El FIG. Uv ASORPTION OF

Total Page:16

File Type:pdf, Size:1020Kb

El FIG. Uv ASORPTION OF June 25, 1974 SUMO UMEZAWA ET All 3,819,834 ESPINOMYCIN ANTIBIOTICS AND METHODS OF PREPARING SAMs Original Filled Aug. 7, 1970 3. Sheets-Sheet El% FIG. uv ASORPTION OF ESPNOMYCIN A (0.001 NHCP) 400 200 OO 20 220 230 240 250 26O 270 % WAVELENGTH, my Eicm 400 FIG. 2 UW ABSORPTION OF ESPNOMYCIN B (000 NHC) 300 200 OO 2O 220 230 240 250 260 270 WAVELENGTH, mp. NVENTORS SUMO UMEZAWA, SAMU MACHIDA, SUSUMU SHIOTSU, YAKU KAWAGUCH, SHIGEHIDE MAKINO, KIMIO YOKOTA, KAZUTOSH HONDA. ATTORNEYS June 25, 1974 SUMO UMEZAWA ET All- 3,819,834 ESPINOMYCIN ANTIBIOTICS AND METHODS OF PREPARING SAME Original Filed Aug. 7, 1970 3. Sheets-Sheet 2 3 S. Od S3 8 S. 3 C 3 ill o C Cd 2na co 3 s 95 st 3 a 5 - N St. Es - 2 E | 's c) S. d 2 gf c O > NO ac O S 3 : CO O d 3. 3 s - CN - O - d O d rol O Cd - ? LC2 3 CN 3 urC SS June 25, 1974 SUMO UMEZAWA ET All- 3,819,834 ESPINOMYCIN ANTIBIOTICS AND METHODS OF PREPARING SAME p Original Filed Aug. a 970 3 Sheets-Sheet 3 08H 09 0{7 03 0 00,7 03 || 009008000) 6 8 Ti‘H10NETBAWM 2.9 |_NO‘MONEMOGHA —————? G #7 008||.000X2009,2000€000€000+7 2 -0 08 09 OZ % 3,819,834 United States Patent Office Patented June 25, 1974 1. 2 strain has also been deposited with the American Type 3,819,834 Culture Collection in the United States, and has been ESPNOMYCIN ANTIBIOTICS AND METHODS OF given ATCC Acceptance No. 21574. PREPARNG SAME Sumio Umezawa, Tokyo, Isamu Machida, Hatogaya, It is an object of this invention to provide a new mem Susumu Shiotsu and Kimio Yokota, Urawa, Shigehide ber of antibiotics belonging to the macrollide antibiotics. Makino, Tokyo, Gaku Kawaguchi, Gyoda, and Kazu Another object of this invention is to provide a method toshi Honda, Tokyo, Japan, assignors to Meji Seika for producing Espinomycin antibiotics. Kaisha, Ltd., Tokyo, Japan A further object of the invention is to provide methods Continuation of abandoned application Ser. No. 62,055, of separating crude mixtures of Espinomycin into Espino Aug. 7, 1970. This application Apr. 18, 1972, Ser. No. mycin A and Espinomycin B. 245,178 10 Still another object of this invention is to provide a Int. Cl. A61k 21/00 new type of antibiotic which exhibits a high antibiotic U.S. C. 424-120 8 Claims activity against gram-positive bacteria. Another object of this invention is to provide an anti ABSTRACT OF THE DISCLOSURE biotic exhibiting high activity against gram-positive bac 5 teria which has a low toxicity to the host. A new group of antibiotics, the Espinomycins, are Yet an additional object of this invention is to provide described along with methods for obtaining them from a new antibiotic exhibiting a favorable absorption from Streptomyces fungicidicus varietus espinomyceticus. The the digestive tract, which is therefore suitable for oral antibiotics belong to the macrollide group of antibiotics, administration. and show a high activity against gram-positive organisms. 20 The foregoing and other objects are obtained in accord They are suitable for oral administration, and show a ance with the present invention which provides a unique low toxicity to the host. strain of Streptomyces fungicidicus, named Streptomyces fungicidicus var. espinomyceticus, and a method for ob This is a continuation of application Ser. No. 62,055 taining and purifying antibiotic substances produced by filed Aug. 7, 1970, now abandoned. 