatestopartsofthedredgingarearemaining undredgedandthereforeshouldnotbepermitted;3)Feasiblesolutionsoftwo dimensionalstockcuttingproblemsrequirezeroescapeandzerooverlap,whilefeasible solutionsofdredgecutnestingproblemsdonotnecessarilyrequirethis. Nonzeroescapeandnonzerooverlapcanbepermittedinsolutionsofdredgecut nestingwhenitisconsideredimpracticaltoprovidesetsofdifferentsizedstencilsfrom whichasubsetcanbeselectedtomatchanydimensionofanirregularlyshapeddredging area.Provisionofsuchstencilsetsisnotprioritizedheresinceselectedstencils (representingdredgecuts),orpartsthereof,whichoverlapneednotbedredged.Equally so,stencils,orpartsthereof,whichareoutsidedredgingareascanalsobeleftundredged. Table5.1summarizesthemaindifferencesbetweenconventionaltwodimensionalstock cuttingproblemsandtwodimensionaldredgecutnestingproblems. Table5.1DredgeCutNestingandStockCuttingProblemvariables Decision TwodimensionalDredgeCut TwodimensionalStock Variable NestingProblems CuttingProblems Escape Permitted Notpermitted Nonplacement Notpermitted Permitted Overlap Permitted Notpermitted Inthedredgecutnestingmodel,sheetsandstencilsarerepresentedbypolygonsintwo dimensionalspace.Polygonsrepresentingdredgecutstencilsarerectilinearandcanbe convexornonconvex.Dredgecutstencilscanbeofanyshapeandmadeupoffractions and/ormultiplesofsquareswithsidelengthsequaltoorlessthanthemaximumeffective cutwidthwhichcanbeachievedwiththecuttersuctiondredgerconsidered.Polygons representingdredgingareasarealsorectilinearandcanbeconvexornonconvex. Polygonsrepresentingdredgingareasarecalledinnersheets,hereafteralsoreferredto assheets.Polygonsrepresentingtheunionofdredgingareasandescaperegions,if providedfor,arereferredtoasoutersheets.Inthedredgecutnestingmodelinnerand outersheetshavefixedpositions.Polygonsrepresentingdredgecutstencilshavethree degreesofmotionfreedom:Horizontaltranslation;verticaltranslation;androtation.Figure 5.1depictsthethreedegreesofmotionfreedomofstencils.

65 MaterialsandMethods

δx

δr

(x i+ 1,y i+ 1) δy

(x i,y i)

Figure5.1Stencilmotionfreedom(Yuping etal .,2005).

InFigure5.1horizontalandverticalstenciltranslation, δxand δyrespectively,andstencil rotation, δr,arerelatedtoafixedreferencepointofthestencil.Intheadaptivesimulated annealingalgorithmemployedinthedredgecutnestingmodel,eachdegreeofmotion freedomofeachstencilisassigneditsownparametertemperature.Therefore,the dimensionsoftheparameterspaceofdredgecutnestingproblemsequalthreetimesthe totalnumberofdredgecutstencilsused.Forexample,adredgecutnestingproblemwith 10stencilshas30parameterspacedimensionsandthereforehas30parameter temperatures.Intheadaptivesimulatedannealingalgorithmnestingsolutionsare modifiedbyrepeatedlyselectingrandomizedvaluesforeachofthethreedegreesof stencilmotionfreedomusingtheprobabilitygenerationfunctionforwhichEquations3.29, 3.30and3.31areused(seeSection3.5.4).Thelimitsoftheverticalandhorizontal disturbancerangefortranslationofstencilsaresetto+/themaximumdimensionofthe boundingboxoftheinneroroutersheetused,whicheverisgreater.Thelimitsofthe disturbancerangeforrotationofstencilsaresetat+/360degrees. Whentheadaptivesimulatedannealingalgorithmcallsforaparametersensitivityanalysis anidenticalsmallperturbationisappliedseparatelytoeachparameterofeachstencilto findresultingobjectivefunctioncostdifferenceswithwhichindividualparameter sensitivitiesarecalculated,whicharesubsequentlyusedforreannealingparameter temperatureswithEquations3.34and3.35(seeSection3.5.4).

66 MaterialsandMethods Thedecisionvariablesofthedredgecutnestingproblemareescape,nonplacementand overlap,whicharemathematicallydefinedasfollows:

 N   M  A =  s  I  e  (5.1) escape U i  U j   i =1   j =1  where:N=totalnumberofstencils; si=areaofstencili; M=totalnumberofescape regions;and ej=areaofescaperegion j.  K   N   Anon−placement = ULk  − Usi  − Aescape  (5.2)  k =1   i =1   where:K=totalnumberofsheets;Lk=areaofsheetk; N=totalnumberofstencils;and si=areaofstencili N  N  Aoverlap = ∑si −Usi  (5.3) i =1  i =1  where:N=totalnumberofstencils;and si=areaofstencili. Theobjectivefunctionofthedredgecutnestingproblemisexpressedmathematicallyas follows:

βesc βnpl βovl minimizeZ= α esc (Aescape ) + α npl (Anon−placement ) + α ovl (Aoverlap ) (5.4) where:Z =totalcost; αesc =escapepenaltyfactor; βesc =escapepenaltyexponent;αnpl= nonplacementpenaltyfactor; βnpl =nonplacementpenaltyexponent;αovl =overlap penaltyfactor;and βovl =overlappenaltyexponent. Subjecttotheconstraints:

Anon−placement = 0 (5.5) ThedredgecutnestingmodelusesstandardCsharpclassesandmethodsforthe purposeofpolygoncomparisoninordertocalculateescape,nonplacementandoverlap. Themodelofthedredgerroutingproblemispresentednext.

67 MaterialsandMethods

5.3 Dredger Routing Model Thedredgerroutingproblemismodelledasamodifiedtravellingsalespersonproblemof variableasymmetry,whereplanarcoordinatesofcentroidsofthesquarestencil componentsrepresentingdredgecutsareusedtorepresentnodesinEuclideanspace. Thecoordinatesofcentroidsareextractedfromfinalnestsolutionsoftheassociated dredgecutnestingproblem.Themainmodificationconsistsofhowproblemdecision variablesaretreatedfordredgerroutingproblemsincomparisontohowtheyaretreated inaconventionaltravellingsalespersonproblem.Thedredgerroutingmodelusedhere takesintoaccounttourlengthsaswellasturninganglesmeasuredbetweentouredges whereasconventionaltravellingsalespersonproblemstraditionallyonlyconcern themselveswithtourlengths. Theparameterspaceofthedredgerroutingproblemisconsideredtobedimensionless sincethepositionsofnodesarefixedandtheedgeexchangemechanismusedfor modifyingtoursisalsofixed.Inthecodeofthedredgerroutingmodel,however,the parameterspacedimensionissettounitytonotdividebyzeroinEquations3.32and3.33 (seeSection3.5.4).Tomodifydredgerroutesafixed2optedgeexchangemechanismis usedthroughoutthesolutionprocess.Figure5.2depictstheconceptofa2optedge exchangemechanism. d c d c

a b a b Figure5.2Twooptedgeexchangemechanism(Helsgaun,2000). InFigure5.2the2optexchangemechanismconvertsthetourdenotedby[a, b, c, d]into thetourdenotedby[a, c, b, d]byreplacingtwoedges.Thereplacementconsistsof:An exchangeoftheedgebetweennodes aand bwiththeedgebetweennodes aand c;and anexchangeoftheedgebetweennodes cand dwiththeedgebetweennodes band d. Consideringdredgerroutingproblemsasdimensionlessrendersthepartoftheadaptive simulatedannealingalgorithmwhereparametertemperaturesareannealed,reannealed andsubjectedtosensitivityanalysisobsolete.However,annealingandreannealingofthe

68 MaterialsandMethods acceptancecriterioniskeptinplaceandthereforetheoptimizationprocesscanstillbe consideredasoneofadaptivesimulatedannealing.Thedredgerroutingmodelrequires theusertospecifyanodetodefinethelocationwheredredgingcommences.Thisoption isincludedbecauseinpracticeitisnotnecessarytoenddredgingatthesamenodefrom whereitstarted.Inaddition,althoughdredgingareasareconsideredtohaveunrestricted access,theneedtospecifyastartlocationfordredgingcanariseinpracticewhen,for example,predredgingdepthslimitthenumberoflocationswheredredgingcan commenceasaresultofminimumwaterdepthrequirementsimposedbythedraftofthe cuttersuctiondredgerconsideredforuse. Thedredgerroutingmodelconsidersthelengthoftheedgebetweenthelasttournode andthestartnodeequaltozero.Despiteignoringthelengthofthelasttouredgethe constraintthatsolutionsmustformatouriskeptinplacetomaintainthebasicmodel structureofthetravellingsalespersonprobleminthedevelopedcode.Forthesame reasonastowhythelengthofthelasttouredgeisconsideredzero,theturningangles betweenthepenultimateandthelast,andthelastandthefirstedgeoftoursare consideredzero.Thedredgerroutingmodelproblemhastwodecisionvariables,which aredefinedasfollows: 1,ifnode jisreachedfromnode i

xij =  (5.6) 0,otherwise 1,ifnode kisreachedfromnode jandnode jisreachedfromnode i

yijk= (5.7) 0,otherwise Themodelofthedredgerroutingproblemquantifiestouredgelengthsandsumsof turningangles.Thetourlengthisdefinedasfollows:

N N LTOUR = ∑∑Fj d ij xij (5.8) i =1j = 1

dij = ∞for i= j ∧dij =0for i=lasttournodeand j=firsttournode where; N=totalnumberofnodes; Fj=edgelengthreductionfactor; dij =distancefrom nodeitonodej.

69 MaterialsandMethods Thesumofturninganglesinatourisdefinedasfollows:  N N N N  L A =  γ y × TOUR (5.9) TOUR ∑ j ∑∑∑ ijk   j =1 i =1j = 1k = 1  180N

∆γj=0for j=lastand j=firsttournode where; N=totalnumberofnodes;∆γjistheplaneangledifferencebetweenincomingand outgoingtouredgesatnode j. Theobjectivefunctionofthedredgerroutingproblemisthefollowing:

βlength βangle minimize Z = α length (LTOUR ) + α angle (ATOUR ) (5.10) where; Z =totalcost;αlength =tourlengthpenaltyfactor; βlength =tourlengthpenalty exponent; αangle =turninganglesumpenaltyfactor;and βangle =turninganglesumpenalty exponent. Subjecttotheconstraints:

N ∑ xij = 1 i=1,2,3,…, N (5.11) j =1

N ∑ xij = 1 j=1,2,3,…, N (5.12) i =1

N ∑ y ijk = 1 j,k =1,2,3,…, N (5.13) i =1

N ∑ y ijk = 1 i,k =1,2,3,…, N (5.14) j =1

N ∑ y ijk = 1 i, j=1,2,3,…, N (5.15) k =1

xij =(0,1) forall iand j (5.16)

yijk =(0,1) forall i, jand k (5.17) Solutionformsatour. (5.18) InEquation5.9thesumofturninganglesisdividedby180(themaximumturningangle) andmultipliedbytheaveragetouredgelengthtomakethesumofturningangles

70 MaterialsandMethods independentofproblemsize.Otherwiseidenticalsolutionstoverysimilardredgerrouting problemsofdifferentscalewillhavedifferentratiosofaverageturningangletoaverage touredgelength. InEquation5.8thelengthsofedgesbetweennodesaresubjectedtoavariablereduction factorwhentheturninganglebetweenthetouredgeunderconsiderationandthe precedingtouredgeislessthanaspecifiedmaximum.Theapplicationofthisreduction factoriswhatgivesthedredgerroutingproblemavariableasymmetry.Thevalueofthe reductionfactordecreasesforeachadditionaltouredgethatexhibitsaturninganglewith itsprecursorwhichislessthanaspecifiedmaximum.Themaximumallowableturning anglewhichdefinesconsecutiveinlineedgesshouldbekeptsmalltoencouragethe dredgerroutetoexhibitthegreatestnumberoflongest‘straight’linespossible.Partsof thedredgerroutemadeupofsuchlinesarereferredtohereaslinks.Itisimportantto notethatsingleedgeswhicharenotalignedwitheithertheirprecursorortheedgewhich followsarenotconsideredlinks. Thereasonwhyitispreferabletohaveadredgerroutewiththemaximumnumberof maximumlengthlinksisapracticaloneandismainlyrelatedtominimizingthenumberof occasionsofhavingtodredgeheadonintopreviouslydredgedareas.Figure5.3 illustratesthispracticalissuewithtwosolutionstoacontinuoustwodimensional64node squaregridroutingproblemwhicharebothconsideredoptimalaccordingtographical definitionsgiveninCollins(2003).

Start 4 3 Start 3 4 7 8 11 12 End

8 7

12 11

End

13 14

9 10

5 6

1 2 1 2 5 6 9 10 13 14

SolutionA SolutionB Figure5.3Optimalroutingproblemsolutions(Collins,2003). Collins(2003)definesbothroutesinFigure5.3ashavingoptimaltotalroutelengthsand optimalsumsofturningangles.However,Figure5.3hastobelookedatmorecloselyto

71 MaterialsandMethods assessthesuitabilityofeachrouteforcuttersuctiondredgers.InsolutionAthedredger willdredgeheadonintopreviouslydredgedareasforatotalnumberof12times,marked byboldlinesections,thereforeswingingacrossatotalequivalentlengthof12timesthe gridspacing.WhereasinsolutionBthedredgerisnotmadetodredgeheadoninto previouslydredgedareas.InsolutionBthetotaldistancedredgedswingingsidewaysinto previouslydredgedcutsisequivalenttoalengthof49timesthegridspacing;whereasin SolutionAthetotaldistancedredgedswingingsidewaysintopreviouslydredgedcutsis equaltoalengthof35timesthegridspacing.Ingeneral,dredgingintopreviously dredgedareasresultsingreaterlossesofdredgingproductionwhenexperiencedahead ofacuttersuctiondredgerthanwhenexperiencedsideways.Therefore,foracutter suctiondredging,solutionBinFigure5.3shouldtakepreferenceoversolutionA.A secondpracticalreasonforchoosingsolutionBoverAisthatthespiralrouteofsolutionA willrequirerepeateddisconnectionandreconnectionofafloatingpipeline,ifused. Toquantifyoptimalroutesforcuttersuctiondredgers,suchastherouteofSolutionBin Figure5.3,useismadeoffourequations.Thesefourequationsquantifyattributesof optimaldredgerrouteswhichvisitallnodesoncontinuoussquaregridsofsquareor rectangularshapewithwidthsandlengthsof2nodesormore.Equations5.19and5.20, respectively,givethelowerboundsoftotalroutelength, LMIN ,andsumofturninganglesof optimaldredgerroutes, AMIN ,forsuchgrids.

LMIN = d(nW ⋅ (nL −1)+ (nW −1)) (5.19) where; nL=numberofnodesalonglengthofrectangulargrid; n W=numberofnodes acrosswidthofrectangulargrid;and d=squaregridspacing.

AMIN = 180(nW −1) (5.20) where; nW=numberofnodesacrosswidthofrectangulargrid. Inaddition,Equations5.21and5.22,respectively,definetheupperboundsoflinklength,

MMAX ,andofthenumberofmaximumlengthlinks, NMAX ,inoptimaldredgerroutes.

MMAX = d(nL −1) (5.21) where; nL=numberofnodesalonglengthofrectangulargrid;and d=squaregrid spacing.

NMAX = nW (5.22) where; nW=numberofnodesalongwidthofrectangulargrid.

72 MaterialsandMethods Foragridspacingof1,Table5.2listsvalueswhichquantifythetworoutesdepictedin Figure5.3usingEquations5.19to5.22inclusive.Inaddition,Table5.2givestheactual averagelinklengthforeachroute,whichisequaltothesumoflinklengthsdividedbythe totalnumberoflinks. Table5.2Optimalrouteattributes–64NodeSquareGrid Item RouteAttribute SolutionA SolutionB 1 Length 63 63 2 SumAngles 1260 1260 3 MaximumLinkLength 7 7 NumberofMaximum 4 3 8 LengthLinks 5 SumLinkLengths 61 56 6 NumberofLinks 13 8 7 AverageLinkLength 4.69 7 Item4inTable5.2showsthat,withrespecttoEquation5.22,therouteofSolutionBin Figure5.3isanoptimaldredgerrouteandSolutionAisnot.Thisisalsoreflectedbythe averagelinklength,item7,ofbothroutes.Followingthis,itissaidthatoptimalroutesfor cuttersuctiondredgersincontinuoussquaregridroutingproblemsofsquareor rectangularshapecanbeidentifiedbythenumberofmaximumlengthlinkstheyexhibit. However,thedeterminationoftheupperboundforthenumberofmaximumlengthlinksin arouteforcontinuous irregular gridsof irregular shapecanbeproblematicanddepends onthemaximumallowableanglebetweenconsecutiverouteedges.Inaddition,assessing anentiredredgerrouteinanirregulargridonthebasisofthenumberofmaximumlength linkscanbeoflittleworthifonlyasmallnumberofsuchlinksexist:Nothingwouldbesaid aboutlinksof(slightly)lesserlengths.Ontheotherhand,determiningtheaveragelink lengthofadredgerrouteonanygridisstraightforwardandthereforeitisconsidered meaningfulforevaluatingdredgerroutes. Havingsaidthat,averagelinklength,asdefinedhere,shouldnotbeusedastheonly criterionfordefiningtheoptimalityofdredgerroutes:If,forexample,asolutiontothe routingprobleminFigure5.3weretohaveonlyonelinkofmaximumlength(agreater numberbeingpossible)andallremainingrouteedgeswerenotlinks,butunalignedroute edges,thentheaveragelinklengthwouldstillbeconsidered‘optimal’,wheninrealitythe correspondingdredgerrouteitselfisnot:Itwillbelongerandhaveagreatersumof turninganglesthanSolutionBinTable5.2.Despitetheshortcomingsofassessing dredgerroutesonthebasisoftheiraveragelinklengths,theselengthsarecalculatedand giveninSection6, ResultsandDiscussion ,togainadditionalinsight,inparticularforthe engineeringapplicationofthedredgerroutingmodel,whichconcernsanirregularrouting problem. 73 MaterialsandMethods Theapplicationofanedgereductionfactortorouteedgelengthsisthoughttobe adequateforencouragingtheformationofasmanymaximumlengthlinksasarepossible inagivendredgerroutingproblem.TheedgelengthreductionfactorinEquation5.8is calculatedforeachrouteedgeasfollows:

w(n −1)2 Fj = 1− (5.23) nmax where; w=reductionconstant; n=numberofedgesinalinkbeforenode j;and nmax = maximumexpectednumberofedgesinalink. Figure5.4givesvaluesoftheedgelengthreductionfactorforahypotheticaldredger routingproblem.InFigure5.4thereductionconstantis0.05(selectedonthebasisof providingforpracticallyusefuledgereductionfactors)andthemaximumexpectednumber ofedgesinalinkis15,avaluethatisestimatedbyvisualinspectionofvalidroutenodes extractedfromfinalnestsgeneratedbythedredgecutnestingmodel.

1.000 0.997 0.987 1.000 0.970 0.947 0.917 0.880 0.900 Reductionconstant, w =0.05 0.837 0.787 Maximumexpectednumberoflinkedges=15 0.800 0.730

0.700 0.667

0.597 0.600 0.520 0.500 0.437

0.400 0.347

0.300 0.250 Edge Length Reduction Factor

0.200 0.147

0.100 0.037

0.000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.100 0.080 Nth Link Edge Figure5.4Edgelengthreductionfactors. Figure5.4showsthattheactualmaximumnumberoflinkedgescanbe20%higherthan 15withoutedgelengthreductionfactorstakingonnegativevalues.Negativeedgelengths willnotcausetheobjectivefunctionofthedredgerroutingmodeltofunctiondifferently, butareavoidedbecausetheycancomplicatethecomparisonoftotalfactoredroutecosts. Theexperimentaldesignispresentednext.

74 MaterialsandMethods

5.4 Experimental Design Theexperimentationundertakenheretotesttheresearchhypothesisconsistsofthree maingroups:Validationofthedredgecutnestinganddredgerroutingmodelsagainst relevantproblemstakenfromliterature;furthertestingonhypotheticalproblemsofvarying complexity;andanengineeringapplicationofbothmodels.Successwithwhichthe dredgecutnestingmodeloptimizesnestingproblemspresentedhereismeasuredby comparingareasofescape(ifapplicable),overlapandnonplacementoffinalnest layouts.Areasofescape,overlapandnonplacementaregenerallyexpressedasa percentageofthetotal(inner)sheetareaused.Successwithwhichthedredgerrouting modeloptimizesroutingproblemspresentedhereismeasuredbycomparingfinalroute lengths,sumsturninganglesandaveragelinklengthsoffinalroutes.Inaddition,a selectionoffinalnestsandfinalroutesarepresentedgraphicallyforfurtheranalysis.

5.4.1 Model Validation Thedredgecutnestinganddredgerroutingmodelsarevalidatedagainstrelevant problemsrelatedtoanirregularnestingproblemtakenfromliterature.

5.4.1.1 Validation of Dredge Cut Nesting Model Thedredgecutnestingmodelisvalidatedagainstanirregularnestingproblemsolved withanadaptivesimulatedannealingbasedsolutionapproachinYuping etal .(2005). Figure5.5depictsthesheetandstencilsofthisirregularnestingproblem.

W

T1 T2

L=2xW

L1L2 L3 L4

S1 S2S3 S4 S5 S6 S7 S8

Sheet Stencils Figure5.5Nestingvalidationproblem(Yuping etal .,2005). ThewidthofthesheetdepictedinFigure5.5isexactlyhalfitslength.Thesetofstencils depictedinFigure5.5isirregularandconsistsof:TwolargeTshapedstencils;four mediumLshapedstencils;andeightsmallsquarestencils.InFigure5.5,thelengthofthe 75 MaterialsandMethods sidesofthesquarestencils,S1toS8,areequaltoaquarterofthewidthofthesheet. EachTshapedstencil,T1andT2,ismadeupofsixsquarestencils,andeachLshaped stencil.L1toL4,ismadeupofthreesquarestencils.Theareasumofallstencilsisequal tothesheetarea.Itshouldbenotedthat,furthertothestencilsetdepictedinFigure5.5, thedredgecutnestingmodelwasdevelopedtouseamaximumofthreedifferenttypesof stencil.InaccordancewiththesolutionapproachadoptedinYuping etal .(2005)the experimentssolvingthenestingproblemofFigure5.5donotallowforanyescapeof stencilsbeyondsheetboundaries.Table5.3givesthemodelsettingsusedforvalidating thedredgecutnestingmodel. Table5.3DredgeCutNestingmodelsettings–Validation Item Description Setting Source 1 SampledStates 1,000 2 AnnealingLimitAcceptedStates 1,000 1) Ingber(1989) 3 AnnealingLimitGeneratedStates 1,000 2) Ingber(2006) 4 ReannealingLimitAcceptedStates 100 (ibid.) 5 ReannealingLimitGeneratedStates 1,000 6 StopLimitAcceptedStates 10,000 (ibid.) 7 StopLimitGeneratedStates 99,999 (ibid.) 8 SmallChangeSensitivityAnalysis 0.001 (ibid.) 9 InitialParameterTemperature 1.0 (ibid.) 10 InitialCostTemperatureFactor 1.0 11 InitialPlacement Random Yuping etal .(2005) 12 ParameterSpaceDimensions 42 (ibid.) 13 ParameterControlTuningFactor 3,4,5,6,7,8 Chen etal .(1999) 3,4,5,6,7,8, 14 CostControlTuningFactor (ibid.) 9,10,11 15 StencilModificationSelectionMode Sequential Yuping etal .(2005) 16 Totalstencilarea/sheetarea 1.0 (ibid.) 17 SquareUnitCutSideLength 100 18 Sheetdimensions 800 ×400 Notes:1)CostTemperatureannealedonly.2)ParameterTemperaturesannealedonly. Forthevalidationofthedredgecutnestingmodelallpenaltyfactorsandexponentsfor overlapandnonplacementaresettounity(seeEquation5.4).InTable5.3,items3,4,6, 7,8and9aresettodefaultvaluestakenfromtheAdaptiveSimulatedAnnealingCode Manualversion26.22(Ingber,2006).Thedefaultvalueforitem1is5( ibid .),butitissetat 1,000tofindamorerepresentativeinitialcosttemperature.Thedefaultvalueforitem2is 0( ibid .),which,ifsetassuch,causesannealingofthecostandparametertemperatures atidenticalintervalsbasedonthenumberofgeneratedstates.However,Ingber(1989) statesthatithasprovenfruitfultoannealthecosttemperatureusingthenumberof acceptedstatesinsteadandthereforeitem2issettoanonzerovalueequaltothatof item3,namely1,000.

76 MaterialsandMethods InTable5.3,item3issetto1,000tohaveanexpected99parametertemperature annealingeventsoverthetotalnumberof99,999generatedstatesasspecifiedforitem7. AccordingtoIngber(2006)defaultvaluesforitem5are1,000,000or10,000,butitisset to1,000toreducetheriskofgettingstuckinlocalminimaincasethenumberof acceptancesnolongerincreasesandthereforecannolongerberelieduponforre annealing.Thevaluesforitems13and14inTable5.3arechosenfurthertoChen etal . (1999),whichstatesthatvaluesforthecostandparametercontroltuningfactorsusedin Equation3.32(seeSection3.5.4)oftenrangebetween1and10.Tovalidatethedredge cutnestingmodel,atotalof6 ×9=54differentnestingexperimentsarecarriedout,one foreachuniquecombinationofcontroltuningfactors.Eachexperimentof99,999 iterationsisrepeated20times,totallingapproximately108millioniterations.

5.4.1.2 Validation of Dredger Routing Model InspiredbysquaregridroutingproblemsusedinHenderson etal .(2003),thedredger routingmodelisvalidatedagainstasquaregridroutingproblemextractedfromaglobal optimumnestlayoutoftheirregularnestingproblemsolvedinYupingetal .(2005).Figure 5.6depictsthenodesofthisroutingproblem,withanassociatedglobaloptimumnestof stencilsmarkedindashedlines. d d d d d d d d d d

Figure5.6Routingvalidationproblem(Yuping etal .,2005). InFigure5.6,the32nodesderivedfromthecentroidsofsquareswhichmakeupthe stencilsdefinetheplanarsquaregridproblemsolvedinthispartoftheexperimentation. Table5.4givesthemodelsettingsusedforvalidatingthedredgerroutingmodel.

77 MaterialsandMethods Table5.4DredgerRoutingmodelsettings–Validation Item Description Setting Source 1 SampledStates 1,000 2 AnnealingLimitAcceptedStates 0 Ingber(2006) 3 AnnealingLimitGeneratedStates 1,000 1) (ibid.) 4 ReannealingLimitAcceptedStates 100 (ibid.) 5 ReannealingLimitGeneratedStates 10,000 (ibid.) 6 StopLimitAcceptedStates 10,000 (ibid.) 7 StopLimitGeneratedStates 99,999 (ibid.) 8 InitialParameterTemperature 1.0 (ibid.) 9 InitialCostTemperatureFactor 0.0161 Johnson(1990) 10 Initialtour Random Hendersonetal .(2003) 2) 11 ParameterSpaceDimensions 1 12 ParameterControlTuningFactor 0.047 3) Ingber(2006) 13 CostControlTuningFactor 0.047 3) (ibid.) 14 EdgeExchangeMode 2opt Koulamas etal .(1994) 15 EdgeExchangeSelectionMode Random (ibid.) 16 LocalSearch 1,8 (ibid.) 17 MaximumExpectedInLineEdges 7 18 EdgeLengthReductionConstant 0.05 19 LinkEdgeAngleRange [1°,1 °] 21 StartPosition(x,y) (25,25) 22 HorizontalandVerticalGridSpacing 50 Notes:1)CostandParameterTemperaturesannealed.2)Forcodeonly.3)Notroundedincode. Forthevalidationofthedredgecutnestingmodelallpenaltyfactorsandexponentsfor tourlengthandsumofturninganglesaresettounity(seeEquation5.10).InTable5.4, thevaluesforitems2to8inclusivearesettodefaultvaluestakenfromtheAdaptive SimulatedAnnealingCodeManualversion26.22(Ingber,2006).Thevalueforitem9is derivedfromJohnson(1990),whichstatesthatinitialacceptancetemperaturescanbe usedwhichare“roughly ”equaltohalftheaverageedgelengthoftheinitialrandomtour. Incontrasttoexploringcombinationsoffixedvaluesforparameterandcostcontroltuning factors,asdonefordredgecutnestingproblems,thevaluesofitems12and13inTable 5.4,arecalculatedaccordingtoguidelinesgiveninIngber(2006).Theseguidelines recommendusingthefollowingvaluesforthecontrolcoefficientsofEquation3.33(see Section3.5.4):

mi = −ln(0.01) (5.24)

ni = ln(99) (5.25) InTable5.4.valuesforitem16,thelocalsearch,aresetto1and8,thelattervaluebeing anupperlimitforlocalsearchrecommendedinKoulamas etal .(1994).Tovalidatethe dredgerroutingmodel,atotalof2differentroutingexperimentsarecarriedout,onewitha localsearchof1andtheotherwithlocalsearchof8.Eachexperimentof99,999base iterationswasrepeated20times,totallingapproximately18millioniterations.

78 MaterialsandMethods

5.4.2 Variation of Nesting Problem Variables Aftervalidation,theperformanceofthedredgecutnestingmodelisfurthertestedonfive subgroupsofadditionalnestingproblems,whichincludesanengineeringapplication. Table5.5givesthemainsettingsofthedredgecutnestingmodelusedfor all additional nestingproblems. Table5.5MainDredgeCutNestingmodelsettingsforalladditionalnestingproblems Item Description Value(s)/Setting Source 1 SampledStates 1,000 2 AnnealingLimitAcceptedStates 1,000 1) Ingber(1989) 3 AnnealingLimitGeneratedStates 1,000 2) Ingber(2006) 4 ReannealingLimitAcceptedStates 100 (ibid.) 5 ReannealingLimitGeneratedStates 1,000 6 StopLimitAcceptedStates 10,000 (ibid.) 7 StopLimitGeneratedStates 99,999 (ibid.) 8 InitialParameterTemperature 1.0 (ibid.) 9 InitialCostTemperatureFactor 1.0 10 InitialPlacement Random Yuping etal .(2005) 11 StencilModificationSelectionMode Sequential (ibid.) Notes:1)CostTemperatureannealedonly.2)ParameterTemperaturesannealedonly. Thefollowingsectionsdetailtheadditionalgroupsofnestingproblemsandthenesting problemsolvedintheengineeringapplicationofthedredgecutnestingmodel.

5.4.2.1 Dredge Cut Nesting – Relaxed Sheet Boundary Conditions

Thefirststageofevaluatingifthedredgecutnestingmodelcanbeusedforengineering applicationsconsistsofinvestigatingwhateffectincreasingthenumberofrelaxedsheet boundaryconditionshasonfinalnestsfortheirregularnestingproblemdepictedinFigure 5.5.Therelaxationofsheetboundaryconditionsconsistsofastepwiseincreaseinthe numberofsheetboundariesacrosswhichstencilscanescape. Itisthoughttheissueofhavingtoprovideforsetswithmanystencilsofdifferentsizeand shape,sothatallinnersheetdimensionscanbematched,canbeovercomebyproviding selectiveescaperegionsforstencils.Figure5.7depictsthethreemodifiedsheet arrangementsusedtoinvestigatetheeffectofsheetboundaryrelaxationonfinalnests.

79 MaterialsandMethods

Escape Escape Escape Region Region Region

Sheetwith Sheetwith Sheetwith 3Rigidsides 2Rigidsides 1Rigidside 1Freeside 2Freesides 3Freesides

Escape Region Figure5.7Sheetarrangementswithrelaxedboundaries. ThesamesetofstencilsasdepictedinFigure5.5,withasquareunitcutsidelengthof 100,isusedfornestinginthemodifiedsheetarrangementsshowninFigure5.7,therefore thetotalinnersheetareatototalstencilarearatioremains1:1.Table5.6givesthe specificsettingsofthedredgecutnestingmodelusedforthispartoftheexperimentation. Table5.6Specificmodelsettings–Irregularnesting–Relaxedsheetboundaries Item Description Value(s)/Setting Source 1 ParameterSpaceDimensions 42 Yuping etal .(2005) 2 SquareUnitCutSideLength 100 3 ParameterControlTuningFactor 3,4,5,6,7,8 Chen etal .(1999) 3,4,5,6,7,8, 4 CostControlTuningFactor (ibid.) 9,10,11 5 Totalstencilarea/innersheetarea 1.0 6 Sheetdimensions 800 ×400 Toinvestigatetheeffectofrelaxingsheetboundaryconditionsonfinalnestsallpenalty factorsandexponentsforescape,overlapandnonplacementaresettounityinthe dredgecutnestingmodel.Forthispartoftheexperimentationatotalof3 ×6 ×9=162 differentnestingexperimentsarecarriedout,oneforeachuniquecombinationofsheet arrangementandcontroltuningfactors.Eachexperimentof99,999iterationsisrepeated 20times,givingatotalofapproximately324millioniterations.

80 MaterialsandMethods

5.4.2.2 Dredge Cut Nesting – Reduced Sheet Areas Thesecondstageofevaluatingifthedredgecutnestingmodelcanbeusedfor engineeringapplicationsconsistsofinvestigatingtheeffectofchangingtheratiooftotal innersheetareatototalstencilareaonfinalnests.Fromnowonthisratioisreferredtoas thesheettostencilarearatio.Theeffectofchangingthisratioisinvestigatedforvariants oftheirregularnestingproblemtakenfromYuping etal .(2005)withtworelaxedinner sheetboundaryconditions.Changesinsheettostencilarearatiosconsistofstepwise reductionsofinnersheetdimensionswhilstmaintainingthetotalstencilareaconstant. Foragivensheet,Yuping etal .(2005)statesthatthenumberofstencilstobeusedina solvingirregularstockcuttingproblemsisthatwhichresultsinthetotalstencilareabeing “roughly ”equaltothesheetarea.Sincefeasiblesolutionstodredgecutnestingproblems arepermittedtoexhibitnonzeroescapeitisreasonabletoexpectthatasurplusofstencil areaisrequirediftheconditionofzerononplacementistobemet.Figure5.8depictsthe fourdifferentsheetarrangements,withtworelaxedboundaryconditionseach,usedinthis partoftheexperimentation.

