WO 2011/103516 A2 25 August 2011 (25.08.2011) PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2011/103516 A2 25 August 2011 (25.08.2011) PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau I (10) International Publication Number (43) International Publication Date WO 2011/103516 A2 25 August 2011 (25.08.2011) PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/536 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) Number: International Application CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/025558 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 18 February 20 11 (18.02.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/305,862 18 February 2010 (18.02.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): THE GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, TRUSTEES OF PRINCETON UNIVERSITY ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, [US/US]; P.O. Box 36, 4 New South Building, Princeton, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, NJ 08544 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (72) Inventors; and SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (75) Inventors/Applicants (for US only): KOYUNCU, Emre GW, ML, MR, NE, SN, TD, TG). [US/US]; 465 Meadow Road, Apt. 8302, Priceton, NJ 08540 (US). RABINOWITZ, Joshua, D. [US/US]; 17A Published: Hulfish Street, Princeton, NJ 08540 (US). SHENK, — without international search report and to be republished Thomas [US/US]; 12 Boundinot St., Princeton, NJ 08540 upon receipt of that report (Rule 48.2(g)) (US). — with sequence listing part of description (Rule 5.2(a)) (74) Agents: SOMERVILLE, Deborah, A. et al; Kenyon & Kenyon LLP, One Broadway, New York, NY 10004 (US). (54) Title: INHIBITORS OF LONG AND VERY LONG CHAIN FATTY ACID METABOLISM AS BROAD SPECTRUM ANTI-VIRALS Related genes and tested inhibitors ,v j < o Fig. 1 (57) Abstract: The present invention provides methods and compounds for treating viral infections using modulators of host cell enzymes relating to long chain fatty acid and lipid droplet metabolism. It includes a method of treating viral infections using triac- sin C and its relatives, analogues and derivatives as well as other inhibitors of long chain fatty acid metabolism and lipid droplet metabolism. INHIBITORS OF LONG AND VERY LONG CHAIN FATTY ACID METABOLISM AS BROAD SPECTRUM ANTI-VIRALS FIELD OF THE INVENTION [0001] The present invention provides methods and compounds for treating viral infections using modulators of host cell enzymes relating to long chain fatty acid and lipid droplet metabolism. It includes a method of treating viral infections using triacsin C and its relatives, analogues and derivatives as well as other inhibitors of long chain fatty acid metabolism and lipid droplet metabolism. STATEMENT OF GOVERNMENT INTEREST [0002] The invention was made with United States Government support under Grant Nos. AI068678 and CA85786 awarded by the National Institutes of Health. The Government has certain rights in this invention. BACKGROUND OF THE INVENTION [0003] There is a great unmet medical need for agents that more safely, effectively, and reliably treat viral infections, from HIV to the common cold. This includes a major need for better agents to treat human cytomegalovirus (where current agents suffer from significant toxicity and lack of efficacy), herpes simplex virus (where current agents are beneficial but provide incomplete relief), influenza A (where resistance to current agents is rampant), and hepatitis C virus (where many patients die from poor disease control). It further includes a major need for agents that work across a spectrum of viruses, facilitating their clinical use without necessarily requiring identification of the underlying pathogen. SUMMARY OF THE INVENTION [0004] The invention provides a method of treating or preventing viral infection in a mammal, comprising administering to a mammalian subject in need thereof a therapeutically effective amount of a compound or prodrug thereof, or pharmaceutically acceptable salt or ester of said compound or prodrug, wherein the compound is a compound of Formula I : wherein R1 is a carbon chain having from 3 to 23 atoms (including optional heteroatoms) in the chain, wherein the chain comprises 0-10 double bonds within the chain, and 0-4 heteroatoms within the chain, and wherein 0-8 of the carbon atoms of R1 are optionally substituted. If one or more optional heteroatoms occur within the R1 chain, in preferred embodiments each heteroatom is independently