25 this organism. BACKGROUND OF THE INVENTION BRIEF DESCRIPTION OF THE DRAWINGS Field of the invention These and other objects, features, and advantages of The present invention relates generally to new anti 30 the invention will become more fully apparent to those biotics and methods of producing them. More particu skilled in the art from the following description of an larly, the present invention pertains to new and useful illustrative embodiment of the invention, as further illus antibiotics called Espinomycins, and methods of produc trated in the annexed Drawings, in which: ing them from a newly isolated organism, Streptomyces FIG. 1 is the ultraviolet absorption spectrum of Espino fungicidicus varietus espinomyceticus. mycin A in 0.001 NHCl; FIG. 2 is the ultraviolet absorption spectrum of Espino Description of the prior art mycin B in 0.001 NHCl; Many antibiotics have been reported belonging to the FIG. 3 is the infrared absorption spectrum of Espino macrollide group of antibiotics, such as Erythromycin, mycin A measured in KBr tablets; Carbomycin, Oleandomycin, Leucomycin, Spiramycin, 40 FIG. 4 is the infrared absorption spectrum of Espino Josamycin, etc. All of these antibiotics are characterized mycin B measured in KBr tablets; and by having a distinct absorption on infrared spectra at FIG. 5 is a silica gel thin layer chromatogram of around 1720 cm. based on the carbonyl group of a Espinomycin A and Josamycin, schematically illustrated. macro cyclic lactone ring. Those concerned with the de velopment of antibiotics effective against gram-positive DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS bacteria have long recognized the need for antibiotics The Espinomycins of this invention may be prepared which are capable of oral administration due to a high by the fermentation of Streptomyces N-18-90. While rate of transfer into the bloodstream, coupled with a low Espinomycin has the same maximum absorption by ultra toxicity. The present invention fills this need. violet spectroscopy at around 232 mu, as do some of the 50 known macrollide group of antibiotics, the physicochemi SUMMARY OF THE INVENTION cal and biological properties of Espinomycin are entirely The general purpose of this invention is to provide new different from those of the above antibiotics, as is dis and useful antibiotics called Espinomycins, and a method closed hereinafter. for preparing them. Espinomycin is the name given to the Mycological Characteristics of Streptomyces Fungicidicus new group of antibiotics manufactured by the method of Varietus Espinomyceticus this invention. Among them, at least two types of these antibiotics have been isolated which have been designated Morphological features Espinomycin A or Espinomycin B. As used in this specifi cation, the word "Espinomycin' is intended to mean According to microscopic - observation of the espino either Espinomycin A, Espinomycin B, or combinations 60 mycin-producing strain grown on starch ammonium phos thereof. The Espinomycins of this invention are prepared phate agar, an aerial mycelium is observed having a long by the fermentation of Streptomyces N-18-90. main axis. No whorl was observed, but one or two The Streptomyces N-18-90 strain was isolated for the branches were grown from several parts of the aerial first time from a soil sample collected in Ibaragi City, hyphae. The tip of the sporophore often forms an open Osaka Prefecture, Japan, by the present inventors. This 65 spiral, and the spore chain looks berry-like due to the organism strain was deposited with the Fermentation Re involute tight spiral. Typically, there are more than 10 search Institute, Agency of Industrial Science and Tech spores. According to electron microscopy, the size of the nology, Inage City, Chiba Prefecture, Japan, and given spore is irregular, the average being about 1 x 0.8 microns, Acceptance No. 351. The N-18-90 strain was classified and the shape of the spore being typically spherical to as a variant of Streptomyces fungicidicus and was named 70 oval. Many longer spines are observed on the surface of Streptomyces fungicidicus var. espinomyceticus. This the spore. 3,819,834 3 4 Culture Characteristics on Various Media 18. Potato plug 1. Glucose nitrate agar (glucose-Czapek's agar) Thick light brown growth. Aerial mycelium white, Colorless growth, white, dense aerial mycelium, Some sometimes becoming faintly purplish tinge. Plug color times becoming faintly purplish tinge. Reverse gradually unchanged. purplish shade, later dull purple to purplish brown. Light 19. Carrot plug purple to light brownish purple pigment diffuses into the Off-white to light brown, good growth. Aerial mycelium agar. powdery white. No darking of plug. The following physiological properties have been noted 2. Glycerine nitrate aga (glycerine Czapek's agar) which are characteristic of Streptomyces fungicidicus var. Similar to (1) above, but generally only a weak pig O espinomyceticus: mentation. 