Escape Escape Escape Escape Region Region Region Region

1:1.1 1:1.2 1:1.3 1:1.4

Figure5.8Reducedinnersheetareaarrangements. ThesamesetofstencilsasdepictedinFigure5.5,withasquareunitcutsidelengthof 100,isusedfornestinginthereducedinnersheetareasdepictedinFigure5.8,thereby giving,fromlefttoright,sheettostencilarearatiosof1:1.1,1:1.2,1:1.3and1:1.4.Table 5.7givesspecificsettingsofthedredgecutnestingmodelusedforinvestigatingtheeffect ofdecreasedinnersheetareasonfinalnestlayoutsofirregularnestingproblems.

81 MaterialsandMethods Table5.7Specificmodelsettings–Irregularnesting–Reducedinnersheets Item Description Value(s)/Setting Source 1 ParameterSpaceDimensions 42 Yuping etal .(2005) 2 SquareUnitCutSideLength 100 3 ParameterControlTuningFactor 3,4,5,6,7,8 Chen etal .(1999) 3,4,5,6,7,8, 4 CostControlTuningFactor (ibid.) 9,10,11 5 Totalstencilarea/innersheetarea 1.1,1.2,1.3,1.4 762 ×381, 730 ×365, 6 Sheetdimensions 702 ×351, 676 ×338 Toinvestigatetheeffectofdecreasinginnersheetareaforconstanttotalstencilarea,all penaltyfactorsandexponentsforoverlapandnonplacementinthedredgecutnesting modelaresettounity.Thepenaltyfactorforescape,however,issettozerotoeliminate itsinfluenceonnestingsolutions.Forthispartoftheexperimentationatotalof4 ×6 ×9= 216differentnestingexperimentsarecarriedout,oneforeachuniquecombinationof reducedsheetsizeandcontroltuningfactors.Eachexperimentof99,999iterationsis repeated20times,givingatotalofapproximately432millioniterations.

5.4.2.3 Dredge Cut Nesting – Reduced Sheet Areas for Square Stencils

Thethirdstageofevaluatingifthedredgecutnestingmodelcanbeusedforengineering applicationsconsistsofinvestigatingtheeffectofusingsquarestencilsonlyfornesting problemswithdecreasedinnersheetsandtworelaxessheetboundaries.Thisisdonefor thenestingproblemswithvaryingsheettostencilarearatiosdescribedinSection5.4.2.2. Thethirdsubgroupofexperimentsthereforeisalmostidenticaltothesecondsubgroup withtheexceptionthatthethirdsubgroupuses32squarestencilsgiving96parameter spacedimensionsinsteadof42fortheoriginalsetof14stencilsdepictedinFigure5.5. Apartfromthechangeinparameterspacedimensionsthespecificsettingsusedfor solvingthethirdsubgroupofadditionalnestingproblemsarethesameasthosegivenin Table5.7.Toinvestigateusingsquarestencilsonly,effectivelyregularizingthenesting problemssolved,atotalof4 ×6 ×9=216nestingexperimentsarecarriedout,onefor eachuniquecombinationofreducedsheetsizeandcontroltuningfactors.Each experimentof99,999iterationsisrepeated20times,givingatotalofapproximately432 millioniterations.

82 MaterialsandMethods

5.4.2.4 Dredge Cut Nesting – Cost Penalty Increase for Square Stencils Thefourthstageofevaluatingifthedredgecutnestingmodelcanbeusedforengineering applicationconsistsofinvestigatingtheeffectofincreasingpenaltyfactorsandexponents foroverlapandnonplacementcost.Thisisinvestigatedforthenestingof32identical squarestencilsinthesheetarrangementsdepictedinFigure5.8.Table5.8givesspecific settingsforthedredgecutnestingmodelusedforthefourthsubgroupofadditional nestingproblems. Table5.8Specificmodelsettings–Regularnesting–Increasedcostpenalties Item Description Value(s)/Setting Source 1 ParameterSpaceDimensions 96 2 SquareUnitCutSideLength 100 3 ParameterControlTuningFactor 10/9/11/9 4 CostControlTuningFactor 6/6/6/5 5 Totalstencilarea/innersheetarea 1.1/1.2/1.3/1.4 762 ×381/ 730 ×365/ 6 Sheetdimensions 702 ×351/ 676 ×338 7 Escapepenaltyfactor 0 8 Escapepenaltyexponent 0 9 Overlappenaltyfactor 41) Yuping etal .(2005) 10 Overlappenaltyexponent 11) (ibid.) 11 Nonplacementpenaltyfactor 50 1) (ibid.) 12 Nonplacementpenaltyexponent 21) (ibid.) Note:1)Penaltyvaluestakenfromreferencedsourcebutapplieddifferentlytodecisionvariables. Toinvestigatetheeffectofhighercostpenaltiesusingsquarestencilsonly,atotalof4 differentnestingexperimentsof99,999iterationsarecarriedout,eachofwhichis repeated20times,givingatotalofapproximately8millioniterations.

83 MaterialsandMethods

5.4.3 Variation of Routing Problem Variables Aftervalidation,theperformanceofthedredgerroutingmodelistestedonthreeadditional routingproblems,whichincludesanengineeringapplication.Table5.9givesthemain settingsofthedredgerroutingmodelusedfor all additionalroutingproblems. Table5.9MainDredgerRoutingmodelsettingsforalladditionalroutingproblems Item ParameterDescription Value/Setting Source 1 AnnealingLimitAcceptedStates 0 Ingber(2006) 2 AnnealingLimitGeneratedStates 1,000 1) (ibid.) 3 ReannealingLimitAcceptedStates 100 (ibid.) 4 ReannealingLimitGeneratedStates 10,000 (ibid.) 5 StopLimitAcceptedStates 10,000 (ibid.) 6 StopLimitGeneratedStates 99,999 (ibid.) 7 Initialtour Random Hendersonetal .(2003) 8 ParameterSpaceDimensions 12) 9 ParameterControlTuningFactor 0.047 Ingber(2006) 10 CostControlTuningFactor 0.047 (ibid.) 11 EdgeExchangeMode 2opt Koulamas etal .(1994) 12 EdgeExchangeSelectionMode Random (ibid.) Notes:1)CostandParameterTemperaturesannealed.2)Forcodeonly. Thefollowingsectionsdetailtheadditionalroutingproblems,includingtheproblemsolved intheengineeringapplicationofthedredgerroutingmodel.

5.4.3.1 Dredger Routing – 64 Node Square Grid Problem Thefirstadditionalroutingproblemsolvedwiththedredgerroutingmodelconsistsofa planarsquaregridproblemwith64nodesrepresentingthecentroidsofsquaredredgecut stencilsinanoptimumsolutionofahypotheticaldredgecutnestingproblem.Figure5.9 depictsthe64noderoutingproblemandTable5.10givesthespecificmodelsettings usedforsolvingthisproblem.

Figure5.9Squaregridroutingproblemwith64nodes.

84 MaterialsandMethods Table5.10Specificmodelsettings–Regularrouting–64Nodes Item Description Value/Setting Source 1 SampledStates 1,000 2 InitialCostTemperatureFactor 0.0079 Johnson(1990) 3 LocalSearch 1,8 Koulamas etal .(1994) 4 LinkEdgeAngleRange [1°,1 °] 5 HorizontalandVerticalGridSpacing 50 6 StartPosition(x,y) (25,25) 7 MaximumExpectedInLineEdges 7 8 EdgeLengthReductionConstant 0.05 Toinvestigatetheperformanceofthedredgerroutingmodelonthe64noderouting problematotalof2routingexperimentsarecarriedout,onewithlocalsearchof1andthe otherwithlocalsearchof8.Eachexperimentof99,999baseiterationsisrepeated20 times,givingatotalofapproximately18millioniterations.

5.4.3.2 Dredger Routing – 256 Node Square Grid Problem Thesecondadditionalroutingproblemsolvedwiththedredgerroutingmodelisaplanar squaregridproblemwith256nodesrepresentingthecentroidsofsquaresofanoptimum solutiontoahypotheticaldredgecutnestingproblem.Figure5.10depictsthe256node routingproblemandTable5.11givesthespecificmodelsettingsusedforoptimization.

Figure5.10Squaregridroutingproblemwith256nodes.

85 MaterialsandMethods Table5.11Specificmodelsettings–Regularrouting–256Nodes Item ParameterDescription Value/Setting References 1 SampledStates 1,000 2 InitialCostTemperatureFactor 0.0020 Johnson(1990) 1,8,16,32, 3 LocalSearch 64,128 4 LinkEdgeAngleRange [1°,1 °] 5 HorizontalandVerticalGridSpacing 50 6 StartPosition(x,y) (25,25) 7 MaximumExpectedInLineEdges 15 8 EdgeLengthReductionConstant 0.05 Toinvestigatetheperformanceofthedredgerroutingmodelonthe256noderouting problematotalof6routingexperimentsarecarriedout,withlocalsearchequalto1,8, 16,32,64and128.Eachexperimentof99,999baseiterationsisrepeated20times, givingatotalofapproximately498millioniterations.

5.4.4 Engineering Application Theperformanceofthedredgecutnestinganddredgerroutingmodelsforengineering applicationsisevaluatedbysolvingatwodimensionalcutplanningproblemforcutter suctiondredgersderivedfromtheLaemChabangPortProjectPhase2Stage1in Thailand.Figure5.11depictstheprojectinplanview.ThehatchedareaseeninFigure 5.11wasdredgedbetween1998and1999withthecuttersuctiondredger“Cyrus”,atthe timeoperatedbyDragomarS.p.A.ofItaly.

Figure5.11Engineeringapplication–Dredgingarea. 86 MaterialsandMethods AppendixBgivesadailydredgerreportshowingthatcuttersuctiondredger“Cyrus” achieveddredgecutwidthsofupto112metreswideontheLaemChabangPortProject. Forthedredger’smaincharacteristicsAppendixCisreferredto.

5.4.4.1 Dredge Cut Nesting – Engineering Application Whilstawaitingresultsoftheexperimentationonnestingproblems,over15different preliminarydredgecutnestingexperimentswerecarriedoutfortherealworlddredging areadepictedinFigure5.11.Themodelsettingsusedinthesepreliminaryexperiments werenotthosewhichperformedbestinothernestingexperiments,sinceresultsofthese experimentswerenotyetavailable.Someresultsofthispreliminaryexperimentationon therealworlddredgecutplanningproblemareofinteresttotheresearchpresentedhere becausetheyinfluencedthefinalshapesofescaperegionsandstencilsusedinthe engineeringapplicationofthedredgecutnestingmodel.However,themodelsettings usedforthepreliminaryexperimentsvaryconsiderablyanditisfeltthatclaritywouldbe lostiftheyareincludednow.Therefore,appendiceswithrelevantmodelsettings,willbe referredtoinSection6,ResultsandDiscussion ,ifandwhenpreliminaryresultsofthe engineeringapplicationofthedredgecutnestingmodelarementioned.Figure5.12 depictstheinnersheet,escaperegionsandasampleofasquareunitdredgecutusedin theengineeringapplicationofthedredgecutnestingmodel.

Figure5.12Engineeringapplication–Innerandoutersheets. 87 MaterialsandMethods AppendixDgivesthecoordinatepairsdefiningtheinnerandoutersheetsdepictedin Figure5.12.Figure5.13depictsthestencilsetusedintheengineeringapplicationofthe dredgecutnestingmodel.

Figure5.13Engineeringapplication–Stencilset. ThestencilsetinFigure5.13givesasheettostencilarearatiois1:1.439.Table5.12 givesthespecificsettingsusedintheengineeringapplicationofthedredgecutnesting model. Table5.12Specificmodelsettings–Irregularnesting–Engineeringapplication Item Description Value(s)/Setting Source 1 ParameterSpaceDimensions 21 2 SquareUnitCutSideLength 105 3 ParameterControlTuningFactor 7 4 CostControlTuningFactor 5 5 Totalstencilarea/sheetarea 1.439 6 Escapepenaltyfactor 0 7 Escapepenaltyexponent 0 8 Overlappenaltyfactor 41) Yuping etal .(2005) 9 Overlappenaltyexponent 11) (ibid.) 10 Nonplacementpenaltyfactor 50 1) (ibid.) 11 Nonplacementpenaltyexponent 21) (ibid.) Note:1)Penaltyvaluestakenfromreferencedsourcebutapplieddifferentlytodecisionvariables. Thevalueof105foritem2inTable5.12istakenfromthedailydredgerreportsgivenin AppendixB.Fortheengineeringapplicationofthedredgecutnestingmodel20 replicationsof99,999iterationsarecarriedout.

5.4.4.2 Dredger Routing – Engineering Application

Themodeloftherealworlddredgerroutingproblemisderivedfromafinalsolutionofthe engineeringapplicationofthedredgecutnestingmodel.Routenodesaremadeupof centroidsofthesquareunitdredgecutswhicharewhollyinsideorintersectaboundaryof theinnersheetrepresentingthedredgingarea.Figure5.14illustrateshowcentroidsof squareunitcutswhichintersectadredgingareaboundaryareselectedforinclusioninthe engineeringapplicationofthedredgerroutingmodel. 88 MaterialsandMethods

Figure5.14Engineeringapplication–Routenodeselection. Wheredredgecutstencilsoverlaptotheextentthatsquareunitcutsofonestencillie entirelywithinanotherstencilthefollowingguidelinesareusedfortheeliminationof unnecessaryroutenodes: 1) Routenodesofstencilsofbiggersizetakepriorityoverthoseofsmallerones. 2) Whenstencilsofequalsizeoverlap,routenodesofthestencilwhichoverlapswith thehighestnumberofotherequallysizedstencilstakepriority. 3) Whentwostencilsofequalsizeoverlapandeachoneoverlapswithanequal numberofotherequallysizedstencils,routenodesofthestencilwhichhasthe leastamountofescapetakepriority. Theselectionofvalidroutenodesextractedfromafinalsolutionoftheengineering applicationofthedredgecutnestingmodelisgiveninSection6whereresultsare presentedanddiscussed.Table5.13givesspecificmodelsettingsusedinthe engineeringapplicationofthedredgerroutingmodel. Table5.13Specificmodelsettings–Irregularrouting–Engineeringapplication Item Description Value/Setting Source 1 InitialCostTemperatureFactor ½(Totalnodes) 1 Johnson(1990) 2 LocalSearch 128 3 LinkEdgeAngleRange [1°,1 °] 4 StartPosition(x,y) 204,1625 5 HorizontalandVerticalGridSpacing Variable Fortheengineeringapplicationofthedredgerroutingmodel10replicationsof99,999 baseiterationsarecarriedout.Forclarity,Table5.14listsalltheexperimentswithashort descriptionandtheirmainobjectives,afterwhichresultsofallexperimentsarepresented anddiscussed.

89 MaterialsandMethods Table5.14Experimentationsummarywithobjectives No. Experiment Objective Section Irregularnesting–takenfrom ValidationofDredgeCutNesting 1 5.4.1.1 Yuping etal .(2005) Model Regularrouting–32nodes ValidationofDredgerRouting 2 5.4.1.2 derivedfromYuping etal .(2005) Modelforlocalsearchof1and8 Irregularnesting–withincreasing Toconcludeifallowingescapeof numberofrelaxedsheet 3 stencilsleadstobetterfinaldredge 5.4.2.1 boundariesandsheettostencil cutnestingsolutions arearatiosof1:1 Irregularnesting–with2of Toconcludeifprovidinganexcess relaxedsheetboundariesand 4 ofstencilarealeadstobetterfinal 5.4.2.2 sheettostencilarearatiosof dredgecutnestingsolutions 1:1.1,1:1.2,1:1.3and1:1.4 Regularnesting–with2of Toconcludeifirregularorregular relaxedsheetboundariesand 5 stencilsleadtobetterfinaldredge 5.4.2.3 sheettostencilarearatiosof cutnestingsolutions 1:1.1,1:1.2,1:1.3and1:1.4 Regularnesting–with2of relaxedsheetboundariesand Toconcludeifrevisedcost 6 sheettostencilarearatiosof penaltiesleadtobetterfinaldredge 5.4.2.4 1:1.1,1:1.2,1:1.3and1:1.4with cutnestingsolutions revisedcostpenalties Toconcludeifforlocalsearchof1 7 Regularrouting–64nodes and8optimaldredgerroutescanbe 5.4.3.1 found Toconcludeifforlocalsearchof1, 8 Regularrouting–256nodes 8,16,32,64and128optimal 5.4.3.2 dredgerroutescanbefound ToconcludeiftheDredgeCut Irregularnesting–engineering 9 NestingModelcanoptimizeareal 5.4.4.1 application worldproblem ToconcludeiftheDredgerRouting Irregularrouting–engineering 10 Modelcanoptimizearealworld 5.4.4.2 application228nodes problem

90 ResultsandDiscussion

6 Results and Discussion Thissectionpresentsanddiscussesresultsofexperimentsinthesameorderasthe previoussectiondescribedthesubgroupsofnestingandroutingexperiments.

6.1 Validation of Dredge Cut Nesting Model Onaverageeachvalidationnestingexperimentof99,999iterationsrequired22.83 minutestocomplete.Theaverageof22.83minutesobservedhereismuchhigherthan thesolutiontimeof1.22minutesreportedinYuping etal .(2005)forthesamenesting problem,especiallysinceYuping etal .(2005)reportshavingusedacomputerwitha processorspeedof333megahertzand128megabytesofrandomaccessmemory.Itis notknowniftheexperimentsofYuping etal .(2005)wererunforthesamenumberof iterationsasdonehere.Althoughnotexplicitlymentioned,itispossiblethatYuping etal . (2005)usedstoppingcriteriaforearlyterminationofnestingoptimizationprocesses.Also, Yuping etal .(2005)doesnotexplicitlystatehowstencilswererotatedduringthenesting process,butintheoriginalsolutionapproachofJain etal .(1998)stencilswererotatedin stepsof90degreesonly.Themodelusedhereallowsfornearcontinuousrotationof stencils,androtationanglesexpressedtothenearest1×10 9ofadegreewereobserved. Withearlystoppingcriteriaandbylimitingstencilrotationitisthoughtsolutiontimescan bereduced,butalimitationontherotationofstencilscanreducetheeffectivenessofthe dredgecutnestingmodeltocopewithnestinginirregularsheetswithboundarieswhich arenotparalleltocoordinateaxes.Figure6.1depictsanexampleofarandominitial placementofstencilsusedasaninitialsolutionatthestartofthenestingoptimization process,whichhasanoverlapareaequalto47.71%andanonplacementareaequalto 47.70%ofthesheetarea.

Figure6.1Randominitialnest–Irregularnesting–Validation. ThedifferenceinoverlapandnonplacementcalculatedforthenestinFigure6.1is explainedafterTable6.1.Table6.1presentstheresultsofthevalidationexperimentfor 91 ResultsandDiscussion thedredgecutnestingmodel.Valuesofoverlapandnonplacementgivenarefor20 replicationscarriedout,andareexpressedasapercentageoftotalsheetarea. Table6.1Irregularnesting–Sheettostencilarearatio1:1 Tuning Factor Overlap(%ofSheetArea) Nonplacement(%ofSheetArea) Parameter /Cost σ Min Max σ Min Max 3/3 36.14 4.91 27.62 43.32 36.16 4.92 27.63 43.35 3/4 9.77 2.59 6.88 16.57 9.77 2.60 6.89 16.58 3/5 5.17 1.26 3.38 8.35 5.17 1.26 3.37 8.34 3/6 7.00 1.93 4.26 10.96 7.00 1.93 4.26 10.96 3/7 7.23 2.61 3.73 12.82 7.23 2.62 3.74 12.83 3/8 6.67 2.05 3.02 11.16 6.67 2.05 3.03 11.16 4/3 36.84 4.10 27.29 45.64 36.85 4.10 27.31 45.66 4/4 8.32 2.24 5.24 15.18 8.33 2.24 5.25 15.19 4/5 4.38 1.76 2.44 7.88 4.39 1.76 2.45 7.88 4/6 6.42 1.85 3.19 10.92 6.43 1.85 3.19 10.93 4/7 6.29 2.46 2.35 12.57 6.29 2.46 2.36 12.58 4/8 5.08 2.14 1.75 9.74 5.08 2.14 1.75 9.75 5/3 37.28 3.87 29.50 44.32 37.30 3.87 29.51 44.34 5/4 5.68 2.22 2.65 12.68 5.70 2.22 2.67 12.68 5/5 3.43 1.90 1.78 9.35 3.44 1.90 1.79 9.37 5/6 4.26 2.68 1.28 9.65 4.26 2.68 1.27 9.66 5/7 4.96 2.73 1.15 10.29 4.96 2.73 1.15 10.30 5/8 5.37 3.07 0.97 11.65 5.37 3.07 0.98 11.65 6/3 36.65 4.48 25.50 43.77 36.67 4.48 25.52 43.79 6/4 4.62 1.70 1.89 9.09 4.63 1.70 1.89 9.09 6/5 1.36 1.36 0.50 4.82 1.36 1.36 0.51 4.82 6/6 3.05 2.30 0.35 8.52 3.05 2.30 0.35 8.52 6/7 4.33 2.88 0.93 9.54 4.34 2.88 0.93 9.54 6/8 4.81 2.79 0.38 8.87 4.81 2.79 0.38 8.83 7/3 36.65 2.37 32.36 40.63 36.66 2.38 32.37 40.64 7/4 3.01 0.78 1.84 4.82 3.02 0.78 1.84 4.84 7/5 1.70 2.32 0.20 7.52 1.71 2.32 0.21 7.54 7/6 3.08 3.08 0.12 10.06 3.08 3.08 0.12 10.07 7/7 4.22 2.94 0.07 9.34 4.22 2.94 0.08 9.35 7/8 5.56 2.65 0.28 8.74 5.56 2.65 0.26 8.75 8/3 35.76 4.94 25.72 48.95 35.78 4.94 25.74 48.96 8/4 2.06 1.12 0.32 5.45 2.07 1.13 0.33 5.46 8/5 2.40 2.33 0.02 6.76 2.40 2.33 0.02 6.78 8/6 3.81 1.59 0 6.63 3.81 1.59 0 6.64 8/7 3.11 2.12 0 8.42 3.11 2.11 0 8.43 8/8 4.10 2.72 0 8.88 4.09 2.72 0 8.83 9/3 36.68 4.74 29.99 45.10 36.70 4.74 30.01 45.11 9/4 1.24 0.83 0.54 4.20 1.25 0.83 0.54 4.22 9/5 2.38 2.43 0 5.77 2.38 2.44 0 5.83 9/6 4.11 2.36 0 7.31 4.11 2.36 0 7.31 9/7 3.70 2.61 0 8.79 3.69 2.61 0 8.77 9/8 4.18 2.43 0 7.62 4.16 2.42 0 7.60 10/3 35.41 3.36 28.04 41.44 35.42 3.36 28.08 41.45 10/4 0.83 0.67 0.27 2.99 0.84 0.67 0.28 3.01 10/5 2.33 2.76 0 7.33 2.34 2.77 0 7.33 10/6 3.14 2.81 0 8.53 3.14 2.81 0 8.55 10/7 4.39 2.80 0 8.89 4.38 2.80 0 8.90 10/8 4.55 3.72 0 11.99 4.53 3.71 0 11.99 11/3 35.08 4.91 27.32 45.77 35.10 4.91 27.35 45.78 11/4 1.14 1.59 0.08 7.16 1.15 1.59 0.08 7.18 11/5 1.42 2.39 0 8.05 1.43 2.40 0 8.07 11/6 3.47 2.75 0 8.55 3.47 2.76 0 8.56 11/7 3.54 3.25 0 11.50 3.53 3.25 0 11.53 11/8 5.60 3.18 0 10.57 5.58 3.18 0 10.54 Table6.1showsthatonaveragethebestfinalnestswereobtainedwithaparameter tuningfactorof10andacosttuningfactorof4.TherelevantrowinTable6.1isgrey scaledandminimumaveragesaregiveninboldtext.AsmentionedforthenestinFigure 6.1,Table6.1showssmalldifferencesinaveragevaluesforoverlapandnonplacement foreachpairofcontroltuningfactors.Whenescapeisnotallowedandthetotalstencil areaisequaltothesheetarea,Equations5.2and5.3(seeSection5.2)arethesame, 92 ResultsandDiscussion andthereforeareasofoverlapandnonplacementshouldbeequalforeverynestfound. InTable6.1thisisnotreflected.Thedifferencesinvaluesforoverlapandnonplacement arethoughttobetheresultofthestandardCsharpmethodsusedinthecodeofthe dredgecutnestingmodeltocalculateareasofpolygons.Yuping etal .(2005)reported havingusedtheWeileralgorithm(Weiler,1980)forpolygoncomparison.Tocalculate areasofpolygonsinthecodeofthedredgecutnestingmodel,correspondingregions werefilledwithalimitednumberofnonoverlappingrectangleswithsidesparalleltothe coordinateaxes.Next,theareasumoftheserectangleswascalculatedandtakenasthe areaofthepolygonconsidered.Polygonedges,asshowninFigure6.1,werenotalways paralleltothecoordinateaxesandbecausethenumberoffillingrectanglesislimited, polygonswerenotalwayscompletelycovered.Theincompletecoverageofpolygon regionsiswhatmusthavecausederrorsincalculatingoverlapandnonplacementareas, intheorderofthedifferencesseeninTable6.1.Theaveragedifferencebetween percentagevaluesofoverlapandnonplacementobservedwas0.008%,withamaximum of0.025%ofthetotalsheetarea.Figure6.2depictsanoverviewofaveragefinalcostsof overlapandnonplacementexpressedaspercentagesoftotalsheetarea.

Figure6.2Overviewirregularnestingresults–Validation. 93 ResultsandDiscussion Figure6.2showsthatfinalcostsaremoresensitivetothevalueofthecosttuningfactor thantothatoftheparametertuningfactor.Italsoshowsthatusingacosttuningfactorof 3consistentlyresultedinthepoorestfinalnestlayouts,indicatingalackinannealingof theacceptancefunctiontobelowthethresholdrequiredforfindingminima.Figure6.2 showsthatforacosttuningfactorof4acleartrendofimprovedfinalnestlayoutswas observeduptoaparametertuningfactorof10,afterwhichaslightincreaseinfinalcosts wasobservedforaparametertuningfactorof11.Noneoftheothercosttuningfactors usedshowedsuchacleartrendfordifferentvaluesofparametertuningfactors.Thelack ofclearertrendscanbetheresultofthelimitednumberofreplications(20foreach experiment)thatwerecarriedout.Table6.2comparesthebestperformingpairoftuning factorvaluesidentifiedherewithvaluesused/recommendedinliterature(seeEquations 3.33,5.24and5.25). Table6.2AdaptiveSimulatedAnnealingsettingsfordifferentapplications DredgeCutNesting LeatherNesting SignalProcessing A.S.A.Theory Variable Validation (Yuping etal .,2005) (Chen etal .,1999) (Ingber,2006) ParameterSpace Dimensions 42 45 2and4 42 30 5 ControlCoefficientm i ln(1 ×10 ) ln(≥1 ×10 )

ControlCoefficientn i ln(200) ln(100) ParameterTuning Factor 10 61.40 [1,10] ≤10.32 Cost TuningFactor 4 61.40 [1,10] ≤10.32 Table6.2showsthatvaluesofparameterandcosttuningfactorsforwhich,onaverage, thebestnestingresultswereobtainedhere,fallwithinthetheoreticalranges recommendedinIngber(2006).Ifthevaluesoftheparameterandcosttuningfactors wouldhaveexceededthevaluesrecommendedinIngber(2006)thenthestatistical guaranteeoffindingglobaloptimawouldhavebeenlostbecausesimulatedquenching wouldhavebeencarriedoutinstead.Thiscouldhavebeenthecaseintheleathernesting experimentscarriedoutinYuping etal .(2005)forwhich,asshowninTable6.2,itis thoughtamuchhighervalueof61.40wasusedfortheparameterandcosttuningfactor. Yuping etal .(2005)actuallystateshavingusedavalueofln(1 ×10 30 )=69.08forthe controlcoefficient mi(seeEquation5.24).However,anegativevalueforthecontrol coefficient miwouldleadtonegativevaluesoftuningfactors(seeEquation3.33),inthe caseofYuping etal .(2005)minus61.40,whichinturnwouldgivenegativevaluesof rescaledannealingtimesforunevenparameterspacedimensions(seeEquation3.35). Negativeannealingtimeswillinturncauseanincreaseinannealingtemperaturesasthe solutionprocessprogresses(seeEquation3.32),thereforeheatinginsteadofannealing thesystem.SincetheleathernestingproblemsolvedinYuping etal .(2005)has45 parameterspacedimensions,anunevennumber,itisthoughtthatavalueofplus61.40

94 ResultsandDiscussion wasusedfortuningfactorsinstead,otherwisethenestingprocessescouldnothave convergedtoglobaloptimaasreportedinYuping etal .(2005).Ifso,thenitcanbesaid thatinYuping etal .(2005)theleathernestingproblemwasindeedsolvedbyadaptive simulatedquenchinginsteadofadaptivesimulatedannealing. Theparameterandcosttuningfactorvaluesof10and4whichperformedbestherealso fallwithintheboundsrecommendedinChen etal .(1999).Whenthedefaultvaluesfor controlcoefficientsinTable6.1areusedforparameterspacedimensionsof2and4, valuesfortuningfactorsof1.15and3.64arearrivedat,respectively.ConsideringFigure 6.2,whichshowspoorresultsforacosttuningfactorof3,itisthoughttheuseofacost tuningfactorof1.15forthenestingproblemdiscussedherewouldhavegivenequally poororworseresults. Thedifferenceinparameterspacedimensionsbetweenproblemssolvedhereandin Chen etal .(1999)wasinitiallyoverlookedatthestageofexperimentaldesign:Originally, onlytheuseofparametertuningfactorvaluesbetween3and8wasforeseen,which coveredthemajorityoftherangeof1to10recommendedinChen etal .(1999).Further totheperceivedshortageofgoodqualityfinalnests,asconfirmedbyvisualinspectionof allfinalnests,additionalexperimentswerecarriedoutforparametertuningfactors9,10 and11. All1,080finalnestlayoutswereinspectedvisuallyfornearnesstoglobaloptima.The criterionusedwassubjective,andwassatisfiedifitwasthoughtthatbyfurthersimulated annealingorquenchingthefinalnestobservedwaslikelytoconvergetoanestwithzero overlapandzerononplacement.Withtheresultsofvisualinspectionsitcanbeargued thatforparameterandcosttuningfactorcombinationsof6/4,7/4,8/4,9/4and10/4, 20outof20finalnestsatisfythissubjectivecriterion.Thesetuningfactorvaluesareall withinthetuningfactorvaluerangesrequiredforfindingglobaloptimaasrecommendedin Ingber(2006).Figure6.3depictsthefinalnestwiththehighestfinalcostwhichwasstill considerednearoptimal,andwhichwasfoundforaparameterandcosttuningfactor combinationof6and4.

95 ResultsandDiscussion

Figure6.3Suboptimalnest–Irregularnesting–Validation. ThenestshowninFigure6.3hasanoverlapareaandanonplacementareaeachequal to9.09%ofthesheetarea.Figure6.4depictsthebestlocalminimumfinalnestfound, whichhasanoverlapareaequalto2.63%,andanonplacementareaequalto2.57%of thesheetarea.Figures6.3and6.4illustratetheusefulnessofvisuallyinspectingfinal nests:ThefinalcostofthenestdepictedinFigure6.3isapproximately4timeshigher thanthatofthenestdepictedinFigure6.4.However,thenestinFigure6.4was consideredalocalminimumwhichisunlikelytoconvergetoanestwithzerooverlapand zerononplacementafterfurthersimulatedannealingorquenching.

Figure6.4Localminimumnest–Irregularnesting–Validation. Table6.1alsoshowsthatthedredgecutnestingmodeliscapableofarrivingatfinalnests whichexhibitzerooverlapandzerononplacement.Figure6.5showsthepercentagesof 20finalnestswhichexhibitedzerooverlapandzerononplacementandgivesthe parameterandcosttuningfactorswithwhichtheywerearrivedat.

96 ResultsandDiscussion

35% 35%

30% 30% factors) 25% 25%

20%

15% 15% 15% 15%

10% 10% 10% 10% % Solutions with Zero and Overlap Non-Placement 5% 5% 5% 5% 5% 5%

(For 20 combination Replications for each of tuning 5%

0% 8/6 8/7 8/8 9/5 9/6 9/7 9/8 10/5 10/6 10/7 10/8 11/5 11/6 11/7 11/8 Parameter / Cost Tuning Factor Combination

Figure6.5Percentagesglobalminima–Validation. Figure6.5showsthat,outofatotalof1,080nestingexperimentscarriedout,only39of thefinalnestsfound,exhibitedzerooverlapandnonplacement,whichequatestoa successrateof3.61%.Thehighestpercentageof35%(7outof20)inFigure6.5was observedforaparametertuningfactorof11andacosttuningfactorof5.Atuningfactor valueof11isgreaterthanthemaximumof10.32recommendedinIngber(2006),and thereforetheuseofatuningfactorof11canbesaidtohavecompromisedtheergodicity oftheadaptivesimulatedannealingbasedsolutionprocess.Figure6.6depictsthefirst finalnestfoundwithzerooverlapandzerononplacement,whichwasobtainedwitha parametertuningfactorof11andacosttuningfactorof5.