selected from O, S, and NR2, wherein R2 is Ci_ 1 selected from H, 6 alkyl, and C3 6 cycloalkyl. When the carbon atoms of R are substituted, it is preferred that from 0-8 hydrogen atoms along the chain may be replaced by a substituent selected from halo, OR2, SR2, lower alkyl, and cycloalkyl, wherein R2 is H, Ci_ alkyl, and C3-6 cycloalkyl. In certain preferred embodiments, R1 is unsubstituted (i.e., R1 is unbranched, and none of the hydrogens have been replaced by a substituent). In preferred embodiments for compounds of the formula I, R1 has a chain length of 8 to 12 atoms. More preferably, R1 has a total chain length of R1 has a chain length of 9 to 11 atoms. Most preferably R1 has a chain length of 10 atoms. In other preferred embodiments, R1 has 2 to 4 double bonds. In another embodiment of the invention, the compound of Formula I is a triacsin. In yet another embodiment of the invention, the compound of Formula I is triacsin C. In still another embodiment of the invention, the compound is an inhibitor of acyl-CoA synthetase long-chain family member 1 (ACSL1). In still another embodiment of the invention, the compound is an inhibitor of another enzyme inhibited by triacsin C, including without limitation arachidonoyl-CoA synthase or enzymes of triglyceride (TG) or cholesterol ester (CE) synthesis. [0005] Compounds of Formula I are broad spectrum antivirals useful for treating or preventing infection by a wide range of viruses. In one embodiment, the compounds of Formula I are used to treat or prevent viral infection by an enveloped virus. In certain embodiments of the invention, the compounds are used to treat or prevent infection by human cytomegalovirus (HCMV), herpes simplex virus- 1 (HSV-1), influenza A, or hepatitis C virus. [0006] The invention also provides a pharmaceutical composition for treatment or prevention of a viral infection comprising a therapeutically effective amount of a composition comprising a compound or prodrug thereof, or pharmaceutically acceptable salt of said compound or prodrug; and a pharmaceutically acceptable carrier, wherein the compound is a compound of Formula I. [0007] In one embodiment, the invention provides a method of treating or preventing viral infection in a mammal, comprising administering to a mammalian subject in need thereof a therapeutically effective amount of a compound or prodrug thereof, or pharmaceutically acceptable salt or ester of said compound or prodrug, wherein the compound is a compound of formula V wherein X and Y are independently selected from N and CH; R i and R2' are independently selected from H, Ci_ alkyl which may be optionally substituted with F, OCH3 and OH, and Ci_6 cycloalkyl; Re and R are independently selected from H, and Ci_3 alkyl, or R6 and R taken together may form a C3-6 cycloalkyl, R3, R 4 and R are independently selected from H, Ci_6 alkyl which may be optionally substituted with F, OCH3 and OH, and Ci_6 cycloalkyl; additionally or alternatively, one of R6 or R may be taken together with R to form a C5-11 cycloalkyl ring. [0008] In one embodiment, the compound of formula V is avasimibe. In one embodiment the compound of formula V is an inhibitor of Acyl-CoA cholesterol acyltransferase (ACAT). [0009] In one embodiment, the invention provides a method of treating or preventing viral infection in a mammal, comprising administering to a mammalian subject in need thereof a therapeutically effective amount of a compound or prodrug thereof, or pharmaceutically acceptable salt or ester of said compound or prodrug, wherein the compound is selected from the group consisting of eflucimibe, pactimibe, Compound 1, Compound 21, Compound 12g, SMP-797, CL-283,546, and Wu-V-23. In one embodiment the compound inhibitor of Acyl-CoA cholesterol acyltransferase (ACAT). [0010] In one embodiment, the invention provides a method of treating or preventing viral infection in a mammal, comprising administering to a mammalian subject in need thereof a therapeutically effective amount of a compound or prodrug thereof, or pharmaceutically acceptable salt or ester of said compound or prodrug, wherein the compound is selected from the group consisting of PF- 1052, spylidone, rubimaillin, sespendole, terpendole C, Compound 7, Compound 8, Compound 9, vermisporin, beauveriolides, phenochalasins, isobisvertinol, and K97-0239. In one embodiment, the compound is PF-1052. In one embodiment, compound is spylidone. In one embodiment, the compound is rubimaillin. In one embodiment compound inhibits lipid droplet formation.