1. The organism is aerobic, showing good growth over 3. Glucose asparagine agar a pH range of from 5 to 9. No noticeable difference in Off-white to pale brown growth. Aerial mycelium growth was observed over the temperature range of 27 sparse, sometimes becoming white powdery. Pigment 15 C. to 37° C. mostly absent. 2. Liquefaction of gelatin: Weak or none. 3. Hydrolysis of starch: Positive. 4. Glycerine calcium malate agar 4. Tyrosinase reaction: Negative. Thin, colorless growth. Aerial mycelium scant. Pigment 5. Peptonization of milk: Positive. absent. 6. Nitrate reduction: Negative. 20 7. Cellulolytic reaction: Negative. 5. Glucose nitrate solution (glucose Czapek's solution) 8. Chromogenecity action: Negative. Colorless small colonies in bottom of tube, with Small 9. Hemolysis: Positive. colonies on liquid surface. Pigment absent. 10. Liquefaction of coagulated serum: Negative. The carbon utilization properties of Streptomyces 6. Starch agar (starch ammonium sulfate agar) 25 fungicidicus var. espinomyceticus are shown in Table 1 Off-white growth. Aerial mycelium abundant, white in tested on Pridham and Gottlieb's medium. initial stage, later grayish shade with various tones. (This shade is caused by dense sporulation.) Reverse, later pro TABLE 1. duces dull reddish insoluble pigment partially. 30 D-glucose - Maltose Raffinose - 7. Peptone meat extract agar (nutrient agar) D-mannitol -- D-sorbitol D-xylose -- Inositol -- Salicin : Sodium citrate - O-galactose -- L-arabinose Sucrose - Cream-colored growth. Aerial mycelium sparse, white. D-fructose -- Rhamnose - No pigment.
Recommended publications
  • We Have Reported That the Antibiotics Chloramphenicol, Lincomycin
    THE BIOGENESIS OF MITOCHONDRIA, V. CYTOPLASMIC INHERITANCE OF ERYTHROMYCIN RESISTANCE IN SACCHAROMYCES CEREVISIAE* BY ANTHONY W. LINNANE, G. W. SAUNDERS, ELLIOT B. GINGOLD, AND H. B. LUKINS BIOCHEMISTRY DEPARTMENT, MONASH UNIVERSITY, CLAYTON, VICTORIA, AUSTRALIA Communicated by David E. Green, December 26, 1967 The recognition and study of respiratory-deficient mutants of yeast has been of fundamental importance in contributing to our knowledge of the genetic control of the formation of mitochondria. From these studies it has been recognized that cytoplasmic genetic determinants as well as chromosomal genes are involved in the biogenesis of yeast mitochondria.1' 2 Following the recog- nition of the occurrence of mitochondrial DNA,3 4 attention has recently been focused on the relationship between mitochondrial DNA and the cytoplasmic determinant.' However, the information on this latter subject is limited and is derived from the study of a single class of mutant of this determinant, the re- spiratory-deficient cytoplasmic petite. This irreversible mutation is pheno- typically characterized by the inability of the cell to form a number of compo- nents of the respiratory system, including cytochromes a, a3, b, and c1.6 A clearer understanding of the role of cytoplasmic determinants in mitochondrial bio- genesis, could result from the characterization of new types of cytoplasmic mutations which do not result in such extensive biochemical changes. This would thus simplify the biochemical analyses as well as providing additional cytoplasmic markers to assist further genetic studies. We have reported that the antibiotics chloramphenicol, lincomycin, and the macrolides erythromycin, carbomycin, spiramycin, and oleandomycin selec- tively inhibit in vitro amino acid incorporation by yeast mitochondria, while not affecting the yeast cytoplasmic ribosomal system.7' 8 Further, these antibiotics do not affect the growth of S.