Figure6.6Globalminimumnest–Irregularnesting–Validation. 97 ResultsandDiscussion Forthenestingproblemdiscussedhere,ifthestatisticalguaranteeoffindingaglobal optimumistobemaintainedthenvaluesoftuningfactorsshouldnotexceedthose recommendedinIngber(2006).However,resultsobtainedherewithvaluesoftuning factorswhichguaranteefindingaglobaloptimumandwhichsatisfythezeronon placementconstraintofthedredgecutnestingmodel(seeConstraint5.5),gaveatmost5 satisfactoryfinalnestsoutof20replicationsforthebestperformingpairoftuningfactors, or22satisfactoryfinalnestsoutofatotalof980experimentscarriedout.Thisequatesto asuccessrateof2.24%.Thissuccessrateislowerthanthe3.61%achievedwhen simulatedquenchingofparametertemperaturesisaccepted. Itisthoughtthatinvalidatingtheguaranteeoffindingaglobaloptimumbyusinga parameterandcosttuningfactorcombinationof11and5canbeacceptedforthenesting problemsolvedhereiffindingagreaternumberoffinalnestswhichexhibitzeronon placementisseenasimportant,inthiscaseanincreaseof10%(upfrom5to7outof20). Anotherreasonforacceptingtheuseofavaluewhichgoesagainsttheorycanbethatit wasusedasatuningfactorwhichinfluencesparametertemperaturesforstencilmotion, which,asseeninFigure6.2,doesnotaffectfinalcostsasmuchasthevalueofthecost tuningfactor.Forthenestingproblemdiscussedhere,morecautionshouldbetaken whenusingcosttuningfactorvalueswhichareoutsidethetheoreticalrange. Despiteachievinglowoverallsuccessrates,theglobalminimainFigure6.5validatethe dredgecutnestingmodelfortheirregularnestingproblemwith14stencilstakenfrom Yuping etal .(2005).Thefactthat7oftheglobalminimainFigure6.5wereobtainedwith aparametertuningfactorvalueoutsidetherecommendedupperboundhighlightsa criticismoftenlevelledatsimulatedannealingbasedsolutionapproaches.Thiscriticismis thatinsomeinstancessimulatedannealingcanbeaverypooralgorithmtosearchfor globaloptima,whichleadstosimulatedquenchingbasedsolutionapproachesbeing adoptedinstead(Ingber,1993). Thelowsuccessratesoffindingfinalnestswithzerooverlapandzerononplacement obtainedheresuggestthattheadaptivesimulatedannealingalgorithmisnotwellsuitedto searchingforglobaloptimaoftheirregularnestingproblemdiscussedhere.However,as notedinIngber(1993),tosomeextentthelowsuccessratescanbeconsideredtohave beenoffsetbytherelativeeasewithwhichthedredgecutnestingproblemwas approachedandcoded.Incontrasttothe4,000linesofcodedevelopedheretooptimize nestingproblems,Heistermann etal .(1995)reportsthattheimplementationofaheuristic greedyalgorithmtosolveleathernestingproblemsforindustrialuserequired115,000 linesofcode.Validationresultsforthedredgerroutingmodelarepresentedand discussednext. 98 ResultsandDiscussion

6.2 Validation of Dredger Routing Model UsingEquations5.19and5.20forthe32noderoutingproblem,withasquaregrid spacingof50,theminimumroutelengthis1,550andtheminimumsumofturningangles is540degrees.Figure6.7depictsarandomrouteusedasaninitialsolutionatthestartof theroutingoptimizationprocess.Theroutelengthandthesumofturninganglesofthe routedepictedinFigure6.7are5,120.48and3,610.08degrees,respectively.

Figure6.7Randominitialroute–Regularrouting–Validation.

TheinitialroutedepictedinFigure6.7doesnothaveanylinks,whileforthe32node routingproblem,withasquaregridspacingof50,themaximumlinklengthis350andthe optimumnumberofmaximumlengthlinksis4(seeEquations5.21an5.22).Table6.3 reportsthemean,,standarddeviation,σ,andminimumandmaximumofrouteattributes for20finalroutesarrivedatforlocalsearch,LS,valuesof1and8forthevalidationofthe dredgerroutingmodelonthe32nodesquaregridroutingproblemsolvedhere.

Table6.3RegularRouting–32Nodes

LS σ Min Max

1 1,555.61 17.90 1,550.00 1,620.71 Route 8 1,552.07 9.26 1,550.00 1,591.42 Length(m)

1 549.00º 27.70º 540.00º 630.00º

Angles 8 567.00º 120.75º 540.00º 1,080.00º SumTurning

1 334.21 35.86 214.29 350.00

8 335.67 40.31 183.33 350.00 Length(m) AverageLink

99 ResultsandDiscussion Foralocalsearchof1each32noderoutingexperimentof99,999baseiterationson averagetook13.35minutestocomplete,whereaseachexperimentwith99,999base iterationsandalocalsearchof8onaveragetook17.23minutestocomplete.Foralocal searchof1thedredgerroutingmodelfoundfinalrouteswithoptimumroutelengthsand sumsofturningangles17outof20timesandforalocalsearchof8itdidso19outof20 times.TheseresultscorrespondwithKoulamas etal .(1994)which,forasimulated annealingbasedsolutionapproach,reportedfindingimprovedfinaltoursofsymmetric travellingsalespersonproblemswhenlocalsearchwasincreasedfrom1to8. Ofthe17finalroutesfoundwithalocalsearchof1whichhadoptimalroutelengthsand sumsofturningangles,16alsohad4maximumlengthlinks,givingthemanoptimal averagelinklengthof350.Therefore,16outof20routesfoundwithalocalsearchof1 wereoptimaldredgerroutes.Figure6.8depictsthefirstoptimaldredgerroutearrivedat withalocalsearchof1andthedepictedrouteisidenticaltoallotheroptimaldredger routesfound.Itshouldbenotedthattheywereidenticalbecauseofthefixedstarting position.

Figure6.8Optimalroute–Regularrouting–Validation. Figure6.9onthenextpagedepictstheonefinalroutefoundwithalocalsearchof1 whichhadanoptimalroutelengthandsumofturningangles,butwhichonlyhad3 maximumlinklengths.TheoptimalrouteinFigure6.8hasanaveragelinklengthof350 whereasthenearoptimalrouteinFigure6.9hasanaveragelinklengthof290.

100 ResultsandDiscussion

Figure6.9Nearoptimalroute–Regularrouting–Validation–Localsearch1. Figures6.8and6.9highlighttheintendedeffectwhichtheedgelengthreductionfactor (seeEquation5.23)hasontheaveragelinklengthoffinalroutes.Withoutanedge reductionfactorthedredgerroutingmodel,givenenoughreplications,wouldfindfinal routeslikethosedepictedinFigures6.8and6.9inequalmeasure,butasanoptimal dredgerrouteonlyroutesliketheoneinFigure6.8shouldbeaccepted. Foralocalsearchof8,allofthe17outof20routesfoundwithoptimalroutelengthsand sumsofturningangleswerealsofoundtohave4maximumlengthlinks.Foralocal searchof8oneexceptionalfinalroutewasfound,whichhadasumofturninganglesof 1,080.00degrees,exactlydoubletheoptimum,andhadanaveragelinklengthof183.33, approximatelyhalftheoptimum.Figure6.10depictstherelevantfinalroute.

Figure6.10Suboptimalroute–Regularrouting–Validation–Localsearch8. ThefinalrecordoftheoptimizationprocessleadingtothefinalroutedepictedinFigure 6.10showsthatthebesteverrecordedroutelengthandsumofturningangleswereboth

101 ResultsandDiscussion optimalatsomepoint.However,norecordofthecorrespondingaveragelinklength exists.Itisreasonabletoassumethatincreasinglocalsearchnotonlyincreasesthe probabilityoffindingbetterroutesbutalsoincreasestheprobabilityoffindingworse routeswithsmallercostdifferencesfromcurrentroutes.Therefore,asincreasingthelocal searchfrom1to8increasesprobabilitiesofacceptingworseroutes,itcanalsoincrease theprobabilityofescapingfromglobalminima. Ingeneral,itisthoughtthefinalroutedepictedinFigure6.10resultedfromhaving escapedaglobalminimumwithanoptimumaveragelinklength.Inparticular,itisthought alocalsearchof8couldhaveadverselyaffectedthebenefitsnormallyexperiencedfrom reannealingeventsintheadaptivesimulatedannealingalgorithmandhaveencouraged theundesiredescapefromaglobalminimum.Ithasalreadybeenstatedthatincreasing localsearchincreasesprobabilitiesofacceptingbetterandworsestates.Whenre annealingoccursthecurrentsolutioncostisstoredandusedatthenextannealingevent torescaletheacceptancetemperature.Increasednumbersofacceptancesofbetter statesleadtomorefrequentreannealing,especiallyintheearlystagesofthe optimizationprocesswhenmostlybetterstatesarefound,evenmoresowithalocal searchof8.Thisinturn,afterannealing,leadstoreductionsintheacceptance temperatureandthereforehasapositiveeffectontheoptimizationprocess. Forthispartoftheexperimentationreannealingwascarriedoutevery100acceptances ofbetterstatesandafterevery10,000consecutiveiterationsduringwhichnobetterstate wasaccepted.Annealingwascarriedoutevery1,000generatedstates,irrespectiveofthe numberofbetterstatesaccepted.Reannealingbasedongeneratedstates(causedbya lackofacceptancesofbetterstates)doesnottendtooccurintheearlystagesofthe optimizationprocess.Despitethatnocontinuousrecordsofannealingprogresswere madeforthispartoftheexperimentation,itisthoughtthatareannealingeventtriggered ataverylatestageofthesolutionprocess,whichsubsequentlywasnotfollowedby enoughannealingevents,playedasignificantpartinarrivingatthesuboptimalfinalroute depictedinFigure6.10.Theuseofalocalsearchof8madefindingsuchafinalroute morelikelythanwhenalocalsearchof1wasused. Overalltheresultspresentedinthissectionvalidatethedredgerroutingmodelfor32node continuoussquaregridroutingproblemsofrectangularshape.Themajorityoffinalroutes foundwereoptimaldredgerrouteswithoptimalaveragelinklengths.Withalocalsearch of1asuccessrateof80%wasachievedandwithalocalsearchof8thisrateincreased to85%.Resultsofexperimentswithnestingproblemsofincreasedcomplexityare presentednext,startingwithresultsobtainedfornestingproblemswithrelaxedinner sheetboundaries. 102 ResultsandDiscussion

6.3 Dredge Cut Nesting – Relaxed Sheet Boundaries Experimentalresultsobtainedfromtheapplicationofthedredgecutnestingmodelto irregularnestingproblemswithincreasingnumbersofrelaxedsheetboundariesare presentedinTables6.4,6.5and6.6,whichreportthemean,,standarddeviation,σ,and minimumandmaximumofvaluesofescape,overlapandnonplacementfor20 replicationscarriedoutforeachpairoftuningfactors.Escape,overlapandnonplacement areexpressedasapercentageofthetotalinnersheetareaused. Table6.4Irregularnesting–1Relaxedsheetboundary Tuning Factor Escape(%ofSheetArea) Overlap(%ofSheetArea) Nonplacement(%ofSheetArea) Parameter /Cost σ Min Max σ Min Max σ Min Max 3/3 8.79 4.75 1.28 17.25 29.84 5.85 19.39 40.64 38.66 3.73 31.73 45.38 3/4 1.21 0.87 0.09 3.38 10.31 2.44 6.82 15.94 11.53 2.43 7.82 18.04 3/5 0.99 0.95 0.02 3.58 6.70 1.71 4.08 10.44 7.69 1.60 5.39 10.86 3/6 1.29 1.05 0.08 3.39 7.37 1.82 4.52 10.99 8.66 1.66 5.81 12.06 3/7 0.78 0.74 0.03 3.07 7.80 2.15 3.28 11.23 8.58 2.07 4.52 11.54 3/8 1.59 1.10 0.01 3.93 7.76 1.62 4.11 10.17 9.36 1.48 6.48 12.10 4/3 7.89 3.63 1.16 15.59 29.21 5.89 17.74 43.21 37.12 6.05 27.80 56.48 4/4 0.87 0.77 0.05 3.15 9.09 2.40 4.96 14.05 9.96 2.63 5.97 15.07 4/5 0.81 0.65 0.12 2.92 4.98 1.92 2.43 9.55 5.80 2.04 2.74 11.16 4/6 0.80 1.18 0.01 4.37 6.66 1.93 3.45 10.09 7.47 2.34 3.60 13.07 4/7 1.58 1.13 0.02 3.91 5.38 1.66 2.63 8.94 6.96 1.97 3.25 10.14 4/8 1.49 1.20 0.01 4.61 6.26 2.40 2.40 10.30 7.76 2.20 3.31 10.81 5/3 7.58 5.53 0.41 20.91 30.56 6.51 20.42 38.24 38.15 4.73 27.75 44.04 5/4 1.31 1.40 0.03 5.01 6.98 2.08 3.03 11.75 8.30 2.42 3.70 12.26 5/5 0.48 0.90 0 3.77 3.60 1.33 2.09 6.46 4.08 1.40 2.16 6.46 5/6 0.76 1.03 0.06 3.13 4.95 2.25 1.28 9.42 5.72 2.41 1.88 9.65 5/7 1.50 1.29 0.02 3.27 4.58 2.00 1.24 9.59 6.08 1.81 2.29 9.62 5/8 1.67 1.28 0 4.87 5.54 1.96 1.52 8.32 7.22 2.37 1.74 10.47 6/3 8.79 5.07 0.22 17.83 30.79 5.61 19.33 40.40 39.60 3.99 28.82 48.26 6/4 0.55 0.54 0 2.11 6.44 2.71 3.39 12.35 7.00 3.03 3.58 14.47 6/5 0.59 0.80 0.03 3.15 2.85 2.13 0.73 9.10 3.45 2.46 0.77 10.15 6/6 1.06 1.13 0.02 3.52 3.25 2.57 0.42 7.26 4.31 2.77 0.64 9.03 6/7 1.38 1.24 0 3.34 5.56 2.26 1.07 9.11 6.95 2.05 1.08 9.75 6/8 0.92 1.01 0.04 3.08 5.10 2.87 0.43 9.11 6.02 3.11 0.50 11.03 7/3 9.14 5.07 3.22 19.55 30.54 4.35 19.42 38.34 39.70 4.31 31.30 47.01 7/4 0.30 0.20 0.03 0.66 3.68 2.03 1.75 11.28 3.99 2.06 1.93 11.75 7/5 0.26 0.53 0 2.29 1.85 1.98 0.23 6.73 2.11 2.13 0.35 7.42 7/6 0.64 0.97 0 3.14 2.85 2.29 0.10 7.22 3.49 2.66 0.23 7.50 7/7 0.99 1.03 0 3.09 4.16 2.64 0.12 8.02 5.16 2.70 0.30 8.98 7/8 1.47 1.27 0 3.22 3.92 2.69 0.17 9.74 5.38 2.37 0.17 10.19 8/3 9.34 5.47 1.37 20.98 29.21 4.58 22.46 36.88 38.57 3.98 31.54 47.77 8/4 0.33 0.59 0.03 2.77 2.68 1.68 1.33 9.15 3.03 2.23 1.37 11.95 8/5 0.54 0.96 0 3.25 2.32 2.37 0.14 6.66 2.87 2.49 0.18 7.22 8/6 0.93 1.32 0 3.15 2.40 2.25 0.01 7.45 3.33 2.05 0.01 7.52 8/7 1.35 1.67 0 5.87 5.21 2.75 0.06 10.85 6.56 2.71 0.06 10.85 8/8 0.96 1.18 0 3.47 4.88 2.57 0.05 8.68 5.83 2.45 0.08 9.06 9/3 7.78 3.90 1.66 15.16 29.40 4.99 21.76 38.76 37.20 3.39 31.43 44.36 9/4 0.20 0.25 0 1.09 2.13 2.12 0.38 8.83 2.35 2.31 0.41 9.32 9/5 0.77 1.17 0 3.10 2.24 1.89 0.03 5.95 3.01 2.03 0.03 7.28 9/6 0.48 0.82 0 3.11 3.72 2.35 0.12 7.97 4.21 2.49 0.12 8.04 9/7 0.22 0.49 0 1.91 4.08 3.17 0 9.78 4.30 3.35 0 9.90 9/8 1.09 1.21 0 3.45 4.72 2.09 0.03 8.15 5.79 2.26 0.03 9.04 10/3 10.60 6.48 2.71 25.68 27.99 5.48 16.14 38.26 38.61 5.58 23.91 47.15 10/4 0.19 0.28 0 0.94 2.78 3.43 0.73 10.28 2.99 3.68 0.75 11.24 10/5 0.56 0.87 0 3.16 3.12 3.11 0 8.64 3.69 3.43 0 10.08 10/6 0.97 1.42 0 5.08 4.56 2.02 0.29 9.60 5.53 2.29 3.11 10.71 10/7 0.64 1.15 0 3.14 4.78 2.83 0 10.07 5.41 2.65 0.01 10.16 10/8 0.64 0.93 0 3.12 3.55 2.61 0 7.74 4.16 2.68 0 7.98 11/3 9.45 5.77 0.46 23.74 29.79 5.58 18.58 39.91 39.26 5.19 31.21 50.47 11/4 0.27 0.62 0 2.62 1.73 2.47 0.16 7.83 2.02 2.90 0.20 8.32 11/5 0.90 1.28 0 3.54 3.20 2.74 0 9.60 4.11 2.87 0 10.49 11/6 1.13 1.32 0 3.13 2.28 2.24 0 6.10 3.42 2.35 0 6.60 11/7 1.13 1.28 0 3.80 5.02 2.02 2.30 9.62 6.13 2.21 2.88 9.87 11/8 1.43 1.27 0 3.13 4.15 2.43 0.03 8.86 5.55 2.03 3.10 9.28

103 ResultsandDiscussion Table6.4showsthatonaverage,foronerelaxedsheetboundary,thebestfinalnestswith minimumnonplacement–themostimportantdecisionvariablefordredging–were obtainedwithaparametertuningfactorof11andacosttuningfactorof4.Therelevant rowinTable6.4isgreyscaledandminimumaveragesforallthreedecisionvariablesare giveninboldtext.Beforesummarizingresults,resultsofnestingexperimentswithtwo relaxedinnersheetboundariesaregiveninTable6.5. Table6.5Irregularnesting–2Relaxedsheetboundaries Tuning Factor Escape(%ofSheetArea) Overlap(%ofSheetArea) Nonplacement(%ofSheetArea) Parameter /Cost σ Min Max σ Min Max σ Min Max 3/3 16.01 3.93 10.81 23.97 22.08 5.02 14.04 30.19 38.11 4.42 30.76 46.10 3/4 3.54 1.66 2.31 9.75 10.33 2.49 5.11 14.99 13.88 2.60 7.71 18.87 3/5 2.59 1.11 1.18 4.59 5.85 1.14 3.64 8.41 8.45 1.57 5.40 10.57 3/6 2.65 1.34 0.57 5.78 6.20 1.31 3.72 8.20 8.85 1.77 5.42 11.86 3/7 3.28 1.18 0.98 5.57 6.64 0.84 4.29 8.09 9.92 1.33 7.34 12.86 3/8 3.18 0.96 1.48 5.55 6.74 0.90 5.04 8.53 9.91 1.13 7.56 11.60 4/3 16.01 5.60 6.40 25.49 21.56 5.20 12.64 30.18 37.59 4.61 28.79 47.57 4/4 2.82 1.48 0.97 6.76 7.68 2.61 3.52 13.23 10.51 3.24 4.88 15.74 4/5 1.82 0.81 0.58 3.78 4.66 1.52 2.55 7.33 6.49 1.99 3.49 9.21 4/6 2.80 0.98 1.19 4.25 5.45 1.96 3.05 9.37 8.25 2.41 4.53 13.41 4/7 2.44 0.90 0.78 3.38 5.40 1.51 2.46 8.24 7.85 1.68 4.57 9.90 4/8 3.00 1.49 0.69 6.38 4.64 1.91 1.25 7.68 7.64 2.69 2.91 11.93 5/3 15.64 5.28 5.27 25.48 22.33 5.48 12.70 31.40 37.99 4.27 29.99 45.73 5/4 3.41 1.39 0.73 6.34 7.24 2.31 3.54 11.10 10.66 3.09 5.83 16.13 5/5 1.56 1.04 0.38 3.77 3.74 1.82 1.18 7.05 5.30 2.40 1.63 10.82 5/6 1.83 1.23 0.50 4.50 3.90 1.98 1.02 8.29 5.74 1.77 1.99 8.78 5/7 1.69 1.23 0.14 4.00 3.58 1.72 1.26 6.90 5.28 2.31 2.18 8.93 5/8 2.29 1.66 0.18 5.62 4.11 1.60 1.12 7.78 6.40 2.57 1.65 9.82 6/3 13.68 4.47 5.82 22.24 23.24 6.08 13.69 41.49 36.94 5.65 29.32 50.83 6/4 1.62 0.86 0.29 3.14 5.28 2.23 1.99 10.28 6.92 2.60 3.44 13.09 6/5 1.64 1.61 0.10 4.97 3.05 1.61 0.92 6.74 4.69 2.34 1.09 8.39 6/6 1.32 1.07 0.12 3.59 3.59 2.04 0.50 7.20 4.91 2.72 0.77 9.06 6/7 1.75 1.26 0.13 3.66 3.16 1.53 0.54 5.92 4.91 1.82 1.05 7.29 6/8 1.85 1.14 0.18 3.57 4.20 2.32 0.51 9.09 6.05 2.83 0.80 10.64 7/3 17.12 6.31 6.19 32.46 20.48 5.26 8.13 30.87 37.63 5.08 25.47 44.55 7/4 1.12 0.51 0.32 1.97 3.45 1.35 1.45 7.28 4.59 1.52 2.70 8.84 7/5 0.88 0.72 0.05 2.20 2.80 2.07 0.32 6.53 3.69 2.43 0.63 7.26 7/6 1.83 1.27 0.07 3.90 3.16 1.91 0.47 6.16 4.99 2.31 0.59 7.47 7/7 1.83 1.48 0.06 4.42 3.91 2.53 0.28 8.04 5.74 3.24 0.36 10.14 7/8 1.67 1.42 0.02 5.28 3.38 1.59 0.59 6.47 5.06 1.89 0.73 9.03 8/3 14.02 4.84 0.97 22.49 23.24 4.87 14.45 32.93 37.28 4.63 30.12 47.99 8/4 1.42 0.98 0.29 3.39 3.69 2.28 1.30 10.42 5.13 3.06 1.96 13.80 8/5 0.78 1.02 0.02 4.26 2.08 1.67 0.18 4.79 2.87 2.32 0.28 8.79 8/6 1.21 1.14 0 3.46 2.87 1.69 0.09 6.19 4.08 2.18 0.11 7.55 8/7 1.37 1.33 0 3.91 3.22 1.61 0.03 5.94 4.59 2.03 0.09 8.33 8/8 1.47 1.12 0.04 3.41 3.59 1.93 0.06 8.83 5.05 1.90 2.89 9.31 9/3 16.19 5.64 5.63 24.56 21.56 5.42 13.40 35.17 37.77 2.76 32.54 43.67 9/4 1.30 1.11 0.27 4.38 2.91 2.03 0.53 8.97 4.22 2.78 1.22 10.62 9/5 1.03 1.18 0 4.55 2.72 2.16 0.02 6.80 3.76 2.95 0.07 8.31 9/6 1.35 1.34 0 4.21 3.01 1.94 0.04 6.20 4.37 2.30 0.06 7.30 9/7 2.43 1.72 0 6.59 4.33 2.01 0 6.43 6.76 2.87 0 10.40 9/8 2.58 1.51 0 4.77 3.02 2.02 0 6.99 5.58 2.71 0 10.01 10/3 14.22 5.52 5.09 22.80 22.23 5.52 14.96 32.10 36.47 3.42 25.64 41.28 10/4 1.53 1.75 0 5.63 11.89 2.72 7.36 18.42 13.43 3.17 7.42 20.31 10/5 0.58 0.86 0 3.12 7.60 1.27 5.88 10.45 8.20 1.52 6.14 11.29 10/6 0.58 0.61 0 1.73 8.34 1.78 5.03 12.81 8.93 1.70 6.21 12.82 10/7 1.53 1.21 0 3.87 8.37 1.30 6.12 10.59 9.91 1.67 7.19 12.77 10/8 0.96 0.94 0 3.07 8.91 2.39 4.87 13.84 9.86 2.16 5.88 13.82 11/3 15.53 6.57 5.75 29.03 22.21 6.39 12.84 31.91 37.76 6.61 28.17 52.83 11/4 2.03 2.01 0.06 6.51 10.17 1.81 7.92 14.31 12.22 2.37 8.86 16.45 11/5 0.89 1.15 0 3.67 7.89 1.44 4.84 9.91 8.80 1.56 5.51 11.01 11/6 0.99 1.20 0 3.20 7.77 1.95 4.47 12.07 8.77 1.98 5.11 12.08 11/7 1.30 1.09 0 4.02 8.44 2.10 6.03 15.04 9.73 1.95 6.21 15.61 11/8 1.63 1.76 0 5.55 8.38 1.91 5.14 11.92 10.01 1.75 6.88 13.69 Table6.5showsthatonaverage,fortworelaxedsheetboundaries,thebestfinalnests withminimumnonplacementwereobtainedwithaparametertuningfactorof8andacost 104 ResultsandDiscussion tuningfactorof5.Table6.6givestheresultsofnestingexperimentswiththreerelaxed innersheetboundaries. Table6.6Irregularnesting–3Relaxedsheetboundaries Tuning Factor Escape(%ofSheetArea) Overlap(%ofSheetArea) Nonplacement(%ofSheetArea) Parameter /Cost σ Min Max σ Min Max σ Min Max 3/3 19.61 6.15 12.40 35.59 18.59 5.02 9.83 28.07 38.22 6.21 25.14 48.04 3/4 4.70 2.17 1.79 9.38 9.56 2.32 5.49 14.70 14.27 3.17 8.18 21.73 3/5 3.31 1.02 1.05 5.67 5.62 1.76 2.92 9.58 8.93 2.03 5.79 12.64 3/6 3.59 1.27 1.24 6.17 6.54 1.32 4.67 9.81 10.13 1.21 7.35 12.06 3/7 3.77 1.16 1.78 5.71 6.08 1.16 2.72 7.56 9.85 1.62 5.28 12.44 3/8 4.56 1.40 1.45 7.27 5.84 1.32 3.39 9.32 10.40 1.65 5.94 13.41 4/3 17.87 6.74 7.90 41.95 18.16 4.50 9.70 26.61 36.05 5.53 29.16 54.52 4/4 4.13 1.68 1.83 8.74 8.47 2.01 3.85 12.56 12.61 1.90 9.27 15.87 4/5 2.07 0.74 0.73 3.43 4.52 1.18 2.52 6.27 6.60 1.74 3.70 9.06 4/6 3.19 1.42 1.26 6.63 5.14 1.41 2.77 8.54 8.33 1.87 4.31 11.36 4/7 3.16 1.62 0.80 6.42 4.85 1.69 2.21 7.67 8.01 2.05 3.44 10.39 4/8 2.89 1.25 0.91 5.11 5.43 1.49 2.23 8.32 8.33 1.92 4.36 11.92 5/3 20.88 5.98 11.30 34.52 16.68 5.07 10.87 30.19 37.58 4.23 30.75 48.11 5/4 4.24 2.35 1.45 11.01 7.43 1.78 3.75 11.34 11.67 3.33 6.10 18.76 5/5 1.98 1.10 0.27 4.04 3.57 1.30 1.72 6.09 5.55 2.02 2.53 9.17 5/6 2.32 1.37 0.24 5.93 3.03 1.29 1.06 5.25 5.36 2.16 2.19 9.60 5/7 2.32 1.28 0.65 4.81 4.23 1.41 1.24 7.00 6.55 2.03 2.46 9.40 5/8 3.28 1.76 0.90 7.48 4.48 1.95 0.81 9.12 7.77 2.18 2.08 11.40 6/3 18.97 6.15 10.82 36.21 19.52 4.57 9.48 26.28 38.51 3.68 32.61 45.71 6/4 2.93 1.14 0.87 5.78 5.82 1.58 3.39 9.48 8.77 2.29 4.71 13.20 6/5 1.42 0.91 0.16 3.39 3.27 1.97 0.78 6.86 4.69 2.79 1.21 9.33 6/6 2.01 1.39 0.31 5.11 2.97 1.44 0.70 4.70 4.98 2.27 1.01 7.76 6/7 2.35 1.73 0.31 5.91 3.48 1.94 0.80 6.39 5.83 3.07 1.33 9.95 6/8 3.10 1.74 0.09 6.41 4.44 1.46 0.73 7.60 7.54 2.12 1.07 10.28 7/3 18.63 3.67 13.44 24.64 17.53 4.15 10.57 27.68 36.18 4.75 28.79 46.63 7/4 2.42 1.07 0.74 4.37 4.80 1.89 1.79 8.42 7.24 2.71 2.83 12.31 7/5 1.30 1.04 0.17 3.43 2.61 1.87 0.43 7.58 3.92 2.37 0.71 9.12 7/6 1.90 1.40 0.14 4.07 2.95 1.93 0.25 5.90 4.86 2.74 0.43 8.12 7/7 1.83 1.58 0.06 6.78 3.66 2.32 0.29 7.86 5.50 2.99 0.40 9.98 7/8 1.58 1.07 0.06 3.53 4.47 1.72 0.65 7.29 6.05 1.84 3.11 9.72 8/3 19.23 6.81 10.11 33.64 18.03 4.45 9.65 25.71 37.28 5.54 29.57 48.17 8/4 2.06 1.39 0.57 6.26 3.93 2.18 1.30 9.08 6.01 3.48 2.36 15.37 8/5 1.45 1.18 0.06 4.53 3.04 1.81 0.20 5.97 4.49 2.45 0.40 7.40 8/6 1.45 1.15 0.05 3.77 3.06 1.81 0.28 6.48 4.52 2.38 0.42 9.19 8/7 2.48 1.70 0 6.64 3.04 2.13 0.07 7.15 5.51 2.56 0.11 8.94 8/8 2.35 1.24 0.28 4.48 3.94 1.10 2.21 6.00 6.28 1.59 3.43 8.42 9/3 21.21 6.74 9.63 40.52 15.09 4.45 4.53 23.06 36.32 4.37 28.55 45.05 9/4 1.53 1.03 0.48 3.66 3.64 2.28 1.35 8.31 5.19 3.12 2.04 11.20 9/5 1.39 1.21 0.02 4.34 2.87 1.99 0.02 5.87 4.27 2.85 0.05 8.60 9/6 1.70 1.24 0.04 3.32 3.38 2.24 0.15 6.66 5.09 2.70 0.19 9.55 9/7 2.03 1.58 0 4.52 3.83 1.95 0.01 7.53 5.85 2.66 0.08 9.47 9/8 1.69 1.14 0.02 3.79 3.83 1.96 0.11 8.92 5.51 2.27 0.10 11.34 10/3 19.84 6.31 10.11 33.14 17.35 3.53 11.12 24.45 37.21 5.15 28.25 47.72 10/4 1.65 1.63 0.18 5.51 3.09 2.24 0.68 8.80 4.76 3.73 1.03 14.33 10/5 1.14 1.20 0 3.90 2.92 2.28 0.02 6.48 4.07 3.15 0.02 9.03 10/6 2.38 1.40 0 4.33 2.81 1.84 0 6.06 5.19 2.47 0 8.52 10/7 2.29 1.58 0 4.94 3.45 2.40 0.04 7.58 5.73 2.59 0.04 9.78 10/8 2.49 1.43 0 4.46 3.50 1.54 0.80 6.87 5.97 2.36 2.89 10.47 11/3 19.80 6.69 12.42 41.67 17.69 4.73 12.22 28.85 37.51 6.35 28.12 55.27 11/4 1.11 1.19 0.09 4.09 2.63 2.26 0.47 7.93 3.75 3.16 0.61 12.04 11/5 1.56 1.04 0 3.34 3.50 2.09 0.02 6.91 5.08 2.11 0.02 8.82 11/6 1.83 1.13 0 4.24 3.95 1.59 0 5.94 5.78 2.04 0 8.68 11/7 2.74 1.40 0.24 5.06 3.70 1.87 0.01 6.98 6.43 2.10 2.64 10.18 11/8 2.70 1.58 0.02 6.26 4.31 1.77 0.05 7.27 6.98 2.23 0.06 9.38 Table6.6showsthatonaverage,forasheetwiththreerelaxedboundaries,thebestfinal nestswithminimumnonplacementwereobtainedwithaparametertuningfactorof11 andacosttuningfactorof4.OverallaveragesolutionqualityinTables6.4and6.5is worsethaninTable6.1.Figure6.11summarizesaveragefinalcostsconsistingof averagefinaloverlapandnonplacementcostsexpressedaspercentagesofthetotal innersheetareaused. 105 ResultsandDiscussion

Figure6.11Overviewirregularnestingresults–Relaxedsheetboundaries. Figure6.11showsthattheworstfinalnestsforallsheetarrangementswerefoundfora costtuningfactorof3,andthat(foralltuningfactorvaluesused)theoverallaverage solutionqualityfor0,1,2,and3relaxedsheetboundaries,respectively,was19.03, 19.79,20.38,and18.25.Thereforeitcanbesaidthatincreasingthenumberofrelaxed sheetboundariesupto2reducedtheoverallsolutionqualityoffinalnestsincomparison toasheetwithfixedboundarieswherenoescapewasallowed.Theminimumoverall averagesolutionqualitywasfoundforthreerelaxedsheetboundaries.However,the minimumaveragefinalcostof1.7wasfoundforasheetwithfixedboundaries.Itshould benotedthatcostpenaltiesforescape,overlapandnonplacementwereallsettounity 106 ResultsandDiscussion forthispartoftheexperimentation.Table6.7givesminimumaveragesofoverlapand nonplacementobtainedfortheirregularnestingproblemwithvaryingnumbersofrelaxed sheetboundaries. Table6.7Minimumaveragesirregularnesting–Relaxedsheetboundaries RelaxedSheet MinimumAverageOverlap MinimumAverageNonplacement Boundaries (%ofSheetArea) (%ofSheetArea) 0 0.83 0.84 1 1.73 2.02 2 2.08 2.87 3 2.61 1) 3.75 1) Note:1)Notobtainedwithsamecombinationofparameterandcostcontroltuningfactors. Table6.7showsthatanincreaseinthenumberofrelaxedsheetboundariesincreased averageminimaofoverlapandnonplacementfortheirregularnestingproblemssolved, allofwhichhavesheettostencilarearatioof1:1.Figure6.12showspercentagesof20 finalnestswhichexhibitedzerooverlapandzerononplacementandtheparameterand costtuningfactorswithwhichtheywerearrivedat.NotethatFigure6.12showsthatno suchfinalnestswerefoundfortworelaxedsheetboundaries.