Recommended publications
  • Remodeling of Lipid Droplets During Lipolysis and Growth in Adipocytes
    Remodeling of Lipid Droplets during Lipolysis and Growth in Adipocytes Margret Paar*1, Christian Jungst§1,2, Noemi A. Steinert, Christoph Magnes ~, Frank Sinner~, Dagmar Kolbll, Achim Lass*, Robert Zimmermann*, Andreas Zumbusch§, Sepp D. Kohlwein*, and Heimo Wolinski*3 From the *Institute of Molecular Biosciences, Lipidomics Research Center LRC Graz, University of Graz, 8070 Graz, Austria, the §Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany, ~HEAL TH, Institute for Biomedicine and Health Sciences, Joanneum Research, 8036 Graz, Austria, and the IIlnstitute of Cell Biology, Histology and Embryology, and ZMF, Center for Medical Research, Medical University of Graz, 8070 Graz, Austria Background: Micro-lipid droplets (mLDs) appear in adipocytes upon lipolytic stimulation. LDs may grow by spontaneous, homotypic fusion. Results: Scavenging of fatty acids prevents mLD formation. LDs grow by a slow transfer of lipids between LDs. Conclusion: mLDs form due to fatty acid overflow. I.D growth is a controlled process. Significance: Novel mechanistic insights into LD remodeling are provided. Synthesis, storage, and turnover oftriacylglycerols (TAGs) in mation of large LOs requires a yet uncharacterized protein adipocytes are critical cellular processes to maintain lipid and machinery mediating LO interaction and lipid transfer. energy homeostasis in mammals. TAGs are stored in metaboli­ cally highly dynamic lipid droplets (LOs), which are believed to undergo fragmentation and fusion under lipolytic and lipogenic Most eukaryotic organisms deal with a typically fluctuating conditions, respectively. Time lapse fluorescence microscopy food supply by storing or mobilizing lipids as an energy source. showed that stimulation of lipolysis in 3T3-Ll adipocytes causes Malfunction of the synthesis or degradation of fat stores is progressive shrinkage and almost complete degradation of all linked to prevalent diseases, such as obesity, type II diabetes, or cellular LDs but without any detectable fragmentation into various forms of lipodystrophy (1).
    [Show full text]
  • Modulation of Triglyceride and Cholesterol Ester Synthesis Impairs
    THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 289, NO. 31, pp. 21276–21288, August 1, 2014 Author’s Choice © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Modulation of Triglyceride and Cholesterol Ester Synthesis Impairs Assembly of Infectious Hepatitis C Virus*□S Received for publication, May 20, 2014, and in revised form, June 8, 2014 Published, JBC Papers in Press, June 10, 2014, DOI 10.1074/jbc.M114.582999 Jolanda M. P. Liefhebber‡1, Charlotte V. Hague‡1, Qifeng Zhang§, Michael J. O. Wakelam§, and John McLauchlan‡2 From the ‡Medical Research Council-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, United Kingdom and §The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom Background: Lipid droplets have been implicated in HCV virion assembly. Results: Inhibitors of the synthesis of triacylglycerol and cholesterol ester, the main components of lipid droplets, impair virion assembly. Conclusion: Production of infectious HCV is linked integrally with the biosynthesis of the major components of lipid droplets. Significance: Inhibitors of enzymes that generate acylglycerols and cholesterol esters have antiviral activity. In hepatitis C virus infection, replication of the viral genome including cirrhosis, hepatocellular carcinoma, and liver failure and virion assembly are linked to cellular metabolic processes. (1). Metabolic diseases including insulin resistance and steato- In particular, lipid droplets, which store principally triacylglyc- sis are particular features of chronic infection (2, 3), and there is Downloaded from erides (TAGs) and cholesterol esters (CEs), have been impli- now conclusive evidence that factors and pathways involved in cated in production of infectious virus.