    [Show full text]
  • Macrocyclic Antibiotics As Separation Agents
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine Missouri University of Science and Technology Scholars' Mine Chemistry Faculty Research & Creative Works Chemistry 07 Mar 2006 Macrocyclic Antibiotics as Separation Agents Daniel W. Armstrong Missouri University of Science and Technology Follow this and additional works at: https://scholarsmine.mst.edu/chem_facwork Part of the Chemistry Commons Recommended Citation D. W. Armstrong, "Macrocyclic Antibiotics as Separation Agents," U.S. Patents, Mar 2006. This Patent is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Chemistry Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. USOO70O8533B2 (12) United States Patent (10) Patent No.: US 7,008,533 B2 Armstrong (45) Date of Patent: Mar. 7, 2006 (54) MACROCYCLIC ANTIBIOTICSAS (52) U.S. Cl. ............................... 210/1982; 21.0/502.1; SEPARATION AGENTS 210/635; 210/656 (58) Field of Classification Search ................ 210/635, (75) Inventor: Daniel Armstrong, Rolla, MO (US) 210/656, 198.2, 502.1; 502/.401, 403, 404; 435/174, 176, 178,180 (73) Assignee: Curators of the University of See application file for complete Search history. Missouri, Columbia, MO (US) (*) Notice: Subject to any disclaimer,- 0 the term of this (56) References Cited patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U.S.C.
    [Show full text]
  • Ep 2079311 B1
    (19) TZZ Z¥___T (11) EP 2 079 311 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 47/00 (2006.01) 08.03.2017 Bulletin 2017/10 (86) International application number: (21) Application number: 07844213.4 PCT/US2007/081195 (22) Date of filing: 12.10.2007 (87) International publication number: WO 2008/051733 (02.05.2008 Gazette 2008/18) (54) BIGUANIDE COMPOSITION WITH LOW TERMINAL AMINE BIGUANID-ZUSAMMENSETZUNG MIT GERINGEM ENDGRUPPEN-AMIN-ANTEIL COMPOSITION DE BIGUANIDE AVEC AMINE TERMINALE BASSE (84) Designated Contracting States: (72) Inventor: HEILER, David Joseph AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Avon, NY 14414 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Riegler, Norbert Hermann et al Lonza Ltd. (30) Priority: 23.10.2006 US 853579 P Patent Department 20.03.2007 US 895770 P Münchensteinerstrasse 38 4052 Basel (CH) (43) Date of publication of application: 22.07.2009 Bulletin 2009/30 (56) References cited: WO-A-00/35861 WO-A-98/20738 (73) Proprietor: Arch Chemicals, Inc. US-A- 4 954 636 US-A- 5 965 088 Norwalk, CT 06856-5204 (US) US-A1- 2003 032 768 US-B1- 6 423 748 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • WO 2011/103516 A2 25 August 2011 (25.08.2011) PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau I (10) International Publication Number (43) International Publication Date WO 2011/103516 A2 25 August 2011 (25.08.2011) PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/536 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) Number: International Application CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/025558 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 18 February 20 11 (18.02.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/305,862 18 February 2010 (18.02.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): THE GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, TRUSTEES OF PRINCETON UNIVERSITY ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, [US/US]; P.O.