25%

OneRelaxedSheetBoundary ThreeRelaxedSheetBoundaries

20% 20% ing factors)

15% 15% 15% 15%

10% 10%

5% 5%

% Solutions with Non-Placement Zero and Overlap 5% (Out Replications of foreach 20 combination tun of

0% 9/7 10/5 10/8 11/5 11/6 10/6 11/6 Parameter / Cost Tuning Factor Combination Figure6.12Percentagesglobalminima–Relaxedsheetboundaries.

107 ResultsandDiscussion AcomparisonofFigures6.5and6.12furtherconfirmsthatrelaxingsheetboundaries increasedthedifficultyoffindingglobaloptimawithzerooverlapandzerononplacement withthedredgecutnestingmodelforirregularnestingproblemswithasheettostencil arearatioof1:1anddecisionvariablepenaltiesallsettounity.Figure6.12showsthatout ofatotalof3,240nestingexperimentscarriedoutonly17ofthefinalnestsfound, exhibitedzerooverlapandnonplacement,whichequatestoanaverageoverallsuccess rateof0.52%,downfrom3.61%forthe39globaloptimafoundoutof1,080experiments withasheetwithfixedboundaries.Thehighestpercentageof20%(4outof20)inFigure 6.12wasobservedforaparametertuningfactorof11andacosttuningfactorof5.A tuningfactorvalueof11isgreaterthanthemaximumof10.32recommendedinIngber (2006),andthereforeitcanbesaidagainthattheuseofatuningfactorof11mayhave compromisedtheergodicityoftheadaptivesimulatedannealingbasedsolutionprocess. Mostnotably,noglobaloptimumfinalnestswerefoundforasheetwithtworelaxed boundaries.Figure6.13depictsthebestfinalnestfortworelaxedsheetboundarieswhich wasfoundwithparameterandcosttuningfactors9and7,respectively.

Figure6.13Bestnest–2Relaxedsheetboundaries. ThefinalnestinFigure6.13hasanoverlapareaandanonplacementareaeachequalto 0.000031%oftheinnersheetarea.Thegraphicalrepresentationofthefinalnestshownin Figure6.13appearsoptimal.However,sincethedredgecutnestingmodelfounda multipleoffinalnestswithzerooverlapandzerononplacementforothersheet arrangementstheminimalvaluesofoverlapandnonplacementthemselvesarenot thoughttobetheresultofcalculationerror,andthereforethenestinFigure6.13hastobe considerednearoptimal.Resultsofnestingexperimentswithtworelaxedsheet boundariesandreducedsheetareasarepresentedanddiscussednext.

108 ResultsandDiscussion

6.4 Dredge Cut Nesting – Reduced Sheet Areas Experimentalresultsobtainedfromtheapplicationofthedredgecutnestingmodelto irregularnestingproblemswithtworelaxedsheetboundariesandreducedsheetareas arepresentedinTables6.8,6.9,6.10and6.11,whichreportthemean,,standard deviation,σ,andminimumandmaximumofvaluesofoverlapandnonplacementfor20 replicationscarriedoutforeachpairoftuningfactors.Overlapandnonplacementare expressedasapercentageofthetotalinnersheetareaused.Escapepenaltieswerezero forthispartoftheexperimentationandthusescapeisexcludedfromthesetables. Table6.8Irregularnesting–Sheettostencilarearatio1:1.1 Tuning Factor Overlap(%ofSheetArea) Nonplacement(%ofSheetArea) Parameter /Cost σ Min Max σ Min Max 3/3 13.05 4.06 4.92 20.72 41.14 5.28 28.29 47.62 3/4 3.39 1.11 2.00 6.38 16.18 3.62 11.01 23.85 3/5 2.98 1.02 1.02 4.89 10.52 1.66 6.60 13.34 3/6 2.41 0.95 1.07 4.52 13.20 3.12 8.20 18.47 3/7 2.58 0.83 1.28 3.97 14.34 2.32 10.73 19.96 3/8 2.29 0.91 0.90 4.34 14.66 2.97 6.37 18.43 4/3 12.09 4.36 4.56 21.44 39.54 5.16 32.47 54.70 4/4 3.05 1.52 0.86 6.82 13.06 4.38 7.51 23.10 4/5 2.37 1.11 0.77 4.29 10.16 1.52 7.76 13.10 4/6 2.14 1.03 0.76 4.41 11.67 2.35 7.87 16.12 4/7 2.04 0.74 0.36 3.55 12.31 2.04 7.04 15.87 4/8 1.71 0.75 0.73 3.28 13.98 2.34 9.89 19.27 5/3 10.69 4.05 5.23 21.98 39.85 5.90 28.75 58.46 5/4 2.81 1.24 0.81 5.20 12.97 4.93 5.58 23.58 5/5 2.02 1.03 0.35 3.91 8.24 2.39 4.22 13.65 5/6 1.87 0.52 1.01 3.06 8.93 2.44 5.09 13.95 5/7 1.91 1.10 0.77 5.63 10.53 2.63 5.88 15.56 5/8 1.65 0.72 0.59 3.04 12.31 2.62 8.51 16.55 6/3 12.31 4.27 6.01 19.09 38.07 4.61 30.10 44.99 6/4 2.60 1.21 0.73 4.79 11.42 3.85 5.64 18.33 6/5 1.67 1.16 0.12 3.84 7.76 2.32 4.88 13.80 6/6 1.41 0.65 0.39 3.06 9.12 2.60 4.28 14.98 6/7 1.55 0.65 0.59 3.00 9.42 2.50 4.81 14.28 6/8 1.60 0.72 0.39 2.74 11.30 2.37 7.31 16.34 7/3 12.77 5.46 6.49 30.17 40.89 5.35 30.41 48.60 7/4 2.55 1.13 0.67 4.88 11.73 4.34 4.88 20.41 7/5 1.67 0.95 0.29 3.63 7.43 3.02 0.86 15.54 7/6 1.63 0.87 0.23 3.04 8.64 2.69 3.79 13.89 7/7 0.95 0.55 0.11 2.23 9.29 2.06 6.48 14.26 7/8 1.41 0.83 0.28 3.23 9.02 2.63 3.61 14.06 8/3 12.98 5.07 4.33 24.19 41.63 4.92 34.83 50.16 8/4 2.26 0.94 0.82 4.06 10.65 4.34 3.86 22.61 8/5 1.43 0.82 0.17 2.79 6.12 2.84 0.33 11.71 8/6 1.53 0.75 0.26 2.60 9.16 2.44 4.73 15.48 8/7 1.61 0.80 0.14 3.52 9.17 2.99 4.84 16.05 8/8 1.33 1.04 0.01 4.43 8.88 3.54 2.41 15.88 9/3 11.48 3.90 5.43 20.59 37.00 6.91 23.94 52.68 9/4 2.38 1.08 0.45 4.22 9.50 4.82 1.35 18.79 9/5 1.96 1.38 0.07 3.97 5.34 3.12 0.26 11.20 9/6 1.45 0.82 0.10 3.75 8.32 2.80 2.18 12.40 9/7 1.28 0.77 0.02 2.55 10.57 2.56 6.89 16.54 9/8 1.34 0.63 0.36 2.91 10.63 2.49 5.89 15.51 10/3 12.61 4.38 5.42 21.34 38.03 6.06 29.13 50.50 10/4 2.42 1.45 1.04 6.65 9.29 4.04 4.02 19.56 10/5 1.46 1.13 0 3.53 5.39 3.01 0.25 10.34 10/6 1.68 1.18 0.01 4.18 6.93 2.63 0.07 11.88 10/7 1.52 0.70 0.20 2.67 9.50 2.83 4.10 15.82 10/8 1.33 0.78 0.10 2.55 9.81 2.40 3.58 13.68 11/3 12.39 3.87 6.17 21.74 39.64 4.41 29.86 47.69 11/4 2.65 0.93 1.33 4.50 11.06 4.52 2.94 19.01 11/5 1.64 0.95 0.08 3.22 7.31 3.23 2.02 14.42 11/6 1.24 0.92 0.01 2.64 8.24 3.33 2.81 14.15 11/7 1.75 1.00 0 3.54 8.74 2.69 2.79 12.96 11/8 1.63 1.01 0.32 4.61 10.63 2.82 4.74 15.21 109 ResultsandDiscussion Table6.8showsthatonaverage,forasheettostencilarearatioof1:1.1,thebestfinal nestswithminimumnonplacement–themostimportantdecisionvariablefordredging– wereobtainedwithaparametertuningfactorof10andacosttuningfactorof5.The relevantrowinTable6.8isgreyscaledandminimumaveragesforoverlapandnon placementaregiveninboldtext.Beforesummarizingresults,resultsofnesting experimentswithasheettostencilarearatioof1:1.2aregiveninTable6.9. Table6.9Irregularnesting–Sheettostencilarearatio1:1.2 Tuning Factor Overlap(%ofSheetArea) Nonplacement(%ofSheetArea) Parameter /Cost σ Min Max σ Min Max 3/3 10.63 4.70 2.98 20.67 35.57 5.31 25.48 46.49 3/4 3.41 1.21 1.33 5.81 14.63 4.42 7.83 25.05 3/5 2.89 0.96 1.24 4.54 11.79 1.86 9.36 15.36 3/6 3.08 1.19 1.68 6.11 12.43 2.53 7.54 15.96 3/7 2.69 1.28 0.58 4.63 12.40 1.94 8.66 15.06 3/8 2.70 1.38 0.57 6.30 13.18 2.92 5.46 17.63 4/3 11.74 4.29 6.51 20.35 35.33 6.57 23.93 46.94 4/4 3.19 1.54 1.43 6.56 11.32 4.42 6.75 21.72 4/5 2.36 0.99 0.60 4.20 9.60 1.99 6.47 13.29 4/6 2.04 0.82 0.53 3.83 11.09 3.33 5.67 18.55 4/7 2.16 0.96 1.05 4.78 11.75 3.12 7.34 17.94 4/8 2.25 1.15 0.39 4.22 12.10 2.48 8.62 16.39 5/3 11.85 4.82 6.47 20.96 41.01 7.48 28.28 52.93 5/4 2.74 1.44 0.55 5.88 10.02 3.29 5.63 16.49 5/5 1.97 0.80 0.66 3.34 9.13 2.16 4.50 12.50 5/6 1.56 0.59 0.54 2.33 8.19 2.07 4.36 11.68 5/7 2.20 0.67 0.83 3.34 10.73 2.53 5.60 16.01 5/8 2.05 0.82 0.90 3.60 11.28 2.93 6.92 19.22 6/3 11.75 5.37 5.08 24.00 34.18 5.07 25.86 42.38 6/4 2.23 1.19 0.96 5.70 9.52 5.18 2.67 20.84 6/5 1.63 1.10 0.12 3.66 6.59 2.79 2.85 12.51 6/6 1.80 0.81 0.56 3.51 8.25 2.03 4.58 11.98 6/7 1.49 0.86 0.24 3.50 8.66 2.89 5.29 15.55 6/8 1.75 0.97 0.53 4.53 10.51 3.30 3.50 15.20 7/3 12.74 4.42 5.53 21.44 36.76 5.24 25.34 46.01 7/4 1.82 1.20 0.56 4.43 7.97 4.54 2.88 19.49 7/5 2.02 1.21 0.18 4.31 7.15 2.73 1.92 11.73 7/6 1.50 0.91 0.09 2.89 7.60 2.70 2.22 11.96 7/7 1.66 0.87 0.31 3.21 9.21 2.06 6.49 12.94 7/8 1.88 0.66 0.95 3.09 9.83 2.34 5.38 13.74 8/3 12.38 4.76 2.08 21.94 35.42 6.22 25.30 49.03 8/4 1.99 0.87 0.73 4.43 8.24 3.97 3.77 17.36 8/5 1.93 1.27 0.19 5.06 7.07 3.15 3.66 13.52 8/6 1.61 0.99 0.01 3.16 7.67 2.66 3.26 11.44 8/7 1.92 0.78 0.25 3.12 8.70 3.08 3.05 15.75 8/8 1.56 1.16 0 4.43 8.10 3.39 3.59 14.20 9/3 12.84 3.67 6.69 18.33 38.51 5.06 29.24 50.22 9/4 2.49 1.06 0.57 4.26 9.48 3.82 3.98 16.73 9/5 1.54 1.01 0.11 3.38 6.40 2.72 1.69 11.58 9/6 2.04 1.35 0.03 4.75 7.57 2.93 2.23 12.28 9/7 1.50 0.99 0.01 3.66 8.69 3.32 3.15 15.33 9/8 1.88 0.75 0.40 3.05 10.30 2.72 4.21 14.86 10/3 10.76 3.41 5.63 16.35 38.78 6.19 27.47 54.79 10/4 1.84 1.33 0.32 4.58 8.66 4.25 3.05 16.19 10/5 1.68 1.26 0.07 3.52 6.84 3.81 2.20 13.90 10/6 1.93 0.95 0.09 3.24 7.68 2.07 4.19 11.05 10/7 1.40 0.75 0.05 2.92 9.66 2.59 4.10 14.33 10/8 1.37 0.65 0.05 2.34 9.68 3.13 4.20 13.89 11/3 9.74 4.08 4.52 20.33 36.77 6.14 25.87 50.90 11/4 2.30 1.48 0.49 5.80 9.64 5.11 1.94 19.24 11/5 1.96 0.97 0 3.47 6.29 2.59 0.86 10.98 11/6 1.86 1.10 0.10 4.12 7.75 2.04 4.14 10.76 11/7 1.91 0.89 0.52 3.85 8.13 2.94 4.34 16.04 11/8 1.82 1.06 0.16 3.97 9.19 2.97 4.61 16.98

110 ResultsandDiscussion Table6.9showsthatonaverage,forasheettostencilarearatioof1:1.2,thebestfinal nestswithminimumnonplacementwereobtainedwithaparametertuningfactorof11 andacosttuningfactorof5.Table6.10givestheresultsofnestingexperimentswith sheettostencilarearatioof1:1.3. Table6.10Irregularnesting–Sheettostencilarearatio1:1.3 Tuning Factor Overlap(%ofSheetArea) Nonplacement(%ofSheetArea) Parameter /Cost σ Min Max σ Min Max 3/3 12.32 3.18 4.98 18.25 35.91 6.18 22.61 49.07 3/4 3.44 1.38 0.91 6.25 14.04 3.08 6.46 19.02 3/5 3.03 1.12 1.62 4.61 12.40 2.06 8.75 16.10 3/6 2.78 1.05 0.58 5.18 12.23 2.05 8.62 16.20 3/7 2.81 1.24 0.78 5.42 12.87 2.29 8.98 16.39 3/8 2.65 1.37 0.57 6.07 13.72 2.38 10.03 18.25 4/3 11.29 4.38 4.71 22.70 35.54 6.70 25.55 50.84 4/4 2.93 1.17 0.96 5.42 11.42 4.23 5.90 20.19 4/5 2.05 0.98 0.74 3.78 8.98 3.15 3.52 15.76 4/6 2.41 0.98 0.71 3.84 10.31 2.20 6.24 15.30 4/7 2.12 0.83 0.84 3.70 10.65 3.07 4.98 15.38 4/8 2.30 1.08 0.46 4.98 11.84 2.06 7.51 15.91 5/3 13.89 3.59 8.29 20.83 35.67 7.54 25.05 49.23 5/4 1.95 0.84 0.47 3.45 7.83 3.84 2.87 15.84 5/5 1.76 1.20 0.28 3.95 7.92 3.50 1.93 15.80 5/6 1.82 0.68 0.61 3.12 9.32 2.31 4.87 12.71 5/7 1.77 0.87 0.41 3.78 8.49 2.57 3.96 13.30 5/8 1.70 0.62 0.50 3.07 10.53 3.73 2.94 16.59 6/3 11.44 2.46 7.33 15.75 35.02 5.39 22.71 47.60 6/4 1.79 1.06 0.41 4.31 7.45 4.65 2.17 15.53 6/5 2.09 1.35 0.17 4.72 7.43 3.86 0.88 14.41 6/6 1.70 0.89 0.09 2.99 6.92 2.60 2.59 11.76 6/7 1.92 1.33 0.06 4.65 8.08 2.95 4.16 13.79 6/8 2.04 0.77 0.45 3.45 9.18 2.63 4.79 15.35 7/3 12.60 3.72 6.53 18.35 34.08 5.83 22.26 42.69 7/4 1.73 1.27 0.33 4.80 5.86 4.66 1.12 13.66 7/5 1.91 1.16 0.09 3.81 6.49 3.91 0.46 13.84 7/6 1.61 1.16 0.05 3.48 6.84 3.41 0.76 12.97 7/7 2.11 0.95 0.12 3.68 8.34 2.82 1.69 14.09 7/8 1.65 0.68 0.05 3.25 9.25 2.43 3.94 13.89 8/3 12.18 4.39 5.45 22.15 33.28 4.38 21.69 43.27 8/4 1.90 1.72 0.16 6.65 6.62 4.22 0.95 17.14 8/5 1.85 1.00 0.03 4.06 5.96 2.82 0.40 10.98 8/6 2.05 1.46 0 4.25 5.90 2.78 0.40 10.51 8/7 1.77 1.18 0 4.76 8.09 2.51 2.55 11.57 8/8 2.04 1.09 0.56 4.77 8.02 2.28 4.02 12.42 9/3 12.73 5.09 2.95 28.90 34.07 7.22 24.28 54.38 9/4 1.81 1.36 0.18 4.68 6.64 5.11 0.96 15.17 9/5 1.87 1.47 0 4.46 5.24 2.93 0.27 9.96 9/6 2.21 0.91 0 3.61 6.28 2.61 0.46 11.22 9/7 1.84 1.26 0.09 4.23 6.43 2.74 0.64 10.28 9/8 1.56 0.78 0 2.73 9.41 2.38 6.06 12.98 10/3 13.93 4.62 7.25 22.50 32.91 5.27 24.63 41.10 10/4 1.92 1.00 0.16 3.37 7.57 5.41 0.85 19.63 10/5 1.92 1.54 0 4.54 5.77 3.51 0.29 11.72 10/6 1.91 1.16 0 4.55 7.25 1.94 3.69 9.81 10/7 2.05 0.95 0.42 3.81 8.06 2.31 1.95 11.08 10/8 1.84 0.76 0.22 3.24 9.86 2.18 6.56 15.11 11/3 12.53 5.08 4.78 21.99 33.10 5.37 24.28 45.75 11/4 1.92 1.40 0.03 4.70 7.16 5.27 0.47 17.89 11/5 1.51 0.89 0.02 2.85 5.34 2.73 0.16 10.10 11/6 1.71 1.20 0 4.44 6.19 2.73 0.58 10.37 11/7 1.51 0.98 0 3.49 6.80 3.18 0.48 11.33 11/8 1.98 1.09 0.42 5.09 9.03 2.56 5.48 14.82 Table6.10showsthatonaverage,forasheettostencilarearatioof1:1.3,thebestfinal nestswithminimumnonplacementwereobtainedwithaparametertuningfactorof11 andacosttuningfactorof5.Table6.11givestheresultsofnestingexperimentswitha sheettostencilarearatioof1:1.4. 111 ResultsandDiscussion Table6.11Irregularnesting–Sheettostencilarearatio1:1.4 Tuning Factor Overlap(%ofSheetArea) Nonplacement(%ofSheetArea) Parameter /Cost σ Min Max σ Min Max 3/3 12.93 3.97 6.74 21.65 34.01 6.90 20.72 43.92 3/4 2.92 1.76 0.35 8.19 14.14 2.96 9.28 20.94 3/5 2.78 0.88 1.17 4.58 11.87 2.19 8.72 17.06 3/6 2.71 1.23 0.68 5.36 11.40 2.38 6.65 17.78 3/7 2.47 0.91 0.53 3.82 12.14 1.73 9.74 16.64 3/8 2.76 1.19 1.31 6.02 12.58 2.36 8.58 17.60 4/3 13.98 6.78 5.58 25.93 32.82 5.94 19.75 42.42 4/4 2.93 1.22 0.63 5.88 12.44 3.25 7.72 18.76 4/5 2.19 1.42 0.37 6.30 9.73 2.61 5.84 14.39 4/6 2.52 1.10 0.57 4.79 9.57 2.91 2.93 14.01 4/7 1.86 0.87 0.26 3.38 9.95 2.17 6.69 14.67 4/8 2.40 0.92 0.90 4.12 11.06 1.70 6.90 13.51 5/3 11.58 4.95 4.93 26.44 32.43 7.34 18.55 45.02 5/4 2.12 1.00 0.49 4.34 10.30 3.94 4.73 19.18 5/5 1.94 1.18 0.48 4.50 7.10 3.27 2.53 14.20 5/6 2.13 0.84 0.63 3.71 9.19 2.77 4.77 13.74 5/7 2.08 1.28 0.75 6.31 7.45 2.10 4.10 11.48 5/8 1.91 0.97 0.61 4.56 9.37 2.20 4.34 13.23 6/3 13.97 5.63 1.93 27.38 35.14 7.51 24.29 55.94 6/4 1.90 1.34 0.52 5.44 7.33 3.79 2.79 17.09 6/5 2.08 1.28 0.38 4.31 6.61 2.29 1.32 9.39 6/6 1.76 1.34 0.09 6.54 7.55 2.02 1.57 9.72 6/7 1.91 0.93 0.18 3.81 7.50 2.70 2.26 12.85 6/8 1.94 1.25 0.43 4.55 8.93 2.74 4.03 14.73 7/3 14.60 4.82 7.94 23.84 33.03 4.98 22.31 41.05 7/4 2.83 1.35 0.32 5.62 9.09 4.50 1.21 19.18 7/5 1.73 1.41 0.15 4.25 4.51 3.30 0.36 10.84 7/6 1.96 1.07 0.17 4.14 7.59 1.76 3.98 10.54 7/7 1.64 1.21 0 4.04 6.21 2.94 1.15 13.77 7/8 2.23 0.95 0.14 3.83 7.89 2.68 2.32 12.06 8/3 13.04 3.97 5.06 18.72 33.07 7.10 21.18 46.70 8/4 2.20 1.14 0.12 4.32 7.89 3.53 0.69 12.67 8/5 1.86 1.29 0.05 3.96 6.28 3.25 1.83 14.44 8/6 1.65 1.24 0.01 3.31 5.52 3.08 1.18 11.81 8/7 1.94 0.84 0.66 4.10 8.24 2.68 2.26 13.10 8/8 2.04 0.93 0.54 3.91 7.29 2.30 2.45 11.09 9/3 12.94 4.50 5.52 23.69 30.65 5.80 18.36 44.27 9/4 2.09 1.40 0.12 4.13 7.62 5.16 0.48 19.86 9/5 2.24 1.27 0.04 4.49 6.10 3.10 0.78 9.84 9/6 2.06 1.00 0.15 3.93 5.93 2.04 2.65 9.65 9/7 1.88 1.04 0.07 4.93 7.40 2.73 3.66 13.94 9/8 2.17 1.04 0.72 4.10 7.82 3.34 1.83 11.65 10/3 12.68 4.95 4.64 20.92 32.58 5.23 23.08 42.66 10/4 2.33 1.51 0.23 5.41 7.96 5.03 0.48 16.05 10/5 2.23 1.12 0.24 4.19 5.71 2.87 1.58 11.43 10/6 2.07 1.29 0.01 4.40 7.70 3.49 0.61 13.52 10/7 2.13 1.22 0 4.51 7.75 2.56 2.50 11.69 10/8 1.69 0.84 0.13 3.04 7.96 3.39 0.57 12.18 11/3 14.81 5.24 6.10 25.63 35.37 6.14 22.18 48.02 11/4 1.86 1.33 0.04 5.08 6.28 5.08 0.35 22.43 11/5 2.34 1.15 0 4.47 6.42 3.77 0.18 12.17 11/6 1.90 1.50 0.03 4.75 6.14 2.49 2.38 9.75 11/7 2.23 1.08 0.06 4.52 7.76 2.91 3.83 14.40 11/8 1.98 1.00 0.03 4.30 7.50 3.34 1.12 13.41 Table6.11showsthatonaverage,forasheettostencilarearatioof1:1.4,thebestfinal nestswithminimumnonplacementwereobtainedwithaparametertuningfactorof7and acosttuningfactorof5.OverallaveragesolutionqualityinTables6.8to6.11isbetter thanthatachievedforthenestingproblemwithtworelaxedsheetboundarieswithasheet tostencilarearatioof1:1,resultsofwhicharegiveninTable6.5.Itshouldbenoted however,thatresultsinTable6.5werearrivedatwithescapepenaltiessettounitywhilst theresultsinTables6.8to6.11wereobtainedwithescapepenaltiesofzero.Figure6.14 summarizesaveragefinalcostsforincreasinglysmallersheetsizes. 112 ResultsandDiscussion

Figure6.14Overviewirregularnestingresults–Reducedsheets. Figure6.14showsthattheworstfinalnestsforallsheetarrangementswerefoundfora costtuningfactorof3,andthat(foralltuningfactorvaluesused)theoverallaverage solutionqualityforsheettostencilarearatiosof1:1.1,1:1.2,1:1.3,and1:1.4, respectively,was18.63%,17.58%,16.55%,and16.46%.Thereforeitcanbesaidthat reducingthesheetareasimprovedtheoverallsolutionqualityoffinalnests.Theminimum overallaveragesolutionqualitywasfoundforasheettostencilarearatioof1:1.4.In addition,theminimumaveragefinalcostof6.2wasalsofoundforaratioof1:1.4.It shouldbenotedthattheoverallaveragesolutionqualityforasheettostencilarearatioof 1:1was20.38%,butthenescapepenaltieswereunityinsteadofzero.Table6.12gives 113 ResultsandDiscussion minimumaveragesofoverlapandnonplacement,expressedaspercentagesofinner sheetarea,obtainedforeachirregularnestingproblemofvaryingsheettostencilarea ratio. Table6.12Minimumaveragesirregularnesting–Variablesheetareas SheettoStencil MinimumAverageOverlap MinimumAverageNonplacement AreaRatio (%ofSheetArea) (%ofSheetArea) 1:1 1) 2.08 2.87 1:1.1 2) 0.95 5.39 1:1.2 2) 1.37 6.29 1:1.3 2) 1.51 5.25 1:1.4 2) 1.64 4.51 Notes:1)Escapepenaltiesunity2)Escapepenaltieszero. Table6.12showsthatwhenescapepenaltiesarezeroed,minimumaveragesfornon placementapproximatelydoubledforallnonequalsheettostencilarearatios,while minimumaveragesforoverlapatfirstmorethanhalvedandthensteadilyincreasedas innersheetsgotsmaller. Perhapscontrarytoexpectation,noneofthe4,320finalnestsgeneratedforirregular nestingproblemswherethetotalstencilareaexceededtheinnersheetareawerefound tohavezerononplacement.Itisthoughtthispoorresultwasmainlycausedbyhavingset escapepenaltiestozero:Stencilswerenolonger‘drawn’intoinnersheetsbybothescape andnonplacementcost,buttheoptimizationprocessnowsolelydependedonnon placementcostto‘draw’stencilsintotheinnersheet.Thissuggestedthatnonequal penaltiesforoverlapandnonplacementcouldproducebetterfinalnestsforproblems wheretotalstencilareaexceedsinnersheetareas.Forthetotalof5,400finalnests generatedforeachsheetsize,Table6.13givesasummaryofthenumberoffinalnests foundwithzerostenciloverlapandgivestheparameterandcosttuningfactorswithwhich thesenestswereobtained.

114 ResultsandDiscussion Table6.13Zerooverlapinstancesirregularnesting–Variablesheetareas SheettoStencil InstancesofZeroOverlap Parameter/CostTuningFactor AreaRatio 1:1 1) 1 9/8 1 10/5 1:1.1 2) 1 11/7 1:1.2 2) 3 9/5 1 9/6 1 9/8 1:1.3 2) 1 10/5 1 10/6 1 11/6 1 11/7 1:1.4 2) Notes:1)Escapepenaltiesunity2)Escapepenaltieszero. Table6.13furtherillustratesthepoorperformanceofthedredgecutnestingmodelinthis lastsetofexperiments:only11outof4,320finalnestgeneratedhadzerostenciloverlap. ResultsinTable6.13furtherstrengthentheargumentthat,ifachievingzeronon placementistobeprioritizedoverachievingzerostenciloverlap,moreweightshouldbe giventononplacementcostinthesolutionprocess.Becausenofinalnestswerefound withzerononplacementforthispartoftheexperimentation,finalnestswithminimum nonplacementwerelookedat.Figure6.15depictsthefinalnestsfoundwithminimum nonplacementcosts,expressedaspercentagesofinnersheetarea,forsheettostencil arearatiosof1:1.1,1:1.2,1:1.3and1:1.4.

1–1:1.1 2–1:1.2 3–1:1.3 4–1:1.4 Overlap:0.01% Overlap:0.003% Overlap:0.02% Overlap:0.004% NonPlacement:0.07% NonPlacement:0.86% NonPlacement:0.16% NonPlacement:0.18% Figure6.15Minimumfinalcostnests–Irregularnesting–Reducedsheets.

115 ResultsandDiscussion TheparameterandcosttuningfactorcombinationswithwhichthefinalnestsinFigure 6.15werearrivedatwere10/6forasheettostencilarearatioof1:1.1and11/5for ratiosof1:1.2,1:1.3,and1:1.4.ThefinalnestsdepictedinFigure6.15notonlyexhibited minimumnonplacementcostsforeachsheetsize,butalsohadminimumsumsofoverlap andnonplacementcosts.DespitethatnoneofthefinalnestsdepictedinFigure6.15 satisfythezerononplacementconstraintofthedredgecutnestingmodel,finalnests1,3 and4couldbeconsideredforuseindeterminingnodesforthedredgerroutingmodel.Itis thoughtthatthenonplacementofthesethreelayoutscanbeneglectedandthatcoverage oftheinnersheetcanbeconsideredadequateenoughtoensurecompleteexcavationof theinnersheetifitrepresentedadredgingarea.However,itmustbenotedthatatotalof 4,320nestingexperimentswerecarriedoutforthispartoftheexperimentation,andthen toonlyfind3finalnestssuitableforfurtheruseinthedredgerroutingmodelreflects poorlyontheadoptedapproach. InFigure6.15finalnest4displaysadesiredsideeffectofthedredgecutnestingsolution process:Astencilhasbeenleftcompletelyoutsideoftheinnersheet.Forthistohappen escapecostmustbeverysmallincomparisontooverlapandnonplacementcosts,and thisiswhyfornestingexperimentswithreducedinnersheetareasescapepenaltieswere settozero.AsexplainedinSection5.4.4.2,unitdredgecutsofstencils,whichareentirely outsideinnersheetscanbeleftundredgedbynotincludingtheircentroidsasnodesinthe dredgerroutingmodel. InFigure6.15finalnest2hastoberejectedforuseindeterminingnodesforthedredger routingmodelasthenonplacementareaexhibited(markedinsolidblack)isconsidered toolargetobeneglectedandthereforewouldresultinareasnotbeingdredged.Theother 19finalnestsfoundwithaparameterandcosttuningfactorcombinationof11and5(for whichtheminimumaveragenonplacementwasreportedinTable6.8)wereinspected visuallyandwereallconsideredunsuitableaswell.Asafinalcheck,forasheettostencil arearatioof1:1.2,thefinalnestwiththesecondlowestfinalcostwaslookedattoseeifit wouldbesuitableforuseindeterminingnodesforthedredgerroutingmodel.Figure6.16 depictstherelevantfinalnest.

116 ResultsandDiscussion

Figure6.16Secondbestnest–Irregularnesting–Sheettostencilarearatio1:1.2. ThefinalnestdepictedinFigure6.16wasarrivedatwithaparameterandcosttuning factorcombinationof9and5,andhasanoverlapareaequalto0.11%,andanon placementareaequalto1.69%oftheinnersheetarea.AsisclearfromFigure6.16the depictedfinalnestshouldalsobeconsideredunfitfordeterminingnodesforthedredger routingmodelasthenonplacementareas(markedinsolidblack)aretoolargetobe neglected. Gradualincreaseinthenumberofrelaxedsheetboundariesandgradualreductionof innersheetsizes,fortworelaxedsheetboundariesandconstanttotalstencilarea,caused thesolutionqualityofbestfinalnestsfoundtograduallydeterioratetothepointthatforthe experimentationdiscussedherenoneofthe4,320finalnestsgeneratedsatisfiedthezero nonplacementconstraintofthedredgecutnestingmodel.Itwasthoughtthatallowingfor relaxedsheetboundariesandprovidingtotalstencilareaswhichexceededinnersheet areaswaskeytosolvingirregulardredgecutnestingproblems:Withouttheseattributesit wasconsidereddifficulttoachievezerononplacementforirregularlyshapeddredging areas. Theresultspresentedinthissectionsuggestedaddingmoreweighttononplacement costincomparisontooverlapcosttoobtainbetterfinalnestlayouts.Beforethiswas done,thestencilsetusedfornestingwasregularized.Itwasthoughtthenestingof squarestencils,representingindividualcutswithsidesequaltoaneffectivecutwidthof cuttersuctiondredgerscouldleadtoincreasednumbersoffinalnestswithzeronon placement.So,insteadoftheirregularstencilsetshowninFigure6.15asetof32 identicalsquarestencilswerenestedinproblemswithsheettostencilarearatiosof1:1.1, 1:1.2,1:1.3and1:1.4.Theresultsoftheregularnestingexperimentscarriedoutwitha stencilsetconsistingof32identicalsquaresarepresentedanddiscussednext.