    [Show full text]
  • Long-Chain Acyl-Coa Synthetase Is Associated with the Growth of Malassezia Spp
    Journal of Fungi Article Long-Chain Acyl-CoA Synthetase is Associated with the Growth of Malassezia spp. Tenagy, Kengo Tejima, Xinyue Chen , Shun Iwatani and Susumu Kajiwara * School of Life Science and Technology, Tokyo Institute of Technology, J3-7, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan; [email protected] (T.); [email protected] (K.T.); [email protected] (X.C.); [email protected] (S.I.) * Correspondence: [email protected]; Tel.: +81-45-924-5715; Fax: +81-45-924-5773 Received: 14 July 2019; Accepted: 9 September 2019; Published: 21 September 2019 Abstract: The lipophilic fungal pathogen Malassezia spp. must acquire long-chain fatty acids (LCFAs) from outside the cell. To clarify the mechanism of LCFA acquisition, we investigated fatty acid uptake by this fungus and identified the long-chain acyl-CoA synthetase (ACS) gene FAA1 in three Malassezia spp.: M. globosa, M. pachydermatis, and M. sympodialis. These FAA1 genes could compensate for the double mutation of FAA1 and FAA4 in Saccharomyces cerevisiae, suggesting that Malassezia Faa1 protein recognizes exogenous LCFAs. MgFaa1p and MpFaa1p utilized a medium-chain fatty acid, lauric acid (C12:0). Interestingly, the ACS inhibitor, triacsin C, affected the activity of the Malassezia Faa1 proteins but not that of S. cerevisiae. Triacsin C also reduced the growth of M. globosa, M. pachydermatis, and M. sympodialis. These results suggest that triacsin C and its derivatives are potential compounds for the development of new anti-Malassezia drugs. Keywords: Malassezia; acyl-CoA synthetase; fatty acid uptake 1. Introduction Malassezia spp.
    [Show full text]
  • A Metabolomics Investigation Into the Effects of HIV Protease Inhibitors On
    Molecular BioSystems View Article Online PAPER View Journal | View Issue A metabolomics investigation into the effects of HIV protease inhibitors on HPV16 E6 expressing Cite this: Mol. BioSyst., 2014, 10,398 cervical carcinoma cells† Dong-Hyun Kim,‡§a J. William Allwood,§¶a Rowan E. Moore,b Emma Marsden-Edwards,8b Warwick B. Dunn,¶a Yun Xu,a Lynne Hampson,c Ian N. Hampsonc and Royston Goodacre*ad Recently, it has been reported that anti-viral drugs, such as indinavir and lopinavir (originally targeted for HIV), also inhibit E6-mediated proteasomal degradation of mutant p53 in E6-transfected C33A cells. In order to understand more about the mode-of-action(s) of these drugs the metabolome of HPV16 E6 expressing cervical carcinoma cell lines was investigated using mass spectrometry (MS)-based metabolic profiling. The metabolite profiling of C33A parent and E6-transfected cells exposed to these two anti- viral drugs was performed by ultra performance liquid chromatography (UPLC)-MS and gas Creative Commons Attribution 3.0 Unported Licence. chromatography (GC)-time of flight (TOF)-MS. Using a combination of univariate and multivariate Received 23rd September 2013, analyses, these metabolic profiles were investigated for analytical and biological reproducibility and to Accepted 2nd January 2014 discover key metabolite differences elicited during anti-viral drug challenge. This approach revealed DOI: 10.1039/c3mb70423h both distinct and common effects of these two drugs on the metabolome of two different cell lines. Finally, intracellular drug levels were quantified, which suggested in the case of lopinavir that increased www.rsc.org/molecularbiosystems activity of membrane transporters may contribute to the drug sensitivity of HPV infected cells.