    [Show full text]
  • Separation and Purification of Pharmaceuticals and Antibiotics [Table IX-1-1] Principal Antibiotics Penicillin-G (Benzylpenicillin), Oxacillin, Chlox- 1
    Separation and Purification of Pharmaceuticals and Antibiotics [Table IX-1-1] Principal Antibiotics Penicillin-G (benzylpenicillin), Oxacillin, Chlox- 1. Antibiotics acillin, Dichloxacillin, Nafcillin, Methicillin, (1) Outline Amoxicillin, Ampicillin, Ticarcillin, Piperacillin, Penicillins aspoxicillin, Antibiotics are "chemical substances produced by microorganisms Ciclacillin, Sulbenicillin, Talampicillin, which, in minute quantities, inhibit or suppress the proliferation of other Bacampicillin, Pivmecillinam, lenampicillin, microorganisms". This is defined in 1942 by Selman Abraham Waksman β-Lactams Phenethicillin, Carbenicillin etc, in the USA. Antibiotics were developed in Britain following the discovery Cephalosporin C of Penicillin in 1929 by Alexander Fleming: He found that Blue mold, Cefazolin, Cefatrizine, Cefadroxil, Cefalexin, Cephalosporins Cefaloglycin, Cefalothin, Cefaloridine, Cefoxitin, Penicillium, dissolves Staphylococcus staphylococci and inhibits its Cefotaxime, Cefoperazone, Ceftizoxime, Cefmet- growth and he named the extract from Penicillium as Penicillin. Many azole, Cefradine, Cefroxadine etc. new antibiotics have been found since 1940’s, and there are more than Other β-lactams 1,500 antibiotics. Principal ones are listed in Table IX-1-1. Kanamycins Amikacin, Kanamycin, Dibekacin Most of these antibiotics are manufactured by fermentation or by Gentamycins, Gentamicin, Micronomicin semi-synthesis that combines fermentation and organic synthesis, though Sisomycins chloramphenicol is by synthesis. Fermentation is carried out by Acti- Streptomycins Streptomycin Aminoglycosides nomycetes, mold (hyphomycetes) or bacteria in culture media with glu- Spectinomycins Spectinomycin cose, sucrose, lactose, starch or dextrin as carbon source, with nitrate, Fradiomycins Fradiomycin, ammonium salt, corn steep liquor, peptone, meat extract or yeast extract Astromicins Astromicin as nitrogen source and with a little amount of inorganic salts. Erythromycin, Oleandomycin, Carbomycin, Penicillin-type antibiotics are manufactured by semi-synthesis, i.e.
    [Show full text]
  • Macrolide Antibiotics: Binding Site, Mechanism of Action, Resistance
    Current Topics in Medicinal Chemistry 2003, 3, 949-961 949 Macrolide Antibiotics: Binding Site, Mechanism of Action, Resistance Marne Gaynor and Alexander S. Mankin* Center for Pharmaceutical Biotechnology – M/C 870, University of Illinois, 900 S. Ashland Ave., Chicago, IL 60607, USA Abstract: Macrolides are among the most clinically important antibiotics. However, many aspects of macrolide action and resistance remain obscure. In this review we summarize the current knowledge, as well as unsolved questions, regarding the principles of macrolide binding to the large ribosomal subunit and the mechanism of drug action. Two mechanisms of macrolide resistance, inducible expression of Erm methyltransferase and peptide-mediated resistance, appear to depend on specific interactions between the ribosome-bound macrolide molecule and the nascent peptide. The similarity between these mechanisms and their relation to the general mode of macrolide action is discussed and the discrepancies between currently available data are highlighted. Key words: macrolides, erythromycin, ketolides, azithromycin, clarithromycin., tylosin, carbomycin, spiramycin, ribosome, resistance. INTRODUCTION transferase center and cause cell growth arrest due to inhibition of protein synthesis [1,2]. However, in spite of Macrolides belong to one of the most commonly used more than 50 years of research, the mode of macrolide families of clinically important antibiotics used to treat inhibition of ribosome activity is understood only in the infections caused by Gram-positive bacteria such as most general terms. Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes. Chemically, macrolides are The extensive use of these antibiotics has led inevitably represented by a 14-, 15- or 16-membered lactone ring to the spread of resistant strains.