117 ResultsandDiscussion

6.5 Dredge Cut Nesting – Reduced Sheet Areas for Square Stencils Figure6.17depictsanexampleofarandominitialplacementof32squarestencilsused asaninitialsolutionatthestartofanestingoptimizationprocessforanestingproblem withasheettostencilarearatioof1:1.1.

Figure6.17Randominitialnest–Regularnesting. TherandominitialnestinFigure6.17hasanoverlapareaequalto32.05%,andanon placementareaequalto57.90%oftheinnersheetarea.Experimentalresultsobtained fromtheapplicationofthedredgecutnestingmodeltoregularnestingproblemswithtwo relaxedsheetboundariesandreducedsheetareasarepresentedinTables6.14,6.15, 6.16and6.17.Thesetablesreportthemean,,standarddeviation,σ,andminimumand maximumofvaluesofoverlapandnonplacementfor20replicationscarriedoutforeach pairoftuningfactors.Overlapandnonplacementareexpressedasapercentageofthe totalinnersheetareaused.Escapepenaltieswerezeroforthispartofthe experimentationandthusescapeisexcludedfromthesetables.

118 ResultsandDiscussion Table6.14Regularnesting–Sheettostencilarearatio1:1.1 Tuning Factor Overlap(%ofSheetArea) Nonplacement(%ofSheetArea) Parameter /Cost σ Min Max σ Min Max 3/3 17.35 3.62 10.99 23.75 49.20 4.28 43.30 57.24 3/4 9.70 1.79 5.71 12.33 35.27 4.70 29.29 46.75 3/5 4.15 0.67 3.01 5.47 15.16 1.83 11.97 19.73 3/6 3.01 0.98 1.58 5.68 12.26 1.28 9.42 14.43 3/7 2.68 0.64 1.68 3.68 12.30 1.26 10.38 15.04 3/8 3.02 0.86 1.58 4.35 12.16 1.71 9.44 15.69 4/3 16.99 2.92 12.28 23.20 48.63 4.88 39.88 61.16 4/4 9.22 2.33 5.73 13.77 36.26 4.32 30.42 45.66 4/5 4.24 0.89 2.40 6.62 13.08 1.88 9.60 16.56 4/6 2.16 0.50 1.24 3.00 11.47 1.44 8.54 14.73 4/7 2.00 0.44 0.90 2.51 11.20 1.48 8.08 14.63 4/8 2.39 0.95 1.14 4.87 11.17 1.10 8.26 12.60 5/3 16.58 2.76 12.04 23.09 50.48 4.37 42.62 57.69 5/4 10.61 2.80 6.21 18.42 36.02 3.23 29.38 43.28 5/5 3.20 0.80 1.72 4.96 11.24 1.35 8.01 13.56 5/6 1.73 0.49 1.00 2.87 9.81 1.79 5.30 12.15 5/7 1.62 0.63 0.75 2.99 9.62 1.58 6.54 13.15 5/8 1.69 0.51 0.89 2.92 10.48 1.97 6.79 13.26 6/3 17.05 4.58 9.11 25.49 50.26 4.06 40.54 57.37 6/4 10.08 2.22 6.07 15.17 37.43 3.17 30.76 42.18 6/5 2.64 0.54 1.94 3.85 10.51 0.97 9.07 12.67 6/6 1.46 0.47 0.71 2.49 8.26 1.40 5.74 10.64 6/7 1.32 0.50 0.54 2.19 8.53 1.57 5.99 11.51 6/8 1.20 0.47 0.47 2.22 9.37 1.95 5.83 12.22 7/3 17.17 4.30 8.82 25.51 50.02 4.70 43.27 58.66 7/4 10.62 2.56 6.28 16.01 35.30 3.45 29.07 43.35 7/5 2.40 0.70 1.33 4.08 9.94 1.62 7.68 14.19 7/6 1.31 0.54 0.74 2.69 6.58 1.27 5.12 9.59 7/7 1.13 0.37 0.54 1.84 7.79 1.76 5.03 11.66 7/8 1.37 0.47 0.25 2.34 8.07 1.76 3.65 10.56 8/3 17.06 3.11 9.13 22.94 49.54 4.32 43.19 58.31 8/4 9.14 1.60 6.45 11.82 37.84 4.09 30.73 44.67 8/5 2.24 0.66 1.23 3.50 8.43 1.69 5.72 12.83 8/6 1.24 0.38 0.60 1.90 6.78 1.40 3.81 9.81 8/7 1.14 0.41 0.32 2.06 7.22 1.64 4.94 11.22 8/8 1.18 0.42 0.60 1.92 7.84 1.54 3.52 10.26 9/3 15.72 2.86 11.28 20.90 48.45 3.60 40.33 54.80 9/4 10.01 2.76 5.25 18.40 35.37 3.99 27.77 42.39 9/5 2.01 0.65 1.03 3.45 8.02 1.71 5.19 11.87 9/6 1.13 0.44 0.47 2.12 6.68 1.35 3.59 9.05 9/7 1.16 0.36 0.48 1.99 7.02 1.09 4.71 9.21 9/8 1.07 0.47 0.33 2.22 8.58 2.15 5.33 12.22 10/3 15.53 3.05 8.38 22.65 48.91 5.60 36.63 58.99 10/4 9.41 1.79 5.09 12.24 35.37 3.50 27.45 41.35 10/5 2.08 0.72 0.88 3.61 8.66 2.20 3.47 12.44 10/6 1.37 0.74 0.22 3.20 5.87 1.59 3.13 10.01 10/7 1.20 0.35 0.60 1.99 7.12 2.05 4.15 11.46 10/8 1.37 0.61 0.62 2.54 7.75 1.53 4.77 11.04 11/3 16.89 4.10 10.32 25.01 51.58 4.70 41.82 59.37 11/4 10.67 3.19 6.13 17.66 36.30 3.43 28.31 41.21 11/5 1.84 0.69 0.88 3.44 8.36 1.82 4.77 11.08 11/6 1.16 0.49 0.27 2.00 6.50 1.44 3.83 9.33 11/7 1.25 0.38 0.77 2.38 7.37 1.64 4.60 11.04 11/8 1.16 0.33 0.53 1.71 7.72 1.63 4.24 10.69 Table6.14showsthatonaverage,forasheettostencilarearatioof1:1.1,thebestfinal nestswithminimumareasofnonplacement–themostimportantdecisionvariablefor dredging–forsquarestencilswereobtainedwithaparametertuningfactorof10anda costtuningfactorof6.TherelevantrowinTable6.14isgreyscaledandminimum averagesforoverlapandnonplacementaregiveninboldtext.Beforesummarizing results,resultsofregularnestingexperimentswithasheettostencilarearatioof1:1.2are giveninTable6.15.

119 ResultsandDiscussion

Table6.15Regularnesting–Sheettostencilarearatio1:1.2 Tuning Factor Overlap(%ofSheetArea) Nonplacement(%ofSheetArea) Parameter /Cost σ Min Max σ Min Max 3/3 18.43 4.77 10.93 28.08 48.87 4.75 41.60 57.47 3/4 10.49 2.98 5.63 17.30 35.23 3.01 29.93 40.54 3/5 4.28 0.93 2.67 6.24 14.62 1.76 12.29 19.33 3/6 3.28 0.99 1.46 5.36 12.84 1.41 11.01 16.62 3/7 2.81 0.58 1.66 3.89 13.08 1.50 10.56 16.59 3/8 3.16 1.16 1.96 6.60 12.78 1.84 8.85 16.43 4/3 18.19 2.30 13.14 23.06 49.82 5.03 39.74 58.08 4/4 11.15 2.95 6.29 16.41 33.50 3.96 25.76 42.46 4/5 3.71 0.63 2.22 4.82 12.52 1.99 8.86 15.95 4/6 2.55 0.62 1.54 3.53 10.94 1.50 8.50 14.02 4/7 2.24 0.61 1.01 3.14 10.72 1.47 8.08 13.53 4/8 2.24 0.74 1.12 4.19 10.98 1.73 7.46 14.20 5/3 17.86 3.92 11.68 26.34 49.99 4.04 43.60 57.16 5/4 10.09 2.47 5.37 14.16 33.29 4.51 26.14 40.02 5/5 3.16 0.76 2.03 4.60 10.61 2.10 6.66 14.42 5/6 1.95 0.48 1.11 2.86 9.50 1.43 6.92 12.63 5/7 1.79 0.69 0.69 3.47 10.05 1.46 8.01 12.03 5/8 1.66 0.65 0.41 2.68 10.27 1.05 7.89 12.02 6/3 17.46 4.64 11.05 30.25 48.19 5.11 39.32 61.94 6/4 8.95 2.53 4.53 13.52 34.20 4.78 22.26 43.10 6/5 2.70 0.81 1.11 3.97 9.32 1.70 6.36 12.96 6/6 1.52 0.57 0.31 2.37 7.77 1.02 5.55 9.52 6/7 1.68 0.82 0.49 3.36 8.90 1.73 5.69 12.43 6/8 1.48 0.62 0.15 2.65 9.86 1.82 6.99 13.53 7/3 17.70 3.37 12.95 24.50 49.69 5.43 37.51 56.60 7/4 9.67 2.53 4.59 15.47 33.95 3.73 27.55 40.22 7/5 2.61 0.69 1.19 3.82 9.14 1.48 5.66 12.29 7/6 1.57 0.51 0.38 2.63 6.98 1.19 4.23 8.56 7/7 1.26 0.55 0.08 2.46 8.29 2.11 3.63 12.09 7/8 1.43 0.65 0.45 2.70 9.04 1.31 6.49 11.46 8/3 17.81 3.74 10.93 25.07 49.74 4.70 39.96 58.77 8/4 9.49 1.84 5.65 13.20 32.93 3.07 24.12 37.22 8/5 2.16 0.84 0.70 3.09 7.80 1.39 5.76 10.93 8/6 1.37 0.44 0.49 2.12 6.29 1.41 3.30 9.40 8/7 1.38 0.40 0.73 2.08 7.48 1.63 4.15 11.08 8/8 1.39 0.51 0.53 2.29 8.97 1.87 5.58 12.93 9/3 17.46 3.58 12.18 26.81 49.81 5.93 36.03 58.00 9/4 9.59 1.55 6.10 13.00 33.75 3.92 26.89 43.44 9/5 1.90 0.69 0.65 3.01 7.31 1.15 5.48 9.32 9/6 1.29 0.63 0.31 2.69 6.10 1.50 2.98 9.52 9/7 1.16 0.52 0.31 2.08 7.53 2.05 4.00 10.55 9/8 1.50 0.57 0.75 2.64 8.27 1.74 4.83 11.63 10/3 17.87 4.15 9.57 28.84 49.20 4.87 41.73 57.20 10/4 10.12 3.08 5.98 18.09 33.56 2.82 29.85 40.11 10/5 2.17 1.02 0.60 3.93 7.87 1.96 4.49 11.44 10/6 1.60 0.67 0.16 3.00 6.48 1.52 3.80 8.98 10/7 1.26 0.58 0.07 2.69 7.73 2.00 3.21 11.00 10/8 1.23 0.41 0.78 2.11 8.49 1.67 5.44 11.04 11/3 17.35 3.52 11.68 24.95 49.08 4.16 40.36 58.93 11/4 9.90 2.98 4.62 15.69 31.66 4.20 25.98 41.90 11/5 2.17 0.95 0.63 4.83 7.84 2.04 5.23 12.89 11/6 1.40 0.55 0.16 2.38 6.70 1.71 3.90 10.17 11/7 1.14 0.50 0.36 2.14 6.17 1.74 3.27 9.26 11/8 1.43 0.55 0.58 2.70 8.35 1.60 6.23 12.40 Table6.15showsthatonaverage,forasheettostencilarearatioof1:1.2,thebestfinal nestswithminimumnonplacementwereobtainedwithaparametertuningfactorof9and acosttuningfactorof6.Table6.16givestheresultsofregularnestingexperimentswitha sheettostencilarearatioof1:1.3.

120 ResultsandDiscussion Table6.16Regularnesting–Sheettostencilarearatio1:1.3 Tuning Factor Overlap(%ofSheetArea) Nonplacement(%ofSheetArea) Parameter /Cost σ Min Max σ Min Max 3/3 20.89 4.84 8.93 28.17 50.38 4.65 42.78 64.80 3/4 10.15 2.32 5.42 14.42 30.96 5.15 22.94 43.59 3/5 3.93 0.90 1.98 5.33 14.74 1.95 11.49 19.60 3/6 2.92 0.80 1.58 4.56 13.13 1.48 10.59 15.54 3/7 3.34 0.90 1.48 4.70 11.97 1.51 8.78 15.02 3/8 3.37 1.32 1.15 5.76 12.44 1.58 10.29 14.73 4/3 18.94 2.96 12.90 25.27 47.92 4.57 39.55 55.33 4/4 10.29 2.50 6.38 13.80 30.97 3.14 24.74 36.31 4/5 3.66 0.82 2.20 5.14 12.76 1.52 9.96 16.56 4/6 2.36 0.64 1.31 3.50 11.12 1.22 9.36 13.59 4/7 2.14 0.56 1.28 3.51 11.66 1.51 7.88 13.53 4/8 2.76 0.78 1.64 4.38 11.00 1.48 8.42 14.40 5/3 19.78 3.82 14.87 26.64 47.95 5.12 40.89 58.83 5/4 10.89 3.56 4.93 18.56 32.44 3.25 25.54 39.01 5/5 3.25 0.63 2.20 4.43 10.61 1.58 8.38 13.82 5/6 1.78 0.55 0.93 2.70 9.17 1.43 6.84 13.23 5/7 1.82 0.64 0.99 2.87 9.86 2.03 5.37 13.52 5/8 1.80 0.58 0.51 3.00 10.15 1.40 7.15 13.10 6/3 20.16 3.91 12.74 27.34 48.02 4.13 37.18 53.65 6/4 9.95 2.89 4.33 17.08 32.62 3.76 26.15 38.97 6/5 2.37 0.68 1.25 4.20 7.70 1.45 5.02 11.04 6/6 1.76 0.60 0.58 2.99 7.80 1.58 5.48 10.13 6/7 1.34 0.54 0.31 2.41 8.86 1.38 5.92 11.49 6/8 1.62 0.66 0.63 2.92 8.86 1.52 5.86 11.84 7/3 19.06 5.33 11.15 32.58 48.09 4.44 37.65 54.74 7/4 10.27 3.13 5.26 17.44 33.32 2.73 28.42 37.84 7/5 2.49 0.71 0.85 3.53 7.76 1.76 4.31 11.62 7/6 1.28 0.61 0.44 2.50 6.87 1.57 4.13 9.71 7/7 1.45 0.72 0.19 2.98 7.44 1.48 3.83 9.68 7/8 1.73 0.67 0.34 2.79 9.32 1.55 5.16 12.78 8/3 19.71 3.97 12.16 25.14 46.06 7.21 36.43 64.52 8/4 9.80 2.70 5.21 15.56 31.30 3.75 25.34 38.26 8/5 1.96 0.78 0.65 3.46 6.66 1.89 3.51 10.02 8/6 1.27 0.86 0.23 2.78 6.06 1.75 2.66 9.48 8/7 1.43 0.74 0.23 3.00 6.82 0.91 5.23 8.66 8/8 1.47 0.74 0.29 2.96 8.16 1.69 4.83 11.01 9/3 20.33 4.29 11.70 26.68 47.70 3.67 40.34 56.73 9/4 9.58 2.42 3.98 14.21 30.63 4.23 23.66 38.06 9/5 1.89 0.80 0.51 3.30 6.68 2.09 2.16 10.11 9/6 1.47 0.69 0.19 2.82 6.07 2.39 1.34 9.55 9/7 1.12 0.44 0.52 1.88 6.95 1.80 3.89 11.61 9/8 1.29 0.52 0.50 2.14 7.97 1.88 3.46 10.10 10/3 19.72 3.93 11.70 29.05 46.80 5.85 35.68 57.13 10/4 9.91 2.92 4.78 17.03 31.56 3.66 24.64 38.92 10/5 1.71 1.10 0.40 3.93 5.96 2.45 2.53 10.85 10/6 1.54 0.55 0.16 2.28 6.06 1.84 1.93 9.37 10/7 1.50 0.60 0.07 2.52 6.87 1.68 4.03 9.62 10/8 1.56 0.59 0.18 2.72 7.86 1.62 4.48 10.03 11/3 18.95 4.64 11.24 28.76 48.43 3.94 41.55 57.42 11/4 9.74 2.80 5.29 15.65 32.27 4.69 22.55 43.94 11/5 2.20 1.14 0.49 4.62 7.49 2.43 3.75 11.12 11/6 1.14 0.54 0.10 2.08 5.73 1.81 2.16 9.14 11/7 1.72 0.69 0.68 3.41 6.58 1.67 3.91 11.00 11/8 1.40 0.70 0.44 3.31 8.38 1.97 4.83 11.04 Table6.16showsthatonaverage,forasheettostencilarearatioof1:1.3,thebestfinal nestswithminimumnonplacementforsquarestencilswereobtainedwithaparameter tuningfactorof11andacosttuningfactorof6forsquarestencils.Table6.17givesthe resultsofregularnestingexperimentswithasheettostencilareaof1:1.4.

121 ResultsandDiscussion Table6.17Regularnesting–Sheettostencilarearatio1:1.4 Tuning Factor Overlap(%ofSheetArea) Nonplacement(%ofSheetArea) Parameter /Cost σ Min Max σ Min Max 3/3 20.89 4.87 10.87 28.85 46.04 4.62 39.36 54.65 3/4 9.58 2.43 6.13 15.76 29.51 2.60 24.96 34.46 3/5 3.56 0.77 2.39 4.87 15.17 2.04 10.89 20.08 3/6 3.35 0.78 2.05 4.69 12.25 1.41 9.91 15.78 3/7 3.25 0.81 1.76 4.78 12.43 1.35 9.85 14.26 3/8 3.32 0.69 2.04 5.01 12.45 1.41 9.51 15.35 4/3 20.32 4.95 11.35 29.26 47.52 4.43 38.43 55.88 4/4 11.55 2.32 7.80 16.50 29.37 3.69 22.86 37.86 4/5 3.46 0.92 1.53 5.39 11.76 1.83 8.56 15.39 4/6 2.33 0.62 1.19 3.51 10.43 1.50 7.38 13.11 4/7 2.56 1.00 1.05 4.72 11.32 1.36 9.69 13.63 4/8 2.22 0.46 1.34 2.97 11.70 1.31 10.09 14.81 5/3 20.83 4.48 11.13 27.19 50.27 5.60 40.21 62.28 5/4 10.81 2.23 7.20 15.56 29.93 3.23 23.48 34.63 5/5 2.47 0.72 1.24 4.18 11.09 2.16 7.15 15.46 5/6 2.08 0.74 0.74 3.91 9.53 1.69 5.61 13.41 5/7 1.72 0.56 0.74 2.68 10.09 1.33 7.86 12.29 5/8 1.75 0.60 0.64 3.27 10.63 1.26 8.96 13.14 6/3 19.55 4.01 8.68 24.28 50.61 6.50 38.01 60.59 6/4 9.32 2.42 4.46 13.73 28.63 2.93 23.97 34.04 6/5 2.39 0.91 0.80 4.15 9.10 1.77 6.65 12.71 6/6 1.50 0.52 0.47 2.60 7.88 1.06 4.94 9.74 6/7 1.56 0.72 0.52 3.14 8.60 1.40 5.92 11.20 6/8 1.82 0.75 0.76 3.30 9.02 1.69 5.62 13.15 7/3 19.80 4.81 11.18 29.90 47.49 6.52 40.26 61.70 7/4 9.09 2.45 5.31 16.56 29.45 3.50 23.92 36.11 7/5 2.37 0.95 0.97 4.26 7.33 1.94 3.86 10.77 7/6 1.61 0.54 0.24 2.58 6.61 1.25 3.80 8.58 7/7 1.26 0.46 0.30 2.43 8.05 1.72 3.93 12.34 7/8 1.49 0.64 0.68 2.61 8.75 1.56 5.79 11.35 8/3 21.55 3.98 15.28 29.97 47.63 5.01 36.48 54.79 8/4 9.81 2.50 2.76 12.74 29.36 3.90 22.79 38.28 8/5 2.32 0.79 0.87 3.46 7.53 1.51 4.28 10.82 8/6 1.36 0.51 0.66 2.70 7.09 1.50 4.13 9.93 8/7 1.34 0.49 0.46 2.41 7.47 1.60 4.34 11.44 8/8 1.60 0.60 0.60 2.53 7.50 1.47 4.64 10.21 9/3 20.40 4.95 12.24 31.93 47.80 5.84 35.04 60.88 9/4 9.83 2.33 6.08 14.38 29.10 3.96 23.08 36.59 9/5 1.68 0.59 0.81 2.75 5.68 1.65 2.06 9.38 9/6 1.42 0.64 0.22 2.38 6.28 1.60 3.09 9.18 9/7 1.53 0.74 0.70 3.81 6.92 1.40 4.35 9.25 9/8 1.51 0.71 0.17 3.19 7.96 1.60 5.57 11.26 10/3 20.24 3.46 14.14 26.13 49.04 4.66 40.15 58.21 10/4 9.92 2.04 6.75 13.53 28.69 2.76 23.95 34.89 10/5 2.47 0.79 0.78 3.61 7.22 2.09 4.08 10.18 10/6 1.20 0.73 0.02 2.59 6.04 1.52 2.65 8.39 10/7 1.37 0.54 0.44 2.68 7.16 1.44 4.56 9.81 10/8 1.16 0.74 0.07 2.58 7.50 1.76 4.75 10.91 11/3 20.15 4.25 11.13 27.42 47.01 5.22 33.94 58.53 11/4 10.40 2.54 6.54 15.45 28.48 3.81 17.99 35.43 11/5 1.89 0.76 0.71 3.84 6.45 2.32 2.51 13.43 11/6 1.34 0.65 0.22 2.33 5.98 1.63 3.30 9.84 11/7 1.40 0.58 0.06 2.25 6.93 1.47 3.51 9.45 11/8 1.36 0.75 0.62 3.19 8.08 1.78 4.47 11.53 Table6.17showsthatonaverage,forasheettostencilarearatioof1:1.4,thebestfinal nestswithminimumnonplacementforsquarestencilswereobtainedwithaparameter tuningfactorof9andacosttuningfactorof5.Forthispartoftheexperimentation,which nestedsquarestencils,nooptimalfinalnests,havingzerooverlapandzeronon placement,werefound.Figure6.18summarizesaveragesoffinalcostsforincreasingly smallersheetsizeswithsquarestencils.

122 ResultsandDiscussion

Figure6.18Overviewregularnestingresults–Reducedsheets. Figure6.18showsthattheworstfinalnestsforallsheetarrangementswerefoundfora costtuningfactorof3,thatacosttuningfactorof4alsoconsistentlygavepoorresults, andthat(forthetuningfactorvaluesused)theoverallaveragesolutionqualityforsheetto stencilarearatiosof1:1.1,1:1.2,1:1.3,and1:1.4,respectively,were26.08%,25.84%, 25.39%,and25.13%.Itcanbesaidthatfortheregularnestingproblemssolvedwithtwo relaxedsheetboundaries,thesmallerthesheetareathebettertheoverallaverage solutionqualityoffinalnests.Theminimumoverallaveragesolutionqualitywasfoundfor asheettostencilarearatioof1:1.4.However,theminimumaverage

123 ResultsandDiscussion finalcostof6.9%wasfoundforaratioof1:1.3.Figure6.19depictsthefinalnestof squareswithminimumfinalcost,whichwasfoundforasheettostencilarearatioof1:1.3 andwithaparameterandcosttuningfactorcombinationof9and6.

Figure6.19Bestnest–Regularnesting–Sheettostencilarearatio1:1.3. ThefinalnestofFigure6.19hasanoverlapareaequalto0.43%andnonplacementarea equalto1.34%oftheinnersheetarea.InFigure6.19thecentroidsofstencilswhich intersectwithinsidetheinnersheetcouldbeconsideredforuseasnodesinthedredger routingmodel.Despitethattheregularnestingproblemsshouldhavebeeneasiertosolve thantheirregularones,noneofthe4,320regularnestingproblemssolvedforthispartof theexperimentationresultedinfinalnestswithzerononplacement.Areasonforthelack ofimprovementinsolutionqualityforregularnestingproblemscanbethatthetotal numberofiterationsremainedconstantat99,999. Thedredgecutnestingmodelmodifiesnestingsolutionsbysequentiallydisturbingthe positionofstencils.Thereforeforthenestingproblemswith14irregularstencilsthe positionofeachstencilwasperturbedaround7,142timesover99,999iterations,whilefor theregularnestingproblemseachofthe32squarestencilswasperturbedaround3,124 timesover99,999iterations.Thefactthatforirregularnestingproblemspositionsofeach stencilwereperturbedapproximatelytwicemorethaninregularnestingproblemsis thoughttohaveplayedapartintheobservedlackofimprovedsolutionquality.However, Chen etal .(1999)statesthatbecauseofthe“ excellent ”abilityoftheadaptivesimulated annealingtoselfadapttheperformanceofthealgorithmisnotcriticallyinfluencedby chosenvaluesthefortotalnumberofiterations.Chen etal .(1999)reportsthishasbeen observedforavarietyofproblemssolvedwithadaptivesimulatedannealing.

124 ResultsandDiscussion Anotherwayofsearchingforbettersolutionscouldhavebeentoexploremore combinationsofparameterandcosttuningfactors.However,asexplainedwithTable6.2, thisoptionislimitedfortheproblemssolvedhereifthesolutionprocessistoremainone ofadaptivesimulatedannealing,thatisifsimulatedquenchingistobeavoided. Tables6.18presentsanoverviewofresultsforallnestingexperimentsdiscussedsofar, givingminimumaveragefinalcostsfor20replicationsexpressedaspercentagesofsheet areasused.Table6.18alsogivesthenumberoftimesfinalnestswerefoundwithzero overlapandzerononplacementandwithzerononplacementonly(theacronymGM standsforglobalminimum)outofatotalof1,080replicationscarriedoutforeach experiment. Table6.18Overviewirregularandregularnestingresults Sheet 0Relaxed 1Relaxed 2Relaxed 3Relaxed Type Boundaries Boundary Boundaries Boundaries Nest Irregular Irregular Irregular Regular Irregular Type Sheet: Min GM/ Min GM/ Min GM/ Min GM/ Min GM/ Stencil Average 1080 Average 1080 Average 1080 Average 1080 Average 1080 Area Overlap+Nonplacement 1:1 1.68 39 3.76 15 4.95 0 6.38 2 1:1.1 6.85 0 7.24 0 1:1.2 7.94 0 7.31 0 1:1.3 6.85 0 6.87 0 1:1.4 6.24 0 7.24 0 Nonplacementonly 1:1 0.84 43 2.02 15 2.87 1 3.75 2 1:1.1 5.34 0 5.87 0 1:1.2 6.29 0 6.10 0 1:1.3 5.24 0 5.73 0 1:1.4 4.51 0 5.68 0 Note:Allfiguresarepercentagesof(inner)sheetareasused. Table6.18showsthatwhen,forasheettostencilarearatioof1:1,sheetboundarieswere relaxed,overlapandnonplacementcostsoffinalnestsincreased.Table6.18alsoshows thatreductionsinsheetareaforconstanttotalstencilareabeyondaratioof1:1.1didnot causefinalcoststovaryasmuchincomparison,forirregularaswellasregularnesting. Themainproblemwithresultsobtainedsofar,asshowninTable6.18,isthatwhensheet areaswerereducedfortheirregularandregularnestingproblemsolved,nofinalnests withzerononplacement–themostimportantdecisionvariablefordredging–were found.Thisisaproblembecausenonzerononplacementforagivensheetequatesto leavingpartsofadredgingareaundredged.Itshouldbenotedthatsofaralloverlapand nonplacementcostpenaltiesweresettounity. 125 ResultsandDiscussion AsmentionedafterTable6.13,tofindmorefinalnestswithzerononplacementmore weightcanbeaddedtononplacementcostthantooverlapcostintheobjectivefunction ofthedredgecutnestingmodel.Tofindoutifthiswastruethiswasdoneforthenextset ofregularnestingexperiments.Detailsofcostpenaltiesusedandresultsobtainedare presentedanddiscussednext.

6.6 Dredge Cut Nesting – Cost Penalty Increase for Square Stencils Forirregularnestingexperimentswith0,1,2,and3relaxedinnersheetboundariesall costpenaltyfactorsandexponentsintheobjectivefunction(seeEquation5.4)weresetto unity.Forirregularandregularnestingproblemswith2relaxedsheetboundariesand sheettostencilarearatiosof1:1.1,1:1.2,1:1.3,and1:1.4escapecostpenaltieswere zeroed,butcostpenaltiesforoverlapandnonplacementwerekeptequaltounity.The experimentalresultsdiscussedsofarshowedthatforthesevaluesofcostpenalties, solutionquality,intermsoffindingfinalnestswithzerononplacement,deterioratedasthe complexityofnestingproblemsincreased,evenwhentheirregularstencilsetwas substitutedwitharegularsetofidenticalsquares. TosolveleathernestingproblemsYuping etal .(2005)selectedvaluesgreaterthanunity for5outof6costpenaltiesused.However,thesevaluescouldnotbeappliedinthesame waytodredgecutnestingproblemsastwodimensionaldredgecutnestingdiffers fundamentallyfromconventionaltwodimensionalstockcuttingproblems(seeSection5.2 andTable5.1).Therefore,althoughincreasedcostpenaltiesusedinthispartofthe experimentationhavevaluessimilartothoseusedinYuping etal .(2005),theyhavebeen applieddifferentlytodecisionvariables.Table6.19givescostpenaltyvaluesusedin Yuping etal .(2005)andthoseusedhereforregularnestingonsheetswithtworelaxed boundariesandsheettostencilarearatiosof1:1.1,1:1.2,1:1.3,and1:1.4. Table6.19Revisedcostpenalties–LeatherandDredgeCutNesting LeatherNesting DredgeCutNesting DecisionVariable (Yuping etal .,2005) Factor Exponent Factor Exponent Escape 50 2 0 0 Overlap 50 2 4 1 Nonplacement 4 1 50 2 Table6.19showsthatpenaltiesforescapecostwerekeptzeroherefordredgecut nestingproblems,sinceescapeisnotrelevanttodredging:Thecentroidsofunitdredge cutswhicharecompletelyoutsidetheinnersheetarenotusedasnodesinthedredger routingmodel.ForleathernestingproblemsYuping etal .(2005)subjectsoverlapcostto muchgreaterpenaltiesthannonplacementcost.Thisrelationshipwasinversedsincefor dredgecutnestingminimizingnonplacementismoreimportantthanminimizingoverlap. 126 ResultsandDiscussion Table6.20reportsthemean,,standarddeviation,σ,andminimumandmaximumof valuesofnonplacementareaobtainedfor20replicationscarriedoutforeachpairof tuningfactorswiththerevisedoverlapandnonplacementpenaltiesforregularnesting withreducedinnersheetareas. Table6.20Effectofrevisedcostpenaltiesonnonplacement–Regularnesting Sheetto Par./ 1) 2) Stencil Cost OriginalPenalties RevisedPenalties Area Tuning Ratio Factor σ Min Max σ Min Max 1:1.1 10/6 17,035 4,606 9,092 29,056 897 1,965 1 7,796 1:1.2 9/6 16,254 3,993 7,937 25,353 94 143 4 654 1:1.3 11/6 14,117 4,449 5,314 22,515 73 144 1 499 1:1.4 9/5 12,969 3,780 4,699 21,439 20 19 0 66 Notes:1)Overlapandnonplacementpenaltiesunity2)Overlappenaltyfactor=4;Overlappenalty exponent=1;Nonplacementpenaltyfactor=50;Nonplacementpenaltyexponent=2. InTable6.20valuesfornonplacementhavenotbeenexpressedaspercentagesofinner sheetareasbecausethiswouldhavegivenaveragesofzerototwonumbersafterthe decimalpointforresultsobtainedwiththerevisedcostpenalties.Thecombinationsof parameterandcosttuningfactorsshowninTable6.20arevaluesforwhichtheminimum averagenonplacementwasachievedwhenoverlapandnonplacementcostpenalties equaltounitywereused. Table6.20showsthattheuseoftherevisedcostpenaltiesresultedindrasticreductions ofnonplacement–themostimportantdecisionvariablefordredging–offinalnestsforall innersheettostencilarearatiosused.Withtherevisedcostpenaltiesonefinalnestwas foundwithzerononplacementforasheettostencilarearatioof1:1.4.Havingreduced nonplacementoffinalnestsforregularnestingproblems,thenextstepwastoassesthe suitabilityoffinalnestsforuseindeterminingnodegridsforthedredgerroutingmodel. Figure6.20showsfinalnestswithminimumnonplacement,foundwithoriginaland revisedcostpenaltiestogetherwithrelevantcostandparametertuningfactor combinations.Itshouldbenotedthattheminimumnonplacementfinalnest3ofFigure 6.20wasarrivedatwithacostandparametertuningfactorcombinationof9and7,whilst theminimumaveragenonplacementforasheettostencilarearatio1:1.3,giveninTable 6.20,wasfoundwithacombinationof11and6.