    [Show full text]
  • We Have Reported That the Antibiotics Chloramphenicol, Lincomycin
    THE BIOGENESIS OF MITOCHONDRIA, V. CYTOPLASMIC INHERITANCE OF ERYTHROMYCIN RESISTANCE IN SACCHAROMYCES CEREVISIAE* BY ANTHONY W. LINNANE, G. W. SAUNDERS, ELLIOT B. GINGOLD, AND H. B. LUKINS BIOCHEMISTRY DEPARTMENT, MONASH UNIVERSITY, CLAYTON, VICTORIA, AUSTRALIA Communicated by David E. Green, December 26, 1967 The recognition and study of respiratory-deficient mutants of yeast has been of fundamental importance in contributing to our knowledge of the genetic control of the formation of mitochondria. From these studies it has been recognized that cytoplasmic genetic determinants as well as chromosomal genes are involved in the biogenesis of yeast mitochondria.1' 2 Following the recog- nition of the occurrence of mitochondrial DNA,3 4 attention has recently been focused on the relationship between mitochondrial DNA and the cytoplasmic determinant.' However, the information on this latter subject is limited and is derived from the study of a single class of mutant of this determinant, the re- spiratory-deficient cytoplasmic petite. This irreversible mutation is pheno- typically characterized by the inability of the cell to form a number of compo- nents of the respiratory system, including cytochromes a, a3, b, and c1.6 A clearer understanding of the role of cytoplasmic determinants in mitochondrial bio- genesis, could result from the characterization of new types of cytoplasmic mutations which do not result in such extensive biochemical changes. This would thus simplify the biochemical analyses as well as providing additional cytoplasmic markers to assist further genetic studies. We have reported that the antibiotics chloramphenicol, lincomycin, and the macrolides erythromycin, carbomycin, spiramycin, and oleandomycin selec- tively inhibit in vitro amino acid incorporation by yeast mitochondria, while not affecting the yeast cytoplasmic ribosomal system.7' 8 Further, these antibiotics do not affect the growth of S.
    [Show full text]
  • Macrocyclic Antibiotics As Separation Agents
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine Missouri University of Science and Technology Scholars' Mine Chemistry Faculty Research & Creative Works Chemistry 07 Mar 2006 Macrocyclic Antibiotics as Separation Agents Daniel W. Armstrong Missouri University of Science and Technology Follow this and additional works at: https://scholarsmine.mst.edu/chem_facwork Part of the Chemistry Commons Recommended Citation D. W. Armstrong, "Macrocyclic Antibiotics as Separation Agents," U.S. Patents, Mar 2006. This Patent is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Chemistry Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. USOO70O8533B2 (12) United States Patent (10) Patent No.: US 7,008,533 B2 Armstrong (45) Date of Patent: Mar. 7, 2006 (54) MACROCYCLIC ANTIBIOTICSAS (52) U.S. Cl. ............................... 210/1982; 21.0/502.1; SEPARATION AGENTS 210/635; 210/656 (58) Field of Classification Search ................ 210/635, (75) Inventor: Daniel Armstrong, Rolla, MO (US) 210/656, 198.2, 502.1; 502/.401, 403, 404; 435/174, 176, 178,180 (73) Assignee: Curators of the University of See application file for complete Search history. Missouri, Columbia, MO (US) (*) Notice: Subject to any disclaimer,- 0 the term of this (56) References Cited patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U.S.C.
    [Show full text]
  • Glucagon-Like Peptide 1 Stimulates Lipolysis in Clonal Pancreatic Я-Cells
    Glucagon-Like Peptide 1 Stimulates