    [Show full text]
  • Localization of Five Antibiotic Resistances at the Subunit Level In
    Proc. Nat. Acad. Sci. USA Vol. 71, No. 5, pp. 1715-1719, May 1974 Localization of Five Antibiotic Resistances at the Subunit Level in Chloroplast Ribosomes of Chlamydomonas (chloroplast genes/ribosomal subunit/in vitro polypeptide synthesis) GLADYS SCHLANGER AND RUTH SAGER Department of Biological Sciences, Hunter College of The City University of New York, New York, N.Y. 10021 Communicated by M. M. Rhoades, January 21, 1974 ABSTRACT The chloroplast ribosomes from five anti- that non-Mendelian mutations to drug resistance in Chlamydo- biotic resistant strains of Chlamydomonas, each carrying monas induce alterations in chloroplast ribosomes have been one mutant gene mapping in chloroplast DNA, have been shown to be resistant to the corresponding antibiotic in a previously reported (7, 9-13). poly(U)-directed amino-acid incorporating assay system. The alteration conferring resistance was localized to the MATERIALS AND METHODS 30S subunit in ribosomes from streptomycin, neamine, and spectinomycin resistant strains, and to the 50S sub- Cells. Wild-Type strain 21 gr, media, and growing conditions unit in ribosomes from cleocin and carbomycin resistant have been previously described (7). Non-Mendelian pnutant strains. Spectinomycin resistant ribosomes showed no strains-each resistant to one of the antibiotics streptomycin, cross-resistance to any other drugs, but limited cross- spectinomycin, carbomycin, and cleocin-were selected after resistance was noted with the other mutant ribosomes. The similarity between these findings and results reported streptomycin mutagenesis (14) of wild-type strain 21 gr by by others with bacterial ribosomes supports our hy- growth on antibiotic-containing agar. The neamine resistant pothesis that at least some chloroplast ribosomal proteins strain was obtained from Dr.
    [Show full text]
  • Transduction of Resistance to Some Macrolide Antibiotics in Staphylococcus a Ureus1 P
    TRANSDUCTION OF RESISTANCE TO SOME MACROLIDE ANTIBIOTICS IN STAPHYLOCOCCUS A UREUS1 P. A. PATTEE AND J. N. BALDWIN Department of Bacteriology, Iowa State University, Ames, Iowa, and Department of Microbiology, Ohio State University, Columbus, Ohio Received for publication June 21, 1962 ABSTRACT among members of this species. Morse (1959), PATTEE, P. A. (Iowa State University, Ames) Edgar and Stocker (1961), and Dowell and AND J. N. BALDWIN. Transduction of resistance Rosenblum (1962) also reported staphylococcal to some macrolide antibiotics in Staphylococcus transductions involving a variety of charac- aureus. J. Bacteriol. 84:1049-1055. 1962.-By use teristics. Pattee and Baldwin (1961) reported of phage 80 of the International Typing Series, that phages 29, 52A, 79, 80, and 53 of the Inter- propagated on appropriate strains of Staphy- national Typing Series were capable of trans- lococcus aureus, two related markers controlling ducing the capacity to produce penicillinase, as resistance to certain macrolide antibiotics well as resistance to chlortetracycline and novo- (erythromycin, oleandomycin, spiramycin, and biocin, among a variety of strains of S. aureus. carbomycin) were transduced among a variety The present report is concerned with the trans- of strains of S. aureus. Unlike the markers duction of resistance to several of the macrolide controlling penicillinase production and resistance antibiotics among strains of S. aureus. to chlortetracycline and novobiocin, the deter- Among the pathogenic staphylococci, resistance minants of resistance to the macrolide antibiotics to the macrolide antibiotics, which include were transduced at normal frequencies (at least erythromycin, oleandomycin, spiramycin, carbo- 300 transductants per 109 phage) only to certain mycin, and leucomycin (Murai et al., 1959), of the recipient strains.