127 ResultsandDiscussion

1–1:1.1 2–1:1.2 3–1:1.3 4–1:1.4 Overlap:3,150 Overlap:1,545 Overlap:1,065 Overlap:4,949 NonPlacement:9,092 NonPlacement:7,937 NonPlacement:3,297 NonPlacement:4,699 Cost/Par.TF:10/6 Cost/Par.TF:9/6 Cost/Par.TF:9/7 Cost/Par.TF:9/5

5–1:1.1 6–1:1.2 7–1:1.3 8–1:1.4 Overlap:20,007 Overlap:35,114 Overlap:34,835 Overlap:61,296 NonPlacement:1 NonPlacement:4 NonPlacement:1 NonPlacement:0 Cost/Par.TF:10/6 Cost/Par.TF:9/6 Cost/Par.TF:11/6 Cost/Par.TF:9/5 Figure6.20Minimumnonplacement–Original(14)andrevised(58)costpenalties. InFigure6.20theinnersheetareasare290,322;266,450;246,402;and228,488for sheettostencilarearatiosof1:1.1,1:1.2,1:1.3,and1:1.4,respectively.Finalnests1to4 werearrivedatwithoverlapandnonplacementpenaltiessettounity,andfinalnests5to 8werefoundwiththerevisedcostpenaltiesfordredgecutnestinggiveninTable6.19.In Figure6.20onlyoneofthefinalnestsdepicted,number8,satisfiestheconstraintofthe dredgecutnestingmodelthatnonplacementmustbezero.However,finalnest8hasto berejectedforuseindeterminingnodesforthedredgerroutingmodelbecauseof

128 ResultsandDiscussion excessiveoverlap:Ifthesquarestencilsinfinalnest8havesideswhichareequaltothe maximumeffectivecuttingwidthofacuttersuctiondredger,theninefficientuseofthe dredgercanbeexpectedifthecentroidsofthestencilswereusedasnodesinadredger routingproblem. InFigure6.20,finalnests5,6,and7canbeconsideredforuseindeterminingnodesfor thedredgerroutingmodel.Itisthoughtthatthenonplacementoftheselayoutscanbe neglectedandthatcoverageoftheinnersheetisadequatetoensurecompleteexcavation oftheinnersheetifitwereadredgingarea.Finalnests1and2havetoberejected outrightforuseindeterminingnodesforthedredgerroutingmodelasthedisplayed arrangementsofstencilsintersectingtheinnersheetaretooirregular.Inaddition,the mainareasofnonplacementoffinalnests1and2(markedinsolidblack)areconsidered toolargetobeneglected. InFigure6.20,finalnests3and4canalsobeconsideredforuseindeterminingnodesfor thedredgerroutingmodelbecausetheyhaveregulararrangementsofstencilsonthe innersheet.However,itismoredifficulttojustifyrelaxingthedredgecutnestingmodel’s constraintofzerononplacementforfinalnests3and4thanitisforfinalnests5,6,and7. Selectingfinalnest3or4increasestheriskofleavingareasundredged.Therefore,outof allthefinalnestsdepictedinFigure6.20,finalnest5wouldhavetobeconsideredmost appropriatefordeterminingnodesforuseinthedredgerroutingmodelasnonplacement isnearzeroandtheoverlapisthesmallestoffinalnests5to8. Thefactthatafinalnestarrangementwithconsiderableoverlaphastobesettledfor indicatesthatvaryingoverlapandnonplacementcostpenaltiesrequiredmoreresearch, butthiswasnotpossibleduetotimeconstraints.Asarguedforfinalnest8,increased overlapreducestheefficiencyofthecuttersuctiondredgeremployedbecausesub optimaluseismadeofitsmaximumeffectivecuttingwidth.Itshouldbenotedthatnotall ofthestenciloverlapgiveninFigure6.20issituatedinsidetheinnersheet,butthisdoes notchangetheessenceoftheargumentpresentedregardinginefficientdredgeruse. Adaptivesimulatedannealingtheorystatesthatthealgorithmcomeswithastatistical promiseofbeingabletofindglobaloptimaforcomplexcombinatorialproblemswithmulti dimensionalparameterspaces.However,theresultsdiscussedsofar(takingover5,000 hourstocompleteonthecomputersused)indicateitwasdifficulttotunealgorithmand costpenaltysettingsforthedredgecutnestingmodel,suchthatgloballyoptimumfinal nests–havingzerooverlapandzerononplacement–wereeasilyfoundfortheirregular andregularnestingproblemssolvedhere.

129 ResultsandDiscussion Thetuningproblemfordredgecutnestingwaslargelysolvedbychangingtheapproachto theselectionofstencilsetsusedfornesting,whichisdiscussedinmoredetailinSection 6.9.First,resultsoftheapplicationofthedredgerroutingmodeltotwoadditionalsquare gridroutingproblemsarepresentedanddiscussed.

6.7 Dredger Routing – 64 Node Square Grid Problem UsingEquations5.19and5.20forthe64noderoutingproblemwithasquaregridspacing of50,theminimumroutelengthis3,150andtheminimumsumofturninganglesis1,250 degrees.Figure6.21depictsarandomrouteusedasaninitialsolutionatthestartofthe routingoptimizationprocess.Theroutelengthandthesumofturninganglesoftheroute depictedinFigure6.21,respectively,are12,915.00and7,181.54degrees.

Figure6.21Randominitialroute–Regularrouting–64Nodes. TheinitialroutedepictedinFigure6.21hasnolinks,whileforthe64nodesquaregrid routingproblemsolvedhere,themaximumlinklengthis350andtheoptimumnumberof maximumlengthlinksis8(seeEquations5.21an5.22).Table6.21reportsthemean,, standarddeviation,σ,andminimumandmaximumofrouteattributesfor20finalroutes arrivedatforlocalsearch,LS,valuesof1and8intheapplicationofthedredgerrouting modeltothe64nodesquaregridroutingproblemsolvedhere.ValuesgiveninTable6.21 arefor20replications.

130 ResultsandDiscussion Table6.21RegularRouting–64Nodes

LS σ Min Max

1 3,180.25 58.88 3,150.00 3,374.26 Route 8 3,174.05 48.42 3,150.00 3,320.71 Length(m)

1 1,351.84º 165.38º 1,260.00º 1,980.00º

Angles 8 1,318.50º 128.20º 1,260.00º 1,800.00º SumTurning

1 256.80 30.34 214.72 316.67

8 298.06 45.19 220.83 350.00 Length(m) AverageLink Foralocalsearchof1,thedredgerroutingmodeldeterminedfinalrouteswithoptimum routelengthsandsumsofturningangles9outof20timesandforalocalsearchof8itdid so13outof20times.Asobservedforthe32noderoutingproblem,theseresults correspondwithKoulamas etal .(1994),which,forasimulatedannealingbasedsolution approach,reportedfindingimprovedfinaltoursofsymmetrictravellingsalesperson problemswhenlocalsearchwasincreasedfrom1to8. Noneofthe9finalroutesfoundwithalocalsearchof1whichhadoptimalroutelengths andsumsofturninganglesalsohad8maximumlengthlinks.Therefore,foralocalsearch of1nooptimaldredgerrouteswerefoundforthe64nodesquaregridroutingproblem.Of the13finalroutesfoundwithalocalsearchof8whichhadoptimalroutelengthsand sumsofturningangles,6alsohad8maximumlengthlinks,givingthemanoptimal averagelinklengthof350.Figure6.22depictsthetwotypesofoptimaldredgerroutes foundforthe64nodesquaregridroutingproblem.

131 ResultsandDiscussion

Figure6.22Optimaldredgerroutes–Regularrouting–64Nodes. Insummary,thesuccessrateoffindingoptimaldredgerroutesforthe64nodesquare gridroutingproblemwas0%foralocalsearchof1and30%foralocalsearchof8.For the32nodesquaregridroutingproblemsthesesuccessrates,respectively,were80% and85%.Foranincreaseinthenumberofnodesfrom32to64,a55%dropinthe successrateoffindingoptimaldredgerrouteswithalocalsearchof8wasobserved. Asaresultofthis55%dropitwasdecidedtoincreasevaluesoflocalsearchforthe256 nodesquaregridroutingproblembeyondtheupperlimitof8assuggestedinKoulamas et al .(1994).Tooptimizethe256nodesquaregridroutingproblemlocalsearchesof1,8, 16,32,64,and128wereused,andtheresultsoftheseexperimentsarepresentednext.

132 ResultsandDiscussion

6.8 Dredger Routing – 256 Node Square Grid Problem UsingEquations5.19and5.20forthe256noderoutingproblem,withasquaregrid spacingof50,theminimumroutelengthis12,750andtheminimumsumofturningangles is2,700degrees.Figure6.23depictsarandomrouteusedasaninitialsolutionatthe startoftheroutingoptimizationprocess.Theroutelengthandthesumofturninganglesof theroutedepictedinFigure6.23,respectively,are109,873.78and28,161.02degrees.

Figure6.23Randominitialroute–Regularrouting–256Nodes. TheinitialroutedepictedinFigure6.23hasnolinks,whileforthe256nodesquaregrid routingproblemsolvedhere,themaximumlinklengthis750andtheoptimumnumberof maximumlengthlinksis16(seeEquations5.21an5.22).Table6.22reportsthemean,, standarddeviation,σ,andminimumandmaximumofrouteattributesfor20finalroutes arrivedatforlocalsearch,LS,valuesof1,8,16,32,64and128intheapplicationofthe dredgerroutingmodeltothe256nodesquaregridroutingproblemsolvedhere.Values giveninTable6.22arefor20replications.

133 ResultsandDiscussion Table6.22RegularRouting–256Nodes LS σ Min Max 1 17,646.10 571.71 16,749.23 18,793.22 8 13,532.23 272.93 13,082.51 13,912.11 16 12,949.52 163.59 12,791.42 13,436.73 32 12,789.21 66.24 12,750.00 12,982.51 64 12,787.25 53.12 12,750.00 12,911.80

RouteLength(m) 128 12,757.50 24.47 12,750.00 12,850.00 1 14,059.02º 833.97º 12,559.35º 15,956.97º 8 5,893.68º 861.55º 3,960.00º 7,596.87º 16 3,771.10º 565.64º 2,790.00º 5,062.62º 32 2,935.84º 242.33º 2,700.00º 3,420.00º Angles

SumTurning 64 2,775.69º 122.97º 2,700.00º 3,150.00º 128 2,704.50º 20.12º 2,700.00º 2,790.00º 1 165.42 13.99 143.42 188.90 8 313.19 50.99 223.79 455.77 16 430.44 61.64 329.73 566.07 32 518.29 67.96 422.41 677.78

Length(m) 64 AverageLink 659.45 85.22 480.77 750.00 128 725.68 43.16 580.95 750.00 Table6.21showsthatwhenlocalsearchwasincreasedbeyondtheupperlimitof8 suggestedinKoulamas etal .(1994)averagesolutionqualitycontinuedtoimprove.Figure 6.24illustratestheeffectofincreasedlocalsearchonaveragesolutionquality.

18,000

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 Local Search RouteLength SumRouteAngles AvgeLinkLengthx20 Figure6.24Solutionqualityforincreasedlocalsearch–Regularrouting–256Nodes. 134 ResultsandDiscussion Figure6.22canexplainwhyKoulamas etal .(1994)advisesagainstusingvaluesoflocal searchgreaterthan8whenoptimizingsymmetrictravellingsalespersonproblemswith simulatedannealingwheretoursaremodifiedwitha2Optedgeexchangemechanism. Whenconsideringroutelengthonlythegreatestimprovementinsolutionqualitywas observedwhenlocalsearchwasincreasedfrom1to8.Forthe256nodesquaregrid routingproblem,Table6.23givesaverageimprovementsinroutelengths,sumsofturning anglesandaveragelinklengthsexpressedasapercentageofoverallaverage improvementsobservedbetweenalocalsearchof1and128. Table6.23Localsearchsolutionqualitygains–256Nodes–Regularrouting LS 1 – 8 8 – 16 16 – 32 32 – 64 64 – 128 Route Length 84.15% 11.92% 3.28% 0.04% 0.61% Sumof TurningAngles 71.91% 18.69% 7.36% 1.41% 0.63% AverageLink Length 26.37% 20.93% 15.68% 25.20% 11.82% Table6.23showsthatforthe256noderegularroutingproblemoptimizedherethe greatestimprovementinthesumofturningangleswasalsoobservedforanincreaseof localsearchfrom1to8.Thesamecannotbesaidofimprovementsfoundfortheaverage linklengthoffinalroutes.Toobserveanimprovementinaveragelinklengthexceeding improvementsof84.15%and71.92%foundforaverageroutelengthandsumofturning angleswithalocalsearchof8,alocalsearchof64wasrequired.Anincreaseinlocal searchfrom64to128resultedinafurther11.82%improvementinaveragelinklength, although,asexplainedinSection5.3,cautionshouldbetakenwhenreviewingvaluesof averagelinklengthalone.Figure6.25depictsthetwotypesofoptimaldredgerroute foundforthe256nodesquaregridroutingproblem.

Figure6.25Optimaldredgerroutes–Regularrouting–256Nodes.

135 ResultsandDiscussion Fordifferentvaluesoflocalsearch,LS,Table6.24givesthenumberofinstancesinwhich optimalrouteswithoptimallengthandsumsofturningangleswerefoundandthosein whichoptimaldredgerrouteswiththeoptimalnumberofmaximumlengthlinkswere found. Table6.24Localsearchoptimalroutesfound–Regularrouting–256Nodes LS 1 8 16 32 64 128 Optimal Length& 0 0 0 6 9 17 AngleSum Optimal Dredger 0 0 0 0 6 12 Routes Table6.24reinforcestheargumentforusingvaluesoflocalsearchgreaterthan8in combinationwiththeadaptivesimulatedannealingalgorithm,especiallywhenoptimal dredgerroutesaresearchedfor.Figure6.26showstheeffectincreasinglocalsearchhad onaveragesolutiontimesforthe256nodesquaregridroutingproblem.

1,000 LS=128

900

800

700

600

500

400 LS=64 Solution Time minutes in (Averaged for 20 replications) 300

200 LS=32 LS=16 100 LS=8 LS=1 0 0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 14,000,000 Total Iterations Figure6.26Solutiontimesforincreasedlocalsearch–256Nodes–Regularrouting. ItisthoughtthechangeintrendinFigure6.26after2,000,000iterationsinpartresulted fromafreeinguprandomaccesscomputermemoryforexperimentswithalocalsearchof 32,64,and128.Resultsoftheengineeringapplicationofthedredgecutnestingproblem arepresentedanddiscussednext.

136 ResultsandDiscussion

6.9 Dredge Cut Nesting – Engineering Application AsmentionedinSection5.4.4.1,preliminaryexperimentswerecarriedoutforthe engineeringapplicationofthedredgecutnestingmodel.Figure6.27depictssix preliminaryfinalnestswhichplayedanimportantpartintheselectionofthestencilset usedintheengineeringapplicationofthedredgecutnestingmodel.

Figure6.27Preliminarynestingresults–Engineeringapplication.

137 ResultsandDiscussion AppendixEgivesthemaindredgecutnestingmodelsettingswithwhichthefinalnests depictedinFigure6.27werefound.AllfinalnestsdepictedinFigure6.27werefound usingtherevisedcostpenaltiesgiveninTable6.19.Toreiterate,inSection6.6itwas shownthattheuseofrevisedoverlapandnonplacementcostpenaltiesdrastically reducedthenonplacement–themostimportantdecisionvariablefordredging– exhibitedbyfinalnestsofregularnestingproblemswherethestencilsetconsistedof32 identicalsquares.Theobservedreductionofnonplacement,forthefirsttime,allowedthe centroidsofsquarestencilsoffinalsolutionstonestingproblemstobeconsideredas nodesofadredgerroutingproblem. Previously,inFigure6.20afinaldredgecutnestwithnegligiblenonplacementand overlapof6.89%oftheinnersheetareawaschosenforpossibledeterminationofnodes foraroutingproblem.However,thenonnegligibleoverlapofthechosenfinalneststill posedaproblem:Ifthesidelengthofsquarestencilsisequaltotheselectedeffective cuttingwidthofacuttersuctiondredger,nonzerooverlapinthefinalnestwillleadto inefficientuseofthecuttersuctiondredgerwhenthecentroidsoftheoverlappingstencils areusedasroutingnodes.Inshort,overlapofstencilscausesacuttersuctiondredgerto dredgeatwidthswhicharelessthantheselectedeffectivecuttingwidthitcanachieve. Figure6.27showshowtheproblemofoverlappingdredgecutswaslargelysolvedby usingrectangularstencilswhicharelargeconglomeratesofsquareunitdredgecuts. Theselargerrectangularstencils,referredtoassuperstencilshere,havesideswhichare exactmultiplesofafractionofaneffectivecuttingwidthofacuttersuctiondredger. Fractionsarestillrequiredtobeabletomatchalldimensionsofirregulardredgingareas. ThefinalnestsAtoFinFigure6.27showagradualreductioninthetotalnumberof stencilsused,assmallerstencilsaregroupedintolargersuperstencils.Table6.25gives theamountsofoverlapandnonplacementoffinalnestsAtoFexpressedasa percentageoftheinnersheetarea(whichwasconstant),thesheettostencilarearatios andnumbersfortheamountofsmallest,mediumandsuperstencilsnested. Table6.25Overlapandnonplacementofpreliminarynests–Engineeringapplication NestLayout: A B C D E F Overlap 7.55% 10.66% 14.67% 7.89% 4.48% 17.67% Non placement 2.22% 0.03% 0.06% 0.17% 0.46% 0.02% Smallest Stencils 49 28 14 14 1 1 Medium Stencils 0 6 3 1 2 1 SuperStencils 0 0 2 3 5 5 Sheet:Stencil AreaRatio 1:1.112 1:1.180 1:1.270 1:1.225 1:1.154 1:1.338 138 ResultsandDiscussion Table6.25showsthatnestinggreaternumbersoflargersuperstencilsdoesnot necessarilyreducethetotalamountofoverlapoffinalnestsincomparisontowhena greaternumberofsmallerstencilsareused.However,manyofthecentroidsofunit dredgecutsofoverlappingsuperstencilsarediscardedandthevalidcentroidsofthe remainingunitdredgecutsofsuperstencilsgiveoptimumuseofadredger’seffective cuttingwidthastheoverlapbetweentheseunitcutsiszerobydefault.Table6.25also showsthatthenestingproblemwiththeleastamountofsmallestandmediumstencils andthegreatestsheettostencilarearatiohadtheminimumfinalnonplacementcost. Figure6.27alsoshowsanotherdevelopmentwhichhelpedregularizefinalnestlayouts:A reductioninthenumberofrelaxedinnersheetboundaries.Ofthetotalnumberof14 boundarylines(12straightlinesand2arcs)whichcanbesaidtomakeupthesheet representingthedredgingarea,finalnestlayoutsAtoDhave10relaxedboundaries acrosswhichstencilscanescape.ForfinalnestlayoutEthenumberofrelaxedinner sheetboundarieswasreducedto9,andforfinalnestFitwasreducedto8.Reducingthe numberofrelaxedinnersheetboundariesresultedinbetteralignmentofstencils,thereby, inadditiontotheuseofsuperstencils,furtherregularizingfinalnestlayouts.Themore regularfinalnestlayoutsarrivedatare,themoreregulartheassociateddredgerrouting problemwillbe,andthemoreefficientuseismadeoftheselectedeffectivecuttingwidth ofthecuttersuctiondredgeremployed. Thestencilsetusedfortheengineeringapplicationofthedredgecutnestingmodel(see Figure5.13)resultedfromexperiencegainedinthepreliminaryexperiments.Furtherto finalnestsEandFofFigure6.27,mostlynearsquaresuperstencilswereoptedfor. Nearsquaresuperstencilswerechosenbecausesuperstencilsofrectangularshape, suchasthoseoffinalnestsCandDinFigure6.27,werefoundtorotatelessfrequentlyby comparison.Inthiscase,selectingnearsquaresuperstencilsrequiredonelongnarrow stenciltobeincludedtoensurecompletecoverageinthemostsouthernpartofthe dredgingarea,asshown,forexample,infinalnestFofFigure6.27.Becausethe engineeringapplicationofthedredgecutnestingmodelconcernsanestingproblem wherethesheetandstencilsetarebothirregular,andwherethetotalstencilarea exceedstheinnersheetarea,theparameterandcosttuningfactorcombinationusedfor thispartoftheexperimentationistheoneforwhichtheminimumaveragenonplacement wasfoundforirregularnestingproblemswithreducedinnersheets.Forasheettostencil arearatioof1:1.4theminimumaveragenonplacementwasfoundforaparameterand costtuningfactorcombinationof7and5(seeTable6.11).Asheettostencilarearatioof 1:1.4isclosesttothatusedintheengineeringapplicationofthedredgecutnesting model,whichfortheinnersheetofFigure5.12andstencilsetofFigure5.13givesaratio of1:1.439. 139 ResultsandDiscussion Table6.26restatestheminimumaverageoverlapandnonplacementcostsfoundforthe irregularnestingtestproblemwithtworelaxedsheetboundariesandasheettostencil arearatioof1:1.4,andgivestheresultsoftheengineeringapplicationofthedredgecut nestingmodel.ValuesofoverlapandnonplacementgiveninTable6.26arefor20 replicationsandarepercentagesoftotalinnersheetarea.Sinceescapepenaltieswere zeroforthispartoftheexperimentation,valuesofescapehavebeenexcluded. Table6.26Irregulardredgecutnesting–Engineeringapplication Overlap Nonplacement Sheet: Nesting Stencil (%ofSheetArea) (%ofSheetArea) Problem Area σ Min Max σ Min Max

1:1.4 1.73 1.41 0.15 4.25 4.51 3.30 0.36 10.84 Test Irregular

1:1.44 23.18 0.85 22.45 25.75 0.23 0.17 0.11 0.75 Application Engineering Table6.26showsthat,asexpected,theuseofsuperstencilsintheengineering applicationincreasedaverageoverlap,butaveragenonplacementwasreduced,whichis ofgreaterimportancefromadredgingperspective.Figure6.28depictsthefinalnest whichwasselectedforthedeterminationofnodesfortheengineeringapplicationofthe dredgerroutingmodel.

Figure6.28Finalnestforroutenodeselection–Engineeringapplication. 140 ResultsandDiscussion AppendixFgivesthecoordinatepairsdefiningthepositionsofthestencilsshownin Figure6.28.ThefinalnestdepictedinFigure6.28hasoneparticularshortcoming:An areaofnonplacementequalto0.03%ofthetotalsheetarea,whichismarkedinsolid blackandencircled.Themarkedareaofnonplacementisapproximately32metreslong and17metreswide,andisconsiderednegligibleaslongasitisexcavatedwhenthe dredgerarrivesinitsvicinitywhenfollowingtheroutedeterminedwiththedredgerrouting model.Figure6.29showsthecentroidsofsquareunitdredgecutswithsidelengthsof 105metres(theeffectivecutwidthused)whichremainedaftereliminatingcentroidsof surplussquareunitdredgecutsaccordingtotheguidelinesdescribedinSection5.4.4.2.

Figure6.29Routenodes–Engineeringapplication. ThetotalnumberofnodesinFigure6.29is228andthesearethenodesusedinthe engineeringapplicationofthedredgerroutingmodel.AppendixGgivesthecoordinate pairsdefiningtheroutenodesshowninFigure6.29.Resultsoftheengineering applicationofthedredgerroutingmodelarepresentedanddiscussednext.

141 ResultsandDiscussion

6.10 Dredger Routing – Engineering Application Itshouldbenotedthatthealldredgerroutesdepictedinthissectionstartattheleftmost routenode,asencircledinFigure6.30,whichdepictsarandomdredgerrouteusedasan initialsolutionatthestartoftheoptimizationprocess.TherouteinFigure6.30hasatotal lengthof245,260.93metres,asumofturninganglesof26,004.09degreesandan averagelinklengthof1,236.64metresforatotalnumberof3links.

Figure6.30Randominitialroute–Engineeringapplication–228Nodes. Table6.27givestotalroutelengths,sumsofturninganglesandaveragelinklengthsof10 replicationscarriedoutfortheengineeringapplicationofthedredgerroutingmodel. Table6.27Dredgerrouting–Engineeringapplication–228Nodes Total SumTurning AverageLink TotalNo.of Replication RouteLength Angles Length Links (metres) (degrees) (metres) 1 22,446.22 2,755.67 781.09 25 2 22,736.45 2,580.94 868.89 24 3 22,735.50 2,582.85 902.09 23 4 22,997.07 3,214.12 807.92 25 5 22,497.92 2,507.93 914.51 22 6 23,012.39 3,145.01 842.81 23 7 22,456.70 2,514.63 904.98 22 8 22,841.88 2,467.66 849.67 24 9 22,497.92 2,507.93 914.51 22 10 22,549.74 2,681.56 865.27 23 22,677.18 2,695.83 865.17 23.30 σ 218.89 269.91 45.85 1.16 Min 22,446.22 2,467.66 781.09 22.00 Max 23,012.39 3,214.12 914.51 25.00

142 ResultsandDiscussion BeforediscussingtheresultsinTable6.27,themainobjectiveoftheresearchpresented inSection4isreiterated:Itistocontributetoimprovingtheoperationalefficiencyofcutter suctiondredgersbyprovidingatoolwithwhichtheoptimizationoftwodimensionalcut planningforsuchdredgerscanbeautomated.InSection4,anoptimaltwodimensional cutplanforacuttersuctiondredgerwasdefinedasaplanforexcavatingadredgingarea inwhichtheamountofdowntimeresultingfromnonproductivedredgermovementsin betweendredgecutsisminimal. Foragivengridofnodesdefiningdredgecutlocations,itwasfurtherstatedthatfindingan optimalcutplanconsistsoffindingaroutewhichvisitseachnodeexactlyonceandhasa minimumtotallengthandaminimumsumofturningangles(seeSection2.2),andhasthe minimumnumberofinstanceswheredredgingheadonintopreviouslydredgedareas occurs.Itwasalsostatedthatforregulargridsminimizingthenumberofinstanceswhere dredgingheadonintopreviouslyexcavatedareascouldbeachievedbyfindingaroute withthemaximumnumberofmaximumlengthlinks.Toevaluateroutesfoundforirregular gridsitwasstatedthattheroutewiththemaximumaveragelinklengthislikelytobean optimaldredgerroute(seeSection5.3). ResultsinTable6.27showthattheminimumtotallength,minimumsumofturningangles andmaximumaveragelinklengthwerenotfoundforthesameroute.Route1hasthe minimumtotallength(markedinboldtext),whileroute7hastheminimumsumofturning angles(markedinboldtext),androutes5and9havethemaximumaveragelinklength (therelevantrowsaregreyscaled).Thiscallsforachoicetobemadeifoneofthese4 routesistobeidentifiedas(near)optimal.Beforelimitingthenumberofcandidatesfrom whichthebestroutecanbeselectedtoroutes1,7,5and9,all10routesarelookedatin moredetail.Figure6.31givesgraphicalrepresentationsofall10dredgerroutesfound.

143 ResultsandDiscussion

Figure6.31Dredgerroutes–Engineeringapplication–228Nodes. 144 ResultsandDiscussion ThefirstobservationthatcanbemadewhenassessingtheroutesdepictedinFigure6.31 isthatroutes4,6,8and10allrecommenddredgingsequenceswhereatsomepoint dredgingisdivertedtonearbydredgecut,whichrequiresteleportationofthedredgerover somedistanceratherthanhavingitcontinuedredginguninterrupted.InFigure6.31the locationswheredredgingisinterruptedintheseroutesareencircled.Theseinterruptions inturncauseadditionalinterruptionsofdredgingactivitiesandrenewedteleportationof thedredgerwhentheroutecomesacrosscutsdredgedasaresultofearlierinterruptions. Onthebasisthatinterruptionsofdredgingrequireadditionalheadondredginginto previouslyexcavatedareasandthatotherroutesfoundshowthatsuchinterruptionscan beavoided,routes4,6,8,and10arerejectedasvaliddredgerroutes.Inaddition, dredgerroutes4,6,8and10allhaveaveragelinklengthsshorterorequaltotheoverall average.Thisleavessixroutesascandidatesforbestdredgerroute.Figure6.31also showsthatroutes5and9areidentical,reducingthenumberofroutestochoosefromto five:Routes1,2,3,7and5/9.Table6.28rankstheremainingfiveroutesintermsof minimumtotallength,minimumsumofturningangelsandmaximumaveragelinklength. Table6.28Firstrankingofdredgerroutes–Engineeringapplication–228Nodes Total DredgerRoute SumTurningAngles AverageLinkLength RankSum RouteLength 1 1 5 5 11 2 5 3 4 12 3 4 4 3 11 7 2 2 2 6 5/9 3 1 1 5 Table6.28showsthatroute5/9canbeidentifiedasthebestdredgerrouteonaccountof havingtheminimumsumofturningangles,themaximumaveragelinklengthandthethird longesttotalroutelengthofallfiveroutesconsidered.Route7isaclosesecond,havinga totalroutelengthwhichis41.22metresshorter,asumofturningangleswhichis6.70 degreesgreaterandanaverageroutelengthwhichis9.53metreslongerthanroute5/9. Intheory,agreatersumofturninganglesequatestomoredredgermovementsand thereforemorestoppagetimeandaloweroperationalefficiency.Arguably,minute changesinthealignmentofcentrelinesofconsecutivedredgecutscanbeabsorbed withoutincurringstoppagetime,butthisisnotconsideredhere.Bothroutes7and5/9 haveatotalof22links,thereforethelongeraveragelinklengthof9.53metresofroute7, meansanequivalentlengthofdredgecutofabout210metres(twicetheeffectivecut widthof105metres)isdredgedmoreinunalignedrouteedges,whichisreflectedbythe differenceinthesumofturninganglesofbothroutes.

145 ResultsandDiscussion Thetotallengthofdredgerroutes5and9is51.70metreslongeror0.23%more,andtheir sumofturninganglesis40.26degreesor1.63%morethantherelevantminimafoundfor allroutes.Theaveragelinklengthofroutes5and9is914.51metres,themaximumfound for22links.Figure6.32depictsthedredgerrouterepresentativeofroutes5and9,where anumberofpracticalshortcomingsoftherouteareencircledandmarkedwitharrows.In whatfollows,theassumptionthatdredgingproductionisequalforallcutwidthsdredged, asstatedinSection4,isdiscarded.

Figure6.32Bestdredgerroute–Engineeringapplication–228Nodes. InFigure6.32,theencircledrouteedgesmarkedwithA,aswillbeshowninmoredetailin Figure6.33,presentanimpracticaldredgingsequence.However,thisimpractical sequenceissharedwithroutes1,2,3and7.InFigure6.32,theencircledrouteedges markedwithBpresentadredgingsequencewhichcanbedifficulttoexecuteinpracticeif thedredgecutheightismuchgreaterthanthediameterofthecutterheadofthecutter suctiondredgerused.Thedifficultyliesinthecapabilityofcuttersuctiondredgerstobreak intoundredgedground.Toreachfinalexcavationlevelsfromthetopofundredgedground thereisalimitonthemaximumslopewhichcuttersuctiondredgerscanachieve:Asthey advancedredgingdepthsaregraduallyincreasedoveraminimumlengthofcut,where thetotallengthrequiredtoreachfinaldepthsdependsontheoverallheightofexcavation. ThisissueisfurthercomplicatedbythefactthattheencircledlinkmarkedwithBinFigure 6.32intersectsalimitofthedredgingareadiagonally.

146 ResultsandDiscussion IflinkBinFigure6.32weretobedredgedandtheoverallexcavationheightismuch greaterthanthediameterofthecutterheadused,thennotonlywillthecuttersuction dredgerhavetostartdredgingfromsomedistanceoutsidethedredgelimitforgradual deepening,possiblyresultinginoverdredgingbeyondpermittedtolerances,butitwillalso havetograduallywidenthedredgedcutonceinsidethedredgingarea.Acombined gradualwideninganddeepeningofadredgecutisnotbeyondthecapabilitiesofmodern cuttersuctiondredgerswithexperiencedcrews,butitshouldbeavoidedwherepossible. Figure6.33showswhytheencircledrouteedgesmarkedwithAinFigure6.32presentan impracticaldredgingsequence.

Figure6.33Dredgerroutedetail–Engineeringapplication. InFigure6.33,thefiguresA1,A2andA3representthedredger’sprogressalongthe recommendeddredgerroute.Progressisindicatedbyencirclingthecentroidsofsquare unitdredgecutsandthecorrespondingareasexcavatedarehatched.Aswiththe impracticalityofthelinkmarkedwithBinFigure6.32,whenthedredgecutheightis greaterthanthediameterofthecutterheadofthecuttersuctiondredgerused,thebottom mostpartoftheLshapedhatchedareaofA1(presentingasuddenwideningofdredge cut)andthelongandnarrowhatchedareaofA2inFigure6.33canbedifficulttodredge inpractice.Inaddition,ifitwerepossibletodredgethelongandnarrowhatchedareaof A2separately,dredgingproductioninpracticewouldbelowerincomparisontothat achievedinwiderdredgecuts,althoughtheimpactonaveragedredgingproductionover theentireroutewouldhavetobeevaluatedseparately. 147 ResultsandDiscussion ThesequenceB1B2B3inFigure6.33,withrelevantcutcentrelinesshown,wouldbe morepracticaltodredgewithacuttersuctiondredgerthanthesequenceA1A2A3.Itcan bearguedthatdredgingsequenceA1A2A3onlyrequirestwodredgermovementsin practice,whereasB1B2B3wouldneedthreedredgermovements,albeittwoofthem beingrelativelyminor(themovementstoandfromtheboldcentrelineinfigureB2).The encircledrouteedgesmarkedwithCinFigure6.32makeupthelastlinkofthebest dredgerrouteandonthislastlinkthedredgerwilldredgewithpreviouslyexcavatedareas oneitherside.Havingpreviouslyexcavatedareasoneithersideofadredgecutgenerally resultsinlowerdredgingproductionthanwhenexperiencedononesideonly. Figure6.32alsoshowsblackarrowson7routenodes.Thesearrowsindicatelocationsin thebestdredgerroutewherethecuttersuctiondredgerwilldredgeheadoninto previouslydredgedareas.AsstatedafterFigure5.3,forthesameequivalentlengthof cut,dredgingheadonintopreviouslyexcavatedareasresultsinlowerdredging productionthanwhendonesideways.ThereforeinFigure6.32,inpracticelowerdredging productionscannotonlybeexpectedatthe7locationswitharrows,butalsointhewhole ofthelastlinkmarkedwithC.Figure6.34showslocations(markedwithsolidcircles) wheredredgingheadonintopreviouslyexcavatedareasoccurs,andshowsthelastroute links(emboldened)wheredredgingwilloccurwithpreviouslyexcavatedareasoneither sideofdredgecutsforroutes1,2,3,and7.

Figure6.34Dredgingintopreviouslyexcavatedareas–Engineeringapplication.

148 ResultsandDiscussion Figure6.35showsthatdredgerroutes1,2,3and7,respectively,have7,4,2and7 locationswheredredgingheadonintopreviouslyexcavatedareaswilloccur.Ofallvalid dredgerroutesfound,route1inFigure6.34hastheshortestlengthwheredredging sidewaysintopreviouslyexcavatedareasoneithersideofthedredgecutwilloccur. ThepracticalissuesraisedinFigures6.31to6.34haveresultedfromapplyingthe dredgerroutingproblemtoanirregulardredgerroutingproblem.Exceptfordredginghead onintopreviouslyexcavatedareas,noneofthesepracticalissuessurfacedinglobal optimumdredgerroutesfoundfortheregularroutingproblemssolvedhere.Theadditional practicalissuesindicatethatnotallvaliddredgerroutesfoundwiththedredgecutnesting anddredgerroutingmodelsshouldnecessarilybeimplementedinpractice,andcould indicatethatnoneofthevaliddredgerroutesfoundintheengineeringapplicationofthe dredgerroutingmodelareindeedglobaloptima. Tofindout,inviewoftheadditionalpracticalissuesraised,ifroute5/9canstillbe consideredasthebestdredgerroute,arevisedrankingofdredgerroutes1,2,3,7and 5/9seemsinorder.Table6.29addstothepreviousrankingofroutesintermsofminimum instancesofheadondredgingintopreviouslyexcavatedareasandtotallengthofdredge cutstobedredgedwithpreviouslyexcavatedareasoneitherside. Table6.29Secondrankingofdredgerroutes–Engineeringapplication–228Nodes Totallengthof Headondredging Previous dredgecutswith New DredgerRoute intopreviously RankSum previouslyexcavated RankSum excavatedareas areasoneitherside 1 11 3 1 15 2 12 2 3 17 3 11 1 2 14 7 6 3 4 13 5/9 5 3 4 12 Table6.29showsthatroute5/9canstillberegardedasthebestdredgerroutefound,but theoverallsupportingargumentisweakerasreflectedinthesmallerdifferencesinnew ranksums.Route7remainsthemostcompetitive,withonly6.70degreesofadditional turninganglethanroute5/9,210metresdredgedlessinaligneddredgecuts,butwitha totalroutelengthwhichis41.22metresshorter.Togetaclearerpicture,differentsettings ofcostpenaltyfactorsforthedredgerroutingmodelcouldbeexplored,reflecting preferencesforthetypeofoptimumdredgerroutesoughtafter.However,improvingthe accuracyofthedredgerroutingmodelispreferable.

149 ResultsandDiscussion Traditionally,overallexecutiontimesofdredgingprojectsarecalculatedapplying estimatedoperationalefficienciesandestimatedproductionratesofdredgerstothetotal estimatedvolumetobedredged,whichincludesvolumesofoverdredging.Sincethe dredgingvolumeofthemodelleddredgingprojectisconstantandunavoidableand unforeseeablestoppagetimeisnotconsideredhere,thedredgerroutewhichleadstothe shortestoverallexecutiontimeistheonewhichhasthebestcombinationofsumof turninganglesandthehighestoverallaveragedredgingproduction.Otherthanbeing biasedtowardsavoidinginstancesinwhichdredgingoccursheadonintopreviously dredgedareasthroughtheapplicationofanedgelengthreductionfactor,theobjective functionofthedredgerroutingmodeldoesnottakeintoaccountestimateddredging productionrates. Route7thereforecouldbeabetterdredgerroutethanroute5/9ifthetimelostduetothe additional6.70degreesofturningthedredgerandthe210metresdredgedlessinaligned dredgecutsisoffsetbythetimegainedbyhavingtodredgeatotalroutelengthwhichis 41.22metresshorter.Toarriveatsuchaconclusiontherankingsystemsusedinthis sectionneedtobereplacedbyapostoptimizationassessmentofroutesfound,which takesintoaccounttheoverallaveragedredgingproductionrateofeachroute.Toarriveat overallaveragedredgingproductionrateswithwhichestimatescanbemadeofthenet totaltime(excludingunavoidableandunforeseeablestoppagetime)ittakesthedredger toexcavatethetotalprojectvolume,eachdredgerroutecanbesplitupintosectionsof similardredgingconditionstowhichdifferentdredgingproductionratesapply. Alternatively,thedecisionvariablesoftheobjectivefunctionofthedredgerroutingmodel canberevisedby,forexample,includingastepwisereductionappliedtodredging productionratesestimatedforvolumestobedredgedinparticularunitdredgecutsrelated toeachnode.Forexample,afixedpercentagereductionintherelevantdredging productionrateforeachadversefactor.Adversefactorscanbethosealreadyhighlighted here:Enteringheadonintoapreviouslyexcavatedarea;reducedcutwidth;having previouslyexcavatedareasoneithersideofdredgecuts;andcanincludedredging productionvariationresultingfromthedirectionofdredging,inparticularwithrespectto thedredgingofsideslopesofdredgingareas.Ifthedredgertoutingmodelisrevisedas such,thentheassumptionofhomogeneityofmaterialinthedredgingareacanbe discarded.

150 ResultsandDiscussion Itisimportanttonotethatnothingsofarhasbeensaidaboutvaryingheightsof excavationindredgingareas.Rarelydodredgingareashavealevelpredredging bathymetry/topography,andnotalldredgingprojectshaveasinglefinaldepthof excavation.Nexttoinhomogeneityofsoilstobedredged,differencesintotalexcavation heightindifferentpartsofdredgingareasalsoaffectdredgingproductionrates.The excavationofadredgingareainstagesatdifferentheightsofexcavationbeforearrivingat finaldepthsisathreedimensionalcutplanoptimizationproblem. Lastly,toillustratethattheinclusionofaveragelinklengthasadecisionvariableinthe objectivefunctionofthedredgerroutingmodelcanbeuseful,amanuallymodified dredgerrouteispresented.Areviewofallthevaliddredgerroutessuggestedmaking minormodificationstodredgerroute3ofFigure6.34,followingwhichthedredgerroute depictedinFigure6.35wasarrivedat.

Figure6.35Manuallymodifieddredgerroute–Engineeringapplication–228Nodes. ThemodifieddredgerrouteinFigure6.35hasthreelocationswherethecuttersuction dredgerwilldredgeheadonintopreviouslydredgedareas,fourlessthanroutes7and 5/9.Inaddition,nowhereinthemodifieddredgerroutewilldredginghavetobecarriedout withpreviouslyexcavatedareasoneithersideofdredgecuts.Table6.30comparesthe maincharacteristicsofdredgerroute5/9andthemanuallymodifieddredgerrouteshown inFigure6.35. 151 ResultsandDiscussion Table6.30Modifieddredgerroute–Engineeringapplication–228Nodes TotalNo.of TotalRoute Locations Lengthin Total SumTurning AverageLink TotalNo.of DredgerRoute leadinginto between RouteLength Angles Length Links Excavated Excavated Areas Areas (metres) (degrees) (metres) (metres) 5/9 22,497.92 2,507.93 914.51 22 7 1,746.99

Modified 22,782.92 2,582.27 943.05 22 3 0 Table6.30showsthatthemodifieddredgerrouteis285metreslongerthanroute5/9.In addition,themodifieddredgerroutehasasumofturningangleswhichis74.34degrees morethanthatofthebestdredgerroute.However,theaveragelinklengthofthemodified dredgerrouteis28.54metreslongerthanthatofthebestdredgerroute.Itispossiblethat thenewmaximumaveragelinklengthfoundisofinterestforadredgingprojectcarried outwithafullyautomateddredgerwithminimalmanning,sincethelongerlinksmean greatertimeintervalsinbetweendredgermovements,whichrequireadditionalhuman andplantresources.Findingthemodifiedroutewiththedredgerroutingmodelwould requiretheinclusionofaveragelinklengthasaseparatedecisionvariableinthemodel’s objectivefunction. However,tofindoutwhichofthetwodredgerroutesgiveninTable6.30leadstothe shortestoverallexecutiontimeofthemodelleddredgingproject,anassessmentwhich includesdredgingproductionratesisagainrequired.Inviewofthis,thepartoftheroute depictedinFigure6.35markedwithDshouldbenoted.Thisroutesection,whendredged asrecommendedinFigure6.35,hasadredgecutwidthoflessthan52.5metres,the widthofthestencilusedintheapplicationofthedredgecutnestingmodel(seeFigures 5.13and6.28). Asidefromtheissueofcutcentrelinesintersectingdredgingareaboundariesdiagonally, thebestdredgerrouteinFigure6.32recommendscoveringroutesectionDofFigure6.35 withdredgecutwidthsof105metres,theeffectivecuttingwidthusedinthedredger routingmodel,atwhichhigherratesofdredgerproductioncanbeexpectedthanforacut oflessthanhalfthatwidth.Thissuggeststhatusingstencilswithdimensionswhicharea relativelysmallfractionoftheeffectivecutwidthshouldbeapproachedwithcaution.

152 ResultsandDiscussion Instead,itcouldhavebeenbettertouseaselectionofstencilsbasedonawidereffective cutwidth,ofupto112metreswideforthedredgerconsideredhere.Therelevantpartof thedredgingareais664metreslongandabout580metreswide(seeFigure5.12),and thereforeasinglesuperstencilconsistingof6cutsof110.67metreswideand664metres longeachwouldhaveensuredcompletecoverage.Thiscastssomedoubtonwhetherit wasnecessarytoautomatethedredgecutnestingprocess.Itispossiblethatahuman expertmayfindequallygoodorbetternestsofsuitabledredgecutswithcomplete coverageofthedredgingareathanfoundwiththedredgecutnestingmodel,andinless time Insummary,resultsoftheengineeringapplicationofthedredgecutnestinganddredger routingmodelsdevelopedandusedhereshowedthat,foragivencuttersuctiondredger anddredgingproject,atwodimensionalcutplanningproblemwasoptimizedand thereforethehypothesisofthisresearchcanbeaccepted.However,thetwodimensional cutplansfound,althoughexecutableinpractice,hadanumberofshortcomingsrelatedto practicaldredgingissues.Inaddition,toarriveatmoreconclusiveresultsfordetermining cutplanswhichleadtotheminimumexecutiontimeofmodelleddredgingprojectsthe dredgerroutingmodelalsoneedstotakeintoaccountdredgingproductionrates,amodel featurewhich,fortheresearchpresentedhere,wasnotincluded.Table6.31summarizes themainresultsoftheexperimentationcarriedoutaspartoftheworkpresentedhere.

153 ResultsandDiscussion Table6.31Mainresultssummary No. Experiment Objective MainResult Section Irregularnesting–takenfrom ValidationofDredgeCut Model 1 6.1 Yuping etal .(2005) NestingModel validated Model Regularrouting–32nodes ValidationofDredger validatedfor 2 derivedfromYuping etal . RoutingModelforlocal 6.2 localsearch1 (2005) searchof1and8 and8 Irregularnesting–with Toconcludeifallowing increasingnumberofrelaxed escapeofstencilsleadsto Solutionquality 3 6.3 sheetboundariesandsheetto betterfinaldredgecut deteriorated stencilarearatiosof1:1 nestingsolutions Irregularnesting–with2of Toconcludeifprovidingan relaxedsheetboundariesand excessofstencilarealeads Solutionquality 4 6.4 sheettostencilarearatiosof tobetterfinaldredgecut deteriorated 1:1.1,1:1.2,1:1.3and1:1.4 nestingsolutions Regularnesting–with2of Toconcludeifirregularor relaxedsheetboundariesand regularstencilsleadto Solutionquality 5 6.5 sheettostencilarearatiosof betterfinaldredgecut deteriorated 1:1.1,1:1.2,1:1.3and1:1.4 nestingsolutions Regularnesting–with2of relaxedsheetboundariesand Toconcludeifrevisedcost Solutionquality 6 sheettostencilarearatiosof penaltiesleadtobetterfinal 6.6 vastlyimproved 1:1.1,1:1.2,1:1.3and1:1.4with dredgecutnestingsolutions revisedcostpenalties Toconcludeifforlocal Optimal searchof1and8optimal solutionsfound 7 Regularrouting–64nodes 6.7 dredgerroutescanbe forlocalsearch found 8only Optimal Toconcludeifforlocal solutionsfound searchof1,8,16,32,64 8 Regularrouting–256nodes forlocalsearch 6.8 and128optimaldredger 64and128 routescanbefound only ToconcludeiftheDredge Confirmed,but Irregularnesting–engineering CutNestingModelcan facilitatedby 9 6.9 application optimizearealworld theuseof problem superstencils Confirmed,but ToconcludeiftheDredger Irregularrouting–engineering inconclusiveif 10 RoutingModelcanoptimize 6.10 application228nodes globalminima arealworldproblem werefound

154 Conclusion

7 Conclusion Twoadaptivesimulatedannealingbasedmodelsweredevelopedandusedtosolve nestingandroutingproblemsinsearchofoptimaltwodimensionalcutplansforcutter suctiondredgerstoprovideatoolforimprovingoperationalefficienciesofsuchdredgers. Thisresearchpioneeredthemodellingoftwodimensionalcutplanningforcuttersuction dredgersasacombinationofamodifiedstockcuttingproblemandamodifiedtravelling salespersonproblem.Thisresearchwasfirsttouseadaptivesimulatedannealingto optimizestockcuttingproblemswherefeasiblesolutionscanexhibitescapeofstencils beyondsheets,andwasfirsttouseadaptivesimulatedannealingwithincreasedlocal searchtooptimizeasymmetricroutingproblemswithturningcosts. Theresearchexploredhowtheperformanceofthenestingmodelinfindingoptimalfinal nestlayoutswithzerononplacement,signifyingcompletesheetcoverage,isinfluenced byselectionofstencilset,sheetarrangement,andobjectivefunctioncostpenaltyfactors. Fornestingproblemswithanirregularstencilset,arectangularsheetandallcostpenalty factorssettounity,modelperformancedeterioratedsignificantlywhenstencilswere allowedtoescapefromsheets.Modelperformancedeterioratedfurtherwhenescapecost penaltyfactorsweresettozeroandtotalstencilareawasmadetoexceedsheetareas whichhadtwoboundariesacrosswhichstencilescapewaspermitted.Forthesamesheet arrangementsandpenaltyfactorsettings,nosignificantimprovementinmodel performancewasobservedwhenaregularstencilsetofidenticalsquareswasnested. Forregularaswellasirregularnestingproblems,whereescapeofstencilsispermitted andtotalstencilareaexceedssheetarea,theuseofrevisedcostpenaltyfactorsfornon placementandoverlapofstencilsresultedinsignificantimprovementintheperformance ofthenestingmodel.Therevisedcostpenaltiesincreasednonplacementcostin comparisontothecostofstenciloverlap.Furtherimprovementofmodelperformancewas observedwhenthetotalnumberofstencilsnestedwaskeptunder10forirregularnesting problems.Withrevisedcostpenaltyfactorsandanirregularsetof7stencilsacceptable finalnestlayoutswerefoundinanengineeringapplicationofthedredgecutnesting model.Theaveragenonplacementoffinalnestlayoutsfound,was0.23%ofthetotal sheetareawithastandarddeviationof0.17%.

155 Conclusion Forsquaregridroutingproblemsofrectangularshape,theresearchalsoexploredhow theperformanceofthedredgerroutingmodelinfindingoptimaldredgerroutes,signifying routeswithoptimalnumbersofmaximumlengthlinks,isinfluencedbyproblemsizeand increasedlocalsearch.Usinga2Optrouteedgeexchangemechanismtomodifyroutes, themodel’sperformancewasfoundtodeterioratesignificantlywhenproblemsizewas increasedfrom32to64,andthento256nodesforalocalsearchof1.Forasquaregrid routingproblemwith256nodesmodelperformanceimprovedsignificantlywhenlocal searchwasincreasedgraduallyfrom1to128,withresultsshowingthat60%ofroutes foundwereglobaloptima. Foranirregulargridroutingproblemwith228nodes,derivedfromafinaldredgecutnest layoutwith0.03%nonplacementfoundintheengineeringapplicationofthedredgecut nestingmodel,thedredgerroutingmodel’sperformancewithalocalsearchof128was foundtobefarfromoptimal.Tocoveranirregulardredgingareaof2,172,151square metres,10dredgerrouteswerefoundwithanaverageroutelengthof22,677.18metres withastandarddeviationof218.89metres,andanaveragesumofturninganglesof 2,695.83degreeswithastandarddeviationof269.91degrees.Theminimumroutelength andminimumsumofturningangles,werenotfoundforthesameroute.Afterdetailed analysisofall10routesfound,4routeswererejectedasvalidsolutionsbecausethey recommendedunnecessarydredgerteleportation. Oftheremaining6validroutes,2identicalrouteswereconsideredtobethebestdredger routefoundonthebasisofhavingthesecondsmallestsumofturninganglesandthe overallmaximumaveragelinklength.However,thedetailedanalysisoftheremaining6 validdredgerroutesshoweditwasnotpossibletoconcludeiftherouteidentifiedasthe bestdredgerroutefoundwouldalsoleadtotheshortestoverallexecutiontimeofthe modelleddredgingproject.Tomakeconcludethisdredgingproductionratesneedtobe takenintoaccount.Eitheraspartofapostoptimizationappraisalofdredgerroutesfound orthrougharevisionofthedecisionvariablesoftheobjectivefunctionofthedredger routingmodelsothattheoverallaveragedredgingproductionrateforroutingproblems canbeoptimized.

156 FutureWork

8 Future Work Anumberofaspectswhichcanleadtoimprovedmodelperformanceingeneralare mentionedfirst.Forthedredgecutnestingmodel,furthertestingwithvaluesofparameter andcosttuningfactorsinthebetweentheintegervaluesusedheremayleadtoimproved results.Ofparticularinteresttothenestingproblemssolvedhereshouldberational valuesofthecosttuningfactorinbetween3and5.Foracosttuningfactorof3solution qualitywaspoorforallnestingtestproblemssolved,whileforincreasestovaluesof4and 5thegreatestimprovementsinsolutionquality,andbestsolutionqualitieswerefound. Forboththedredgecutnestinganddredgerroutingproblem,furthertestingwithdifferent settingsforpenaltycostfactorsoftheobjectivefunctionsisrequired.Forthedredgecut nestingmodelonlyonerevisedsetofcostpenaltyfactorswasused,inspiredbyaset usedinYuping etal .(2005).Noothervariationsincostpenaltyfactorsforthedredgecut nestingmodelwereresearchedhere. Forthedredgerroutingmodelallcostpenaltyfactorsweresettounityforallrouting problemssolved.Resultsoftheengineeringapplicationofthedredgerroutingmodel showedthatadditionalevaluationofoptimizedrouteswasnecessarytoidentifythebest route.Thedredgerroutingmodelinitspresentformallowsforvaryingcostpenaltyfactors fortotalroutelengthandsumofturningangles.Bysettingpenaltyfactorsforsumof turninganglestozeroitcouldalsobeinterestingtotestthemodel’sperformance,using increasedlocalsearch,ontravellingsalespersonproblemstakenfromtestlibraries. InitspresentformthedredgerroutingmodelisalsocapableofusingavariableOptedge exchangemechanismtomodifyroutes,uptothemaximumnumberofedgespossiblefor agivenproblem.Helsgaun(2000)usesaheuristicsolutionapproachwithavariableOpt edgeexchangemechanismforupto5routeedgestosuccessfullysolvelargetravelling salespersonproblems.ThevariableOptedgeexchangemechanismofthedredger routingmodelwasnotusedintheresearchherebecausetheadditionalfeatureofbeing abletoselectotheredgesnearbytheedgeunderconsiderationwasnotfullyverified.

157 FutureWork A5OptedgeexchangeinHelsgaun(2000)islimitedtothenearestfiveneighboursofthe edgeconsidered.Foranadaptivesimulatedannealingsolutionapproacheachedgecan beassociatedwithaparametertemperaturewhichinfluenceswhichneighbouringedges areconsideredforinclusioninavariableOptedgeexchange.ThevariableOptexchange mechanismitselfcanalsobesubjectedtoannealingandreannealing.Atpresentthe2 Optedgeexchangeusedselectstwoedgesrandomly.Theuseofparameter temperaturesforavariableOptexchangemechanisminthedredgerroutingmodelis expectedtoimprovetheefficiencyofincreasedlocalsearch.Clearly,foralocalsearchof 128,asusedinthisresearch,notallofthe1282Optedgeexchangesconsideredata particularpointinthesolutionprocesswouldhavebeenuseful,signifyingawasteof computerresources. Inaddition,asdoneinHelsgaun(2000),previousroutemodificationscanberemembered sothattheyarenotcarriedoutagainoracceptedforaspecifiednumberofiterations. AfterinclusionofanannealingandreannealingsystemforavariableOptedgeexchange mechanismitwouldbeinterestingtoseehowthemodelperformedwhentestedagainst travellingsalespersonproblemstakenfromtestlibraries. Secondly,anumberofissuesrelatedtoincreasingthecomplexityofthemodels developedhereandimprovingtheiraccuracyareworthconsidering.Asalready mentionedintheconcludingsection,dredgingproductionratesneedtobeincludedasa decisionvariableinthedredgerroutingmodeltosearchfordredgerroutesofwhichitcan besaidthattheywillleadtotheoverallshortestexecutiontimeofthemodelleddredging projects. Thentheuseofcentroidsofsquareunitdredgecuts(whichmakeupsuperstencils nestedwiththedredgecutnestingmodel)asnodesforadredgerroutingproblemneeds tobereviewed.Suchareviewwouldcentreonconsideringtheuseofcentroidsofthe partsofsquareunitdredgecutswhichareinsidethedredgingareainsteadofusing centroidsofunmodifiedsquareunitdredgecuts.Theuseofunadjustednodesfora dredgerroutingproblemresultsinwhatcouldbeseenasfalselinksedgesbecausethe dredgerroutingmodelisbiasedtowardsaddingedgeswhicharealigned,buttheseedges inaccuratelydefinelocationsofcutvolumes.Usingcentroidsofpartialunitdredgecutswill improvethemodelsofdredgingprojects.

158 FutureWork Aspartofincreasingtheaccuracyofthedredgecutnestingmodelandthedredger routingmodel,theycanbothbeextendedtothreespatialdimensions.Thisisofparticular interesttothedredgecutnestingmodel.Asmentionedbrieflyintheprevioussection, cuttersuctiondredgingproductionratesvarywithexcavationheight.Differencesin excavationheightarepresentinmostdredgingprojects,especiallycapitaldredging projects.Inaddition,inviewofspillage,itissometimepreferabletodivideadredging projectintotwostages,oneofsocalledbulkdredgingandoneoffinaldredging.To maximizedredgerproductionitisnecessarytomodeladredgingprojectinthree dimensionsinsteadoftwo.Howathreedimensionaldredgecutmodelistofunction exactlyisnotyetclear,butthemodelshouldaimatfindingnestsofthreedimensionalcut unitswhichmaximizeoverallaveragedredgingproduction. Formultistageddredgingprojectsthedredgerroutingmodelmustalsobeabletocope withroutinginathirdspatialdimension.Inviewofthis,accretionratesinareasdredgedto finaldepthcanbetakenintoaccount,inafashionsimilarto,forexample,lawnmowing problemswhereratesofvegetationregrowtharetakenintoaccount.Inaddition,to eliminatetheassumptionofunlimitedaccesstodredgingareas,thedredgerroutingmodel canbeextendedtoincludeuserspecifiedtimewindowsinwhichcertainpartsofdredging areasareinaccessibleor,forinstance,requireearlycompletion.Suchanextensionmay havetoincludeallowingforrevisitingnodesintheroutingproblemssolved.Lastly,results ofthemodelsdevelopedhereorextendedversionsthereofcanbeusedtodetermine constructionschedules.Thedeterminationofaconstructionschedulerelatedtoan optimizeddredgerroutecanincludetheoptimizationoftransportofdredgedmaterials fromcuttofillareaswithsolutionapproachespresentedinMayer etal .(1981),Ford (1984)andHenderson etal .(2003).

159 AppendixA

Appendix A – Mass Haul Diagram – Worked Example

Themasshauldiagramandexperiencedengineeringjudgement,togetherwithdeterministic methods,havebeenthekeyfactorsinplanningandestimatingearthmovingoperations (Jayawardane etal .1994),inparticularonroadandrailwayprojects.Thefollowingparagraphs explainhowamasshauldiagramcanbemadewiththeaidofdatafromahypothetical road/railwayproject.Amasshauldiagramisplottedaftertheearthworkquantitieshavebeen computedbetweencrosssectionsatchainagesalongthelongitudinalprofileofaroad/railway projectforwhichthegradesareknown.Cutistakenasnegativeandfillaspositivetoevaluate cumulativevolumesfromthebeginningtotheendoftheproject.Theordinatesonthemasshaul diagramshowthesevolumesincubicmetres.Thehorizontalbaseline,plottedtothesamescale asthelongitudinalprofile,givesthepointsatwhichthecumulativevolumesareobtainedwithtotal positivevolumesplottedabovethebaselineandtotalnegativesbelowit.Numericaldataofa hypotheticalroad/railwayprojecttakenfromatextbookexample(Bannister,1984)isgiveninTable A.1.

TableA.1Hypotheticaldataforamasshauldiagram.

Volumes Centre Chainagealong Height Shrinkage Corrected Cumulative Longitudinal Cut Fill w.r.t. Constant Volume Volume Profile grade (m) (m 3) (m 3) 1000 1.22 0 1040 0 230 230 230 1100 1.52 480 0.90 +430 +200 1200 3.96 2560 0.90 +2300 +2500 1300 4.12 4560 0.90 +4100 +6600 1400 2.74 3940 0.90 +3550 +10150 1500 0 950 0.90 +850 +11000 1600 3.05 1350 1350 +9650 1700 4.27 4010 4010 +5640 1780 4.72 4600 4600 +1040 1820 4.72 BRIDGE +1040 1900 3.51 4130 4130 3090 2000 1.22 2370 2370 5460 2035 0 60 60 5520 2100 1.98 510 0.90 +460 5060 2200 3.96 3180 0.90 +2860 2200 2300 3.66 4055 0.90 +3650 +1450 2400 2.44 3860 0.90 +3470 +4920 2500 0.61 1320 0.90 +1190 +6110 2530 0 100 0.90 +90 +6200 2600 1.07 350 350 +5850 2700 1.52 1230 1230 +4620 2800 0 420 420 +4200 2900 1.68 10 80 0.89 +960 +5160 3000 3.66 3730 0.89 +3320 +8480

160 AppendixA Assumingthattheearthworkshavebeenbalancedbeforechainage1000andallcutisdirectly usableasfill,thedatafromTableA.1canbeusedtoplotamasshauldiagramasillustratedin FigureA.1.

FigureA.1Masshauldiagramplottedwithhypotheticaldata. Wherethemasshaulcurvecrossesthebaselineachangeinthesignofthecumulativevolumeis observed.Also,thecumulativevolumebetweenanytwoconsecutivepointsbetweenwhichthe masshaulcurvecrossesthebaselineiszero.Betweensuchpointsthecutandfillbalanceeach other.Inaddition,thefollowingconclusionscanbedrawnfromthemasshauldiagramdepictedin FigureA.1:

• Arisingmasshaulcurveindicatescut,amaximumpointmarkinganendofcut.

• Afallingmasshaulcurveindicatesfill,aminimumpointmarkinganendoffill.

• Thedifferencesbetweentheordinatesoftwopointsrepresentsthevolumeofcutorfill betweenthosepointsaslongasthereisnominimumormaximumpointsituatedin betweenthem.

• Anyhorizontallinewhichintersectsthemasshaulcurveattwoormorepoints,forinstance thedashedlinebetweenthepoints land minFigureA.1,isknownasabalancinglineas thevolumeofcutandfillbalance.Inotherwords,thereisnodifferenceincumulative volumebetweenthepoints land m.Thelengthofabalancinglineisequaltothetransport distancebetweenthepointsatwhichitintersectsthemasshaulcurve.Thepointsof intersectionarealsoknownasbalancingpoints.

• Whenthemasshaulcurveisaboveabalancingline,materialmustbemovedtotheright, forinstanceinthecaseofthepartofthemasshaulcurvedenotedby lbm inFigureA.1, 161 AppendixA andwhenitisbelowsuchalinethematerialmustbemovedtotheleft,aswiththecurve section rgs .InFigureA.1thedirectionofmovementisindicatedbyarrows.

Thebaselineofthemasshauldiagramisinitselfapossiblebalancingline,althoughnot necessarilythemosteconomicalone.IfthebaselineinFigureA.1isusedasthebalancingline therewillbeasurplusof8490m 3attheendoftheproject.Surpluscanbeconsideredforuse elsewhere,forinstanceonanotherearthworkprojectnottoofaraway. Ifthereisnootheruseforsurplusthen,ofcourse,itwillremain,butbyselectingthebalancing line(s)differentlyamore,orperhapseventhemosteconomicalwaytocarryouttheworkscanbe determinedbasedonminimaltransportdistances.Forthispurposeanynumberofbalancinglines maybedrawnonthemasshaulcurve,anditisnotnecessaryforthemtobecontinuous.For instance,inFigureA.1thebalancinglines lm and np areseparatedbythebridgeand np and qrs arenotconnectedatall. Earthworkthatisexcludedbybalancinglinesisnotbalanced.InFigureA.1itcanbeseenthatthis isthecasebetweenthepoints Kand L,and Pand Q.Asthemasshaulcurverisesinthesections correspondingtoboththesesetsofpointsitisknownthattheimbalanceineachcaseisasurplus. Whereimbalancesamounttoashortagetheselectionofoneormoreborrowpitswillberequired tocompletetheproject. Itiscommonthatthemosteconomicalsolutionforcarryingouttheearthworkisobtainedby selectingbalancinglineswhicharenotcontinuous.Balancinglinesthataretoolongwouldresultin excessiveanduneconomicaltransportdistances.Thecostoftransportingexcavatedmaterial dependstosomeextentonthedistanceitmustbecarried.Usually,intheBillofQuantitiesfora project,aunitpriceforexcavationwillincludethetransportoftheexcavatedmaterialoveralimited distance.Thislimiteddistanceisknownas freehaul .Whenthematerialhastobetransportedover adistancegreaterthanthefreehaul,theextradistanceisreferredtoas overhaul .Insome contractsoverhaulisprovidedfor. Theterm haul itselfisdefinedasthetotaloftheproductsoftheseparatevolumesofcutandthe distancesoverwhichtheyaretransportedtoareascontainingvolumesoffill,transportdistances beingmeasuredbetweenthecentroidsofthecutandthefillvolumes. Wherefreehaulisgivenitcanbeplottedonthemasshauldiagramallowingoverhaultobe estimated.InthemasshauldiagramdepictedinFigureA.1afreehaulof500metresis representedbythebalancinglines xy and np .Thebalancinglines qr and rs eachrepresent transportdistancesequaltoroughlyhalfthefreehauldistance. Theareasdelimitedbythepartsofthemasshaulcurvecutoffbythebalancinglinesandthe balancinglinesthemselves,forinstancethearea lbm cutoffbythebalancingline xy ,areequalto thehaulintherelevantsectionastheyrepresenttheproductofvolumeanddistance.Onesquare onthemasshauldiagramshowninFigureA.1represents5,000×200=1×10 6m 4ofhaul.If,for

162 AppendixA paymentpurposes,aunitisdefinedas1cubicmetretransportedoveradistanceof100metres then1squareisequalto10,000units.Theareagivinghaulwithinthefreehauldistanceisthen uxbyvu .Theareagivinghaulexceedingthefreehauldistanceisthearea lbml minusthearea uxbyvu ,whichinFigureA.1isabout200,000m 4or0.2squares.Bymultiplyingthisnetarea expressedinsquaresby10,000theamountofhaulexceedingthefreehauldistanceisexpressed inunits,inthiscase2,000units.Thevolumeforwhichadditionaltransportcostsarepaidisgiven bythedashedline xu ,i.e.3,000m 3,theadditionaldistanceoverwhichthisvolumehastobe transportedbeingapproximately67metres. Abalancingexercisewillhavetakenintoaccountthefreehauldistanceandwillmostlikelyinclude borrowingforsomesectionsandrunningwastefromothers.Inaddition,thebalancingof earthworkshastoincludetheconsiderationthatitispreferabletotransportexcavatedmaterial downhillasthiswillrequirelesseffort.Incaseswheretransportingmaterialoverlongdistances alongsteepuphillsectionsbetweencutandfillcostsmorethanwastingexcavatedmaterial followedbyexcavatingonceagainfromaborrowpit,thelatteroptionmaybechosen. Insummary,whenhaulcostsaredirectlyproportionaltotransportdistance,amasshauldiagram hastwousefulpropertieswhichaidindeterminingtheminimumamountofhaulandthereforelead tothemosteconomicallocationofcutandfill(Mayer etal., 1981),andtheseare:

• Equalamountsofcutandfillcanbeindicatedbyhorizontalbalancinglinesbetweentwoor morebalancingpointsintersectingthemasshaulcurve,and;

• Quantitiesofhaulcanbeminimizedbydistributingcutandfillbetween,ratherthanacross, balancingpoints.