    [Show full text]
  • Wo 2009/015286 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 29 January 2009 (29.01.2009) WO 2009/015286 A2 (51) International Patent Classification: Not classified AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, (21) International Application Number: EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, PCT/US2008/071055 IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, (22) International Filing Date: 24 July 2008 (24.07.2008) MX, MY,MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TJ, (25) Filing Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 60/961,872 24 July 2007 (24.07.2007) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), (71) Applicant (for all designated States except US): NEXBIO, European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, INC. [US/US]; 10665 Sorrento Valley Road, San Diego, California 92121 (US). FR, GB, GR, HR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, (72) Inventors; and CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Vol. 77 Wednesday, No. 234 December 5, 2012 Pages 72195–72680
    Vol. 77 Wednesday, No. 234 December 5, 2012 Pages 72195–72680 OFFICE OF THE FEDERAL REGISTER VerDate Mar 15 2010 20:34 Dec 04, 2012 Jkt 229001 PO 00000 Frm 00001 Fmt 4710 Sfmt 4710 E:\FR\FM\05DEWS.LOC 05DEWS sroberts on DSK5SPTVN1PROD with II Federal Register / Vol. 77, No. 234 / Wednesday, December 5, 2012 The FEDERAL REGISTER (ISSN 0097–6326) is published daily, SUBSCRIPTIONS AND COPIES Monday through Friday, except official holidays, by the Office PUBLIC of the Federal Register, National Archives and Records Administration, Washington, DC 20408, under the Federal Register Subscriptions: Act (44 U.S.C. Ch. 15) and the regulations of the Administrative Paper or fiche 202–512–1800 Committee of the Federal Register (1 CFR Ch. I). The Assistance with public subscriptions 202–512–1806 Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 is the exclusive distributor of the official General online information 202–512–1530; 1–888–293–6498 edition. Periodicals postage is paid at Washington, DC. Single copies/back copies: The FEDERAL REGISTER provides a uniform system for making Paper or fiche 202–512–1800 available to the public regulations and legal notices issued by Assistance with public single copies 1–866–512–1800 Federal agencies. These include Presidential proclamations and (Toll-Free) Executive Orders, Federal agency documents having general FEDERAL AGENCIES applicability and legal effect, documents required to be published Subscriptions: by act of Congress, and other Federal agency documents of public interest. Paper or fiche 202–741–6005 Documents are on file for public inspection in the Office of the Assistance with Federal agency subscriptions 202–741–6005 Federal Register the day before they are published, unless the issuing agency requests earlier filing.
    [Show full text]
  • Federal Register/Vol. 84, No. 133/Thursday, July 11, 2019/Rules
    32982 Federal Register / Vol. 84, No. 133 / Thursday, July 11, 2019 / Rules and Regulations List of Subjects in 14 CFR Part 39 Section, Transport Standards Branch, FAA, Issued in Des Moines, Washington, on July has the authority to approve AMOCs for this 3, 2019. Air transportation, Aircraft, Aviation AD, if requested using the procedures found Dionne Palermo, safety, Incorporation by reference, in 14 CFR 39.19. In accordance with 14 CFR Safety. Acting Director, System Oversight Division, 39.19, send your request to your principal Aircraft Certification Service. Adoption of the Amendment inspector or local Flight Standards District Office, as appropriate. If sending information [FR Doc. 2019–14726 Filed 7–10–19; 8:45 am] Accordingly, under the authority directly to the International Section, send it BILLING CODE 4910–13–P delegated to me by the Administrator, to the attention of the person identified in the FAA amends 14 CFR part 39 as paragraph (i)(2) of this AD. Information may follows: be emailed to: 9-ANM-116-AMOC- DEPARTMENT OF HEALTH AND [email protected]. Before using any HUMAN SERVICES PART 39—AIRWORTHINESS approved AMOC, notify your appropriate DIRECTIVES principal inspector, or lacking a principal Food and Drug Administration inspector, the manager of the local flight ■ 1. The authority citation for part 39 standards district office/certificate holding 21 CFR Parts 500, 520, 522, 524, 526, continues to read as follows: district office. 529, 556, and 558 Authority: 49 U.S.C. 106(g), 40113, 44701. (2) Contacting the Manufacturer: For any requirement in this AD to obtain corrective [Docket No.
    [Show full text]