163 AppendixB

Appendix B – Daily Report Cutter Suction Dredger “Cyrus”

164 AppendixC

Appendix C – Main Characteristics Cutter Suction Dredger “Cyrus”

165 AppendixD

Appendix D – Sheets Engineering Application Dredge Cut Nesting InnerSheet(DredgingArea)

Point ID x y Point ID x y 1 166 1575 27 1111 1299 2 567 556 28 1101 1333 3 639 318 29 1033 1313 4 658 269 30 973 1516 5 684 224 31 738 1912 6 717 184 32 710 1895 7 756 149 33 731 1853 8 799 121 34 745 1808 9 847 100 35 752 1762 10 897 87 36 751 1715 11 949 81 37 743 1668 12 1001 84 38 728 1624 13 1052 95 39 706 1582 14 1101 114 40 678 1544 15 1146 140 41 644 1511 16 1186 173 42 605 1484 17 1221 212 43 563 1463 18 1249 256 44 518 1450 19 1270 304 45 472 1443 20 1284 354 46 425 1444 21 1289 406 47 378 1452 22 1286 458 48 334 1467 23 1275 509 49 292 1489 24 1220 692 50 254 1517 25 3025 1233 51 221 1551 26 2848 1820 52 194 1589

OuterSheet(DredgingArea+EscapeRegions)

Point ID x y Point ID x y 1 128 1671 5 1220 692 2 567 556 6 3025 1233 3 734 0 7 2601 2647 4 1370 191

166 AppendixE

Appendix E – Preliminary Engineering Application Dredge Cut Nesting

Model Nest A Nest B Nest C Nest D Nest E Nest F Parameter Escape Penalty 0 0 0 0 0 0 Factor Overlap Penalty 4 4 4 4 4 4 Factor Non- placement 50 50 50 50 50 50 Penalty Factor Escape Penalty 0 0 0 0 0 0 Exponent Overlap Penalty 1 1 1 1 1 1 Exponent Non- placement 2 2 2 2 2 2 Penalty Exponent Sampled 100 5 5 5 5 5 States Parameter Tuning 10 10 9 9 11 11 Factor Cost Tuning 6 6 5 5 5 5 Factor Parameter 150 AS / 100 AS / 60 AS / 60 AS / 100 AS / 100 AS / Temp Re- 1,500 GS 1,000 GS 600 GS 600 GS 1,000 GS 1,000 GS anneal Cost Temp 1,500 GS 1,000 GS 600 GS 600 GS 1,000 GS 1,000 GS Re-anneal Parameter 1,500 GS 1,000 GS 600 GS 600 GS 1,000 GS 1,000 GS Temp Anneal Cost Temp 1,500 AS 1,000 AS 600 AS 600 AS 1,000 AS 1,000 AS Anneal Total 149,999 99,999 59,999 59,999 99,999 99,999 Iterations Notes: AS = Accepted States; GS = Generated States

167 AppendixF

Appendix F – Final Nest Layout Engineering Application

X-COORD, Y-COORD

1367.994, 197.0486 1217.104, 699.6717 1166.842, 684.5908 1317.726, 181.9639

735.2547, 1.743868 1338.07, 184.5971 1280.023, 375.9636 1155.218, 787.4132 743.7764, 662.6107 552.3987, 604.5595

403.9372, 970.5125 1088.2, 1238.755 1051.704, 1331.855 1015.209, 1424.952 819.9573, 1923.022 321.8846, 1727.768 228.7901, 1691.273 135.6947, 1654.776

1633.972, 816.7046 2337.902, 1028.039 2309.15, 1123.81 2280.397, 1219.581 2126.565, 1731.968 1614.18, 1578.138 1518.41, 1549.385 1422.637, 1520.632

338.2393, 1137.135 607.7052, 453.3772 700.7349, 490.0388 793.7618, 526.6989 1291.462, 722.8442 1095.323, 1220.543 1058.661, 1313.572 1022, 1406.603

2107.662, 1725.667 2320.183, 1022.084 2415.91, 1050.998 2511.637, 1079.912 3023.764, 1234.604 2869.077, 1746.739 2840.161, 1842.463 2811.248, 1938.189

937.1989, 1374.438 1148.963, 670.6453 1244.716, 699.4578 1340.47, 728.2677 1852.759, 882.4111 1698.615, 1394.694 1669.803, 1490.451 1640.993, 1586.204

168 AppendixG

Appendix G – Route Nodes Engineering Application

Point Point Point Point x y x y x y x y ID ID ID ID 1 204 1625 58 810 299 115 1194 1068 172 2011 1204 2 242 1527 59 815 930 116 1207 642 173 2021 1536 3 280 1430 60 829 1757 117 1212 421 174 2041 1103 4 319 1332 61 833 598 118 1224 967 175 2051 1435 5 357 1234 62 836 1164 119 1234 1299 176 2071 1003 6 378 1468 63 840 198 120 1237 541 177 2081 1335 7 395 1136 64 846 1426 121 1242 320 178 2112 1234 8 406 1108 65 849 530 122 1254 867 179 2122 1566 9 416 1370 66 853 832 123 1264 1199 180 2142 1134 10 445 1010 67 867 1659 124 1267 441 181 2152 1465 11 455 1272 68 871 98 125 1273 220 182 2172 1033 12 476 1506 69 874 1066 126 1285 766 183 2182 1365 13 483 912 70 880 430 127 1294 1098 184 2203 1590 14 493 1175 71 884 1328 128 1298 340 185 2212 1264 15 504 1146 72 892 735 129 1325 998 186 2234 1490 16 514 1408 73 895 1300 130 1328 240 187 2242 1164 17 522 814 74 905 1562 131 1334 1329 188 2264 1389 18 543 1048 75 910 329 132 1355 897 189 2273 1063 19 553 1311 76 913 968 133 1365 1229 190 2295 1289 20 560 717 77 930 637 134 1385 797 191 2304 1620 21 581 951 78 933 1202 135 1395 1128 192 2325 1188 22 591 1213 79 941 229 136 1425 1028 193 2334 1520 23 599 619 80 944 1464 137 1435 1360 194 2355 1087 24 602 1185 81 950 561 138 1455 927 195 2365 1419 25 612 1447 82 951 871 139 1465 1259 196 2395 1319 26 620 853 83 971 128 140 1486 827 197 2404 1651 27 637 521 84 972 1105 141 1496 1159 198 2425 1218 28 640 1087 85 980 460 142 1526 1058 199 2435 1550 29 648 469 86 982 1366 143 1536 1390 200 2456 1118 30 650 1349 87 990 773 144 1556 958 201 2465 1450 31 658 755 88 992 1339 145 1566 1289 202 2496 1349 32 671 1583 89 1003 1339 146 1586 857 203 2505 1681 33 679 989 90 1010 1007 147 1596 1189 204 2526 1249 34 679 369 91 1011 360 148 1626 1088 205 2535 1581 35 689 1251 92 1028 675 149 1636 1420 206 2556 1148 36 693 1817 93 1031 1241 150 1657 988 207 2566 1480 37 697 658 94 1033 1239 151 1666 1320 208 2596 1380 38 699 1223 95 1041 259 152 1687 887 209 2606 1712 39 709 268 96 1049 909 153 1697 1219 210 2626 1279 40 710 1485 97 1050 591 154 1719 1445 211 2636 1611 41 717 891 98 1063 1138 155 1727 1119 212 2657 1179 42 731 1719 99 1072 159 156 1750 1345 213 2666 1510 43 735 560 100 1081 491 157 1757 1018 214 2697 1410 44 738 1125 101 1087 812 158 1780 1244 215 2706 1742 45 740 168 102 1093 1038 159 1787 918 216 2727 1309 46 748 1387 103 1103 1370 160 1810 1144 217 2736 1641 47 749 500 104 1111 390 161 1820 1475 218 2757 1209 48 756 794 105 1124 937 162 1840 1043 219 2767 1541 49 769 1621 106 1126 714 163 1850 1375 220 2797 1440 50 770 67 107 1133 1269 164 1870 942 221 2807 1772 51 776 1028 108 1142 290 165 1880 1274 222 2827 1340 52 779 399 109 1151 621 166 1910 1174 223 2837 1672 53 786 1290 110 1154 837 167 1920 1506 224 2858 1239 54 790 1855 111 1164 1168 168 1941 1073 225 2867 1571 55 794 696 112 1172 189 169 1951 1405 226 2898 1471 56 797 1262 113 1181 521 170 1971 973 227 2928 1370 57 807 1523 114 1184 736 171 1981 1305 228 2958 1270

169 References

References Arkin,E.M.,Bender,M.A.,Demaine,E.D.,Fekete,S.P,Mitchell,J.S.B.,Sethia,S.2005. Optimalcoveringtourswithturningcosts.ProceedingsoftheTwelfthAnnualACMSIAM SymposiumonDiscreteAlgorithms(Washington,D.C.,UnitedStates,January0709, 2001).SymposiumonDiscreteAlgorithms.SocietyforIndustrialandApplied Mathematics,Philadelphia,PA,138147. Askew,W.H.,AlJibouri,S.H.,Mawdesley,M.J.andPatterson,D.E.2002.Planninglinear constructionprojects:automatedmethodforthegenerationofearthworkactivities. AutomationinConstruction,Volume11,pp643653. Bannister,A.andRaymond,S.1984,5thedition.Surveying.LongmanScientific& Technical,Harlow. Barth,R.,Appy,E.,Templeton,D.,McDonald,B.andBerschinski,E.2004.Middle Waterwaysedimentremediation:Anenvironmentalcasestudy.Proceedingsofthe WesternDredgingAssociationTwentiethFourthTechnicalConferenceandThirtySixth TexasA&MDredgingSeminar/CentreforDredgingStudies,pp197211. Bennell,J.A.,Dowsland,K.A.andDowsland,W.B.2001.Theirregularcuttingstock problem–anewprocedureforderivingthenofitpolygon.Computers&Operations Research,28,pp271287. Bertrand,L.,Suykens,J.,Bamelis,T.2008.InvestorpresentationAugust2008 Ackermans&VanHaren.Nolongerpubliclyavailable.Otherinvestorpresentations availableat:http://www.avh.be/Templates/Content.aspx?id=90&LangType=1033(Last checkedon12April2008). Bischhoff,E.E.andWäscher,G.1995.Cuttingandpacking.EuropeanJournalof OperationalResearch,Volume84,pp503505. Blasquez,C.A.,Adams,T.M.,Keillor,P.2001.Optimizationofmechanicaldredging operationsforsedimentremediation.JournalofWaterway,Port,Coastal,andOcean Engineering,Volume127,No.6,pp299307.

170 References Bosch,R.andHermann,A.2003.Continuouslinedrawingsviathetravellingsalesperson problem.OperationsResearchLetters,October. Bray,R.N.,BatesA.D.andLand,J.M.1997,2ndedition.Dredging,aHandbookfor Engineers.Arnold,. Brouwer,J.1986.Increasingtheworkingtimeofstationaryfloatingcuttersuction dredgersinoffshoreoperations.ProceedingsofWorldDredgingCongress,pp273293. Bruun,P.1991.Optimumdredgingproceduresfortheartificialnourishmentofbeaches. InternationalDredgingandPortConstruction,Volume18,No.1,pp3335. Chen,S.,Istepanian,R.H.andLuk,B.L.1999.Signalprocessingapplicationsusing adaptivesimulatedannealing.IEEETransactions,pp842849. Chen,S.,Istepanian,R.H.andLuk,B.L.2001.DigitalIRRfilterdesignusingadaptive simulatedannealing.DigitalSignalProcessing,11,pp241251. Chen,P.,Fu,Z.,Lim,A.andRodrigues,B.2002.Twodimensionalpackingforirregular shapedobjects.ComputerSociety.Proceedingsofthe35thHawaiiInternational ConferenceonSystemSciences. Choi,J.,Realff,M.J.andLee,J.H.2003.Analgorithmicframeworkforimprovingheuristic solutionsPartI.Adeterministicdiscountcoupontravellingsalespersonproblem. ComputersandChemicalEngineering,SeptemberIssue. Clarke,D.G.,Ault,J.,French,D.,andJohnson,B.2002.DredgingOperationsand EnvironmentalResearchProgram:Buildingtoolsforobjectivedeterminationof environmentalwindows.ProceedingsoftheThirdSpecialtyConferenceonDredgingand DredgedMaterialDisposal,Dredging'02,AmericanSocietyofCivilEngineers. Cochrane,E.M.andBeasley,J.E.2003.Thecoadaptiveneuralnetworkapproachtothe euclideantravellingsalespersonproblem.NeuralNetworks,16,pp14991525.

171 References Collins,M.J.,2003.Coveringasetofpointswithaminimumnumberofturns.Computing andCombinatorics,pp467474.Springer,/Heidelberg. Creed,C.G.,Bodge,K.R,Suter,C.L.2000.Constructionslopesforbeachnourishment projects.JournalofWaterway,Port,Coastal,andOceanEngineering,Volume126,No.1, pp5762. Degenkamp,G.andHaak,R.vanden1992.Increasedholdingofanchorsfordredging practice.ProceedingsofWorldDredgingCongress,pp488503. DeJong,K.A.1981.Ananalysisofthebehaviourofaclassofgeneticadaptivesystem. PhDDissertation,DepartmentofComputerandCommunicationSciences,Universityof Michigan,AnnArbor,MI. Degraeve,Z.,Gochet,W.andJans,R.2002.Alternativeformulationsforalayoutproblem inthefashionindustry.EuropeanJournalofOperationalResearch,Volume143,pp80 93. Deketh,H.J.R.1995,Thewearsensitivecuttingprincipleofacuttersuctiondredger. TerraetAqua,No.60,pp37. DeMeyer,C.P.andMalherbe,B.1987.Optimisationofmaintenancedredgingoperations inmaritimeandestuarineareas.TerraetAqua,No.35,pp2539. Demir,H.,Otay,E.N.,Work,P.A.andBörekci,S.2004.Impactsofdredgingonshoreline change.JournalofWaterway,Port,CoastalandOceanEngineering,Volume130,No.4, pp170178. Denes,T.A.1991.Loweringdredgingcostswithoperationsresearchtechniques.Terraet Aqua,No.44,pp310. Denes,T.A.1993.Astatisticalapproachtomaximisingsidecastingdredgingproductivity. TerraetAqua,No.51,pp48.

172 References Desai,R.andPatil,R.1995.SALO:CombiningSimulatedAnnealingandLocal OptimizationforEfficientGlobalOptimization,LosAlamosNationalLaboratory,Technical ReportLAUR952862,Albuquerque,NM. Dirks,W.andEbeling,R.1999.Dredgingoperationsandtechnology–Castor:increasing theefficientuseof3680kWcutterpower.ProceedingsofOresundLinkDredgingand ReclamationConference:Challenges,SolutionsandLessonsonEnvironmentalControl, ProjectManagement,ConstructionMethodology,DredgingandReclamationTechnology, pp133146. Dolmans,C.P.I.M.2001.Acontractfor“Justdiggingahole”.TerraetAqua,No.85,pp3 10. Dowsland,K.A.andDowsland,W.B.1995.Solutionapproachestoirregularnesting problems.EuropeanJournalofOperationalResearch,Volume84,pp506521. Dyckhoff,H.1990.Atypologyofcuttingandpackingproblems.EuropeanJournalof OperationalResearch,44,pp145159. Dykes,S.andRosen,B.E.1994.Parallelveryfastsimulatedreannealingbytemperature blockpartitioning.IEEETransactions,pp19141919. Easa,S.M.1987.Earthworkallocationswithnonconstantunitcosts.AmericanSocietyof CivilEngineers,JournalofConstructionEngineeringandManagement,Volume113, Issue1,pp3450. Easa,S.M.1988a.Earthworkallocationswithlinearunitcosts.AmericanSocietyofCivil Engineers,JournalofConstructionEngineeringandManagement,Volume114,Issue4, pp641655. Easa,S.M.1988b.Selectionofroadwaygradesthatminimizeearthworkcostusinglinear programming.TransportationResearch,Volume22,Issue2,pp121136. Elmaghraby,A.S.,Abdelhafiz,E.andHassan,M.F.2000.Anintelligentapproachtostock cuttingoptimization.UniversityofLouisvilleMultimediaResearchLab,Louisville,KY

173 References Ford,D.T.1984.Dredgedmaterialdisposalmanagementmodel.JournalofWater ResourcesPlanningandManagement,Volume110,No.1,pp5774. Ford,D.T.1986.Dredgedmaterialdisposalsystemcapacityexpansion.JournalofWater ResourcesPlanningandManagement,Volume112,No.2,pp277291. Garey,M.R.andJohnson,D.S.1983.ComputersandIntractability:AGuidetotheTheory ofNPCompleteness.W.H.Freeman,NewYork. Garg,D.P.andKumar,M.2002.Optimizationtechniquesappliedtomultiplemanipulators forpathplanningandtorqueminimization.EngineeringApplicationsofArtificial Intelligence,15,pp241252. Geman,S.andGeman,D.1984.Stochasticrelaxation,Gibbsdistributionandthe BayesianRestorationofImages.IEEETransactionsofPatternAnalysisandMachine Intelligence,Vol.6,pp801976. Gimadi,E.K.,Glebov,N.I.andSerdyukov,A.I.2004.Onfindingacyclictourandvehicle loadingplanyieldingmaximumprofit.DiscreteAppliedMathematics,135,pp105111. Haessler,R.W.andSweeney,P.E.1991.Cuttingstockproblemsandsolution procedures.EuropeanJournalofOperationalResearch,54,pp141150. Hasagawa.M.,Ikeguchi,T.andAihara,K.2002.Solvinglargetravellingsalesperson problemsbychaoticneurodynamics.NeuralNetworks,15,pp271283. He,J.,Vlasblom,W.J.1998.Modellingofsaturatedsandcuttingwithlargerakeangle. ProceedingsofWorldDredgingCongressonDredgingintothe21stCentury/WEDA,pp 905919. Heaton,J.2005.IntroductiontoNeuralNetworkswithJava,Chapter9Understanding SimulatedAnnealing(ISBN097732060X).HeatonResearchInc. Heistermann,J.andLengauer,T.1995.Thenestingproblemintheleathermanufacturing industry.AnnalsofOperationsResearch.Volume57,pp147173.

174 References Helsgaun,K.2000.AneffectiveimplementationoftheLinKernighantravellingsalesman heuristic.EuropeanJournalofOperationalResearch,126,pp106130. Henderson,D.,Vaughan,D.E.,Jacobson,S.H.,Wakefield,R.R.andSewell,E.C.2003. EuropeanJournalofOperationalResearch,Volume145,pp7284. Henshaw,P.F.,Cervi,S.,McCorquodale,J.A.1999.Simplecostestimatorfor environmentaldredgingintheGreatLakes.JournalofWaterway,Port,Coastal,and OceanEngineering,Volume125,No.5,pp241246. Herbich,J.B.,1975.CoastalandDeepOceanDredging,GulfPublishingCo.,Houston. Herbich,J.B.2000.Handbookofdredgingengineering.2nd Edition.McGrawHill. Hinterding,R.andKhan,L.1994.Geneticalgorithmsforcuttingstockproblems:withand withoutcontiguity.EvoWorkshops,pp166186. Hinxman,A.I.1979.Thetrimlossproblemandassortmentproblems:Asurvey.European JournalofOperationalResearch,5,pp818. Hopper,E.andTurton,B.C.H.2001.Areviewoftheapplicationofmetaheuristic algorithmsto2Dstrippackingproblems.ArtificialIntelligenceReview.Volume16,pp257 300. Howell,G.L.,Clark,K.C.2002.Realtimecomputationofeconomicloadforhopper dredgers.ProceedingsofKeyTechnologiesforGlobalProsperity,3 rd Speciality ConferenceonDredgingandDredgerMaterialDisposal,May58,Orlando,Florida. Hurkens,C.A.J.andWoeginger,G.J.2004.Onthenearestneighbourruleforthe travellingsalespersonproblem.OperationsResearchLetters,32,pp14.

175 References Ingber,L.1989.Veryfastsimulatedreannealing.MathematicalandComputerModelling, 12(8),pp967973. Ingber,L.andRosen,B.1992,Geneticalgorithmsandveryfastsimulatedreannealing:A comparison.JournalofMathematicalandComputerModeling,Vol.16,No.11,pp.87 100. Ingber,L.2006.Adaptivesimulatedannealing.ASACodeManual,ASAREADME.ms version26.202006/09/2619:07:04.Latestversionavailablefrom: http://alumnus.caltech.edu/~ingber/#ASA(Lastcheckedon12April2008). Jain,S.andGea,H.C.1998.Twodimensionalpackingproblemsusinggenetic algorithms.EngineeringwithComputers,14,pp206213. Jakobs,S.1996.Ongeneticalgorithmsforthepackingofpolygons.EuropeanJournalof OperationalResearch,88,pp165181. Jayawardane,A.K.W.andPrice,A.D.F.1994.Anewapproachforoptimizingearth movingoperations.PartII.ProceedingsoftheInstitutionofCivilEngineers,Transport, Volume105,Issue4,pp249258. Johnson,D.1990.Localoptimizationandthetravelingsalesmanproblem.Proceedingsof the17 th ColloquiumonAutomataLanguagesandProgramming,LectureNotesin ComputerScience,Volume443,pp446461.Springer,Berlin. Johnston,R.E.1986.Roundingalgorithmsforcuttingstockproblems.AsiaPacificJournal OperationalResearch,3(2),pp166171. Kannan,G.,Martinez,J.C.andVorster,M.C.1997.Aframeworkforincorporating dynamicstrategiesinearthmovingsimulations.Proceedingsofthe1997Winter SimulationConference,pp11191126. Karelahti,J.2002.Solvingthecuttingstockprobleminthesteelindustry.Master’sthesis, Dept.ofEngineeringPhysicsandMathematics,HelsinkiUniversityofTechnology. Katoh,M.,Nakayama,M.,Aoki,S.,Ohbayashi,K.andShirohara,O.1985.Automatic dredgecontrolsystemforcuttersuctiondredger.ProceedingsofSeatec,No.16,pp113.

176 References Kim,SK.andRussel,J.S.2003a.FrameworkforanintelligentearthworksystempartII. Taskidentification/schedulingandresourceallocationmethodology.Automationin Construction,Volume12,pp1527. Kim,Y.,Gotoh,K.andToyosada,M.2003b.Automatictwodimensionallayoutusinga rulebasedheuristicalgorithm.JournalofMarineScienceandTechnology,8,pp3746. Kirkpatrick,S.,Gelatt,C.D.andVecchi,M.P.1983.Optimizationbysimulatedannealing. Science,Volume220,No.4598,pp671680. Knaapen,M.A.F.andHulscher,S.J.M.H.2002.Regenerationofsandwavesafter dredging.CoastalEngineering,Volume46,No.4,pp277289. Koulamas,C.,Antony,S.R.andJaen,R.1994.Asurveyofsimulatedannealing applicationstooperationsresearchproblems.22(1),pp4156. Lansey,K.E.andMenon,H.1993.Optimalriskbasedinspectionanddredgingscheduling forindependentdredgereaches.JournaloftheWaterways,HarboursandCoastal EngineeringDivision,Volume119,No.3,pp289301. Likas,A.andPaschos,V.T.2002.Anoteonanewgreedysolutionrepresentationanda newparallelizableheuristicforthetravellingsalespersonproblem.Chaos,Solutionsand Fractals,13,pp7178. Lin,S.andKernighan,B.1973.Aneffectiveheuristicalgorithmforthetraveling salespersonproblem.OperationsResearch,Volume21,pp498516. Lirov,Y.1992.Knowledgebasedapproachtothecuttingstockproblem.Mathematical ComputerModelling,Volume16,pp107125. Liu,D.,Teng,H.1999.AnimprovedBLalgorithmforgeneticalgorithmoftheorthogonal packingofrectangles.EuropeanJournalofOperationalResearch112,pp413419 Liu,Z.,Zhou,H.2003.Forcesactingonthesuctionpipesystemoftshd.Proceedingsof CoastalInfrastructureDevelopmentChallengesinthe21stCentury;International Conference/HongKongInstitutionofEngineers,pp16.

177 References Luca,V.O.,1995.Optimaldesignofsedimenttransportinpipes.ProceedingsofWorld DredgingCongress,Volume1,pp4955. Lund,J.K.,1990.Maintenancedredgingonasinglereachwithuncertainty.Journalof Waterway,Port,Coastal,andOceanEngineering,Volume116,No.2,pp211231. Maddrell,R.J.,Hintze,W.W.,Lykke,S.1998.Requirementsandresultsofthecontrolof dredgedspilllosses.ProceedingsofWODCON:WorldDredgingCongressonDredging intothe21stCentury/WEDA,Volume2,pp663675. Marcotte,P.,Savard,G.andSemet,F.2004.Abilevelprogrammingapproachtothe travellingsalespersonproblem.OperationsResearchLetters,32,pp240248. Matousek,V.1998.Determinationofparametersofflowindredgingpipelinesbyatwo layermodel.ProceedingsofWODCON:WorldDredgingCongressonDredgingintothe 21stCentury/WEDA,Volume2,pp953969. Mayer,R.H.,Jr.andStark,R.M.1981.Earthmovinglogistics.AmericanSocietyofCivil Engineers,JournaloftheConstructionDivision,Volume107Issue2,pp297312. Mayer,R.H.,Jr.andStark,R.M.1984.Linearprogramsfordredgingmanagement decisions.Dredginganddredgedmaterialdisposal.AmericanSocietyofCivilEngineers, ProceedingsoftheConferenceDredging‘84,Volume2,pp10631071. Mayer,R.H.andWaters,J.K.2002.Optimalplansandcostsformaintenancedredging operations.ProceedingsofDredging’02:KeyTechnologiesforGlobalProsperity, McKee,J.2005.Dredgedmaterialmanagementplanningprocessprovidessuccessfor longtermmaterialplacement.OnCourse,PIANCMagazineAIPCN,No.119,pp7379. Metropolis,N.,Rosenbluth,A.W.,Rosenbluth,M.N.,Teller,A.H.andTeller,E.1953. Equationofstatecalculationbyfastcomputingmachines.JournalofChemistryPhysics, Volume21,pp10871091. Miedema,S.A.,2004.Thecuttingmechanismsofwatersaturatedsandatsmallandlarge cuttingangles.ProceedingsInternationalConferenceonCoastalInfrastructure DevelopmentChallengesinthe21stCentury,HongKong,pp4046.

178 References Miertschin,M.W.andRandall,R.E.,1998.AGeneralCostEstimationProgramfor CutterSuctionDredges.Proceedings15thWorldDredgingCongress,WODCON.Las Vegas,NV,Volume2,pp.10991114. Milenkovic,V.,Daniels,K.andLi,Z.1992.Placementandcompactionofnonconvex polygonsforclothingmanufacture.ProceedingsoftheFourthCanadianConferenceon ComputationalGeometry,pp236243. Moritz,H.R.,Randall,R.E.,1995.Simulatingdredgedmaterialplacementatopenwater disposalsites.JournalofWaterway,Port,Coastal,andOceanEngineering,Volume121, No.1,pp3648. Morril,S.M.,Lam,K.S.,Lane,R.G.,LangerM.andRosen,I.I.1995.Veryfastsimulated reannealinginradiationtherapytreatmentplanoptimization.InternationalJournal RadiationOncologyBiologyPhysics,Vol.31,No.1,pp179188. Mulder,S.A.andWunsch,D.C.2003.Millioncitytravellingsalespersonproblemsolution bydivideandconquerclusteringwithadaptiveresonanceneuralnetworks.Neural Networks,16,pp827832. Nielsen,K.N.andOdgaardA.2003.Fastneighbourhoodsearchforthenestingproblem. TechnicalReportno.03/02,UniversityofCopenhagen. Oglesby,C.H.1975.3 rd edition.HighwayEngineering.JohnWileyandSons,Inc.,New York. Paris,C.,Martinez,I.1996.Calculationofsandlossesduringhopperloadingprocessesin trailers.TerraetAqua,No.64,pp39. Randall,R.E.,DeJong,P.S.,Miedema,S.A.2000.ExperienceswithCutterSuction DredgeSimulatorTraining.ProceedingsoftheWEDATechnicalConferenceandTexas A&MDredgingSeminar,RhodeIsland,June2000. Riddel,J.F.2000,Dredging:Opportunitiesandchallengesfor2000andbeyond.Terraet Aqua,No.78,pp310. Rosen.B.1992.Functionoptimizationbasedonadvancedsimulatedannealing.IEEE press,WorkshoponPhysicsandComputation,PhysComp92,Dallas,Texas. 179 References Sakait,J.andHaeC.1998.Twodimensionalpackingproblemsusinggeneticalgorithms. EngineeringwithComputers,pp206213. Schrage,L.1999.OptimizationmodellingwithLingo.PublishedbyLindoSystemsInc. 1415NorthDaytonSt.,,IL. Schroeder,P.,Palermo,M.R.,Engler,R.M.,1995,TheAutomatedDredgingandDisposal AlternativesManagementSystem(ADDAMS).EnvironmentalEffectsofDredging TechnicalNoteEEDP0612,January,1995. Sharma,R.,Balachander,T.,McCord,C.,Anand,S.,Zhang,Q.,1997.Geneticalgorithms forthesinglesheetandmultisheetnonconvexcuttingstockproblem.Transactionsofthe NorthAmericanManufacturingResearchInstitute,25,pp281286. Skiena,S.1990.“HamiltonianCycles”inImplementingDiscreteMathematics: CombinatoricsandGraphTheorywithMathematics.AddisonWesley,ReadingMA,pp 196198. Smith,D.1985.Binpackingwithadaptivesearch.ProceedingsofanInternational ConferenceonGeneticAlgorithmsandtheirApplications,pp202206. Stansbury,J.,Bogardi,I.andStakhiv,E.Z.1999.Riskcostoptimizationunderuncertainty fordredgedmaterialdisposal.JournalofWaterResourcesPlanningandManagement, Volume125,No.6,November/December1999,pp342351. Stark,R.M.andNicholls,R.I.1972.MathematicalFoundationsforDesign:Civil EngineeringSystems.McGrawHillPublishingCo.,Inc.,NY. Steinbusch,P.J,Haan,J.de,Mullié,A.andKramers,C.H.M.2001.Enhancingcutter suctiondredgersforworkinginwavesbyusingflexibleelements.Proceedingsof DredgingforProsperity:AchievingSocialandEconomicBenefits:WorldDredging CongressandExhibition/WODA,Volume1,No.28,pp17. Swart,P.D.andMcGee,T.M.1993.Marineseismicsinglechannelinvestigation techniquestoimprovedredgingperformance:Acasestudy.ProceedingsofCEDA DredgingDays,No.18,pp122. Szu,H.andHartley,R.1987.FastSimulatedAnnealing.PhysicsLettersA,Vol.122,pp 157162. 180 References Taha,H.A.1982.OperationsResearch.AnIntroduction,3 rd edition.Macmillan. Taha,H.A.2003.OperationsResearch.AnIntroduction,7th edition.PrenticeHall. Tang,J.Z.,Wang,Q.F,Bi,Z.Y.2008.Expertsystemforoperationoptimizationandcontrol ofcuttersuctiondredger.ExpertSystemswithApplications,34,pp2180–2192. TenHeggeler,O.W.J.,Vercruijsse,P.M.,Miedema,S.A.2001.Onthehoistingofsuction pipes:Adynamicanalysis.ProceedingsofDredgingforProsperity:AchievingSocialand EconomicBenefits:WorldDredgingCongressandExhibition/WODA,Volume2,No.27, pp113. Tewes,F.2007.Drivenbydemand.DredgingandPortConstruction,December,pp37 40. Tsai,CF.,Tsai,CW.andTsengCC.2003.Anewhybridheuristicapproachforsolving largetravellingsalespersonproblem.InformationSciences,November. VanMieghem,J.,Smits,J.andSas,M.1997.Largescaledewateringoffinegrained dredgedmaterial.TerraetAqua,No.68,pp2128. VanNoortwijk,J.M.,Peerbolte,E.B.2000.Optimalsandnourishmentdecisions.Journal ofWaterway,Port,Coastal,andOceanEngineering,Volume126,No.1,pp3038. VanOostrum,W.H.A.1979.Operationsresearchindredging.TerraetAqua,No.18,pp 214. Vercruijsse,P.M.2007.Developmentsinthedredgingindustry.Proceedingsof Hydrotransport17,17 th InternationalConferenceontheHydraulicTransportofSolids,The SouthAfricanInstituteofMiningandMetallurgyandtheBHRGroup,pp423437 Voudouris,C.andTsang,E.1999.Guidedlocalsearchanditsapplicationtothetraveling salespersonproblem.EuropeanJournalofOperationalResearch,Volume113,pp469 499. Wagner,B.J.1999.Ageneticalgorithmsolutionforonedimensionalbundledstock cutting.EuropeanJournalofOperationalResearch,117,pp368381.

181 References Wang,Z.andPachter,R.1997,Predictionofpeptideconformation:theadaptive simulatedannealingapproach.JournalofComputationalChemistry,Vol.8,No.3,pp323 329. Wang,P.Y.andWäscher,G.2002.Cuttingandpacking.EuropeanJournalofOperational Research,Volume141,pp239240. Wang,Q.,Tang,J.2006.Researchonexpertsystemfordredgingproduction optimization.Proceedingsofthe6 th WorldCongressonIntelligentControland Automation,June21–23,Dalian,China,pp25262530. Weiler,K.1980.PolygonComparisonusingaGraphRepresentation.Proceedingsof7 th AnnualInternationalConferenceonComputerGraphicsandInteractiveTechniques,pp 1018. Williams,T.P.2003,Modelingdredgingprojectcostvariations.AmericanSocietyofCivil Engineers,JournalofWaterway,Port,CoastalandOceanEngineering,Nov/Dec2003,pp 279285. Winston,W.L.,1994.3rd edition,OperationsResearch.DuxburyPress,Belmont, California. Yuping,Z.,Shouwei,J.andChunli,Z.2005.Averyfastsimulatedreannealingalgorithm fortheleathernestingproblem.InternationalJournalofAdvancedManufacturing Technology,Volume25,No.1112,pp11131118. Zhang,L.,Pei,X.andKleine,U.2002.Analogmacrocellplacementwithveryfast simulatedreannealingalgorithm.JournalofSoftware,Vol.13,No.6,pp10591068. Zhu,J.,Zeng,Q.,Dongjian,G.andZhuoL.1999.Optimalcontrolofsedimentationin navigationchannels.JournalofHydraulicEngineering,Volume125,No.7,pp750759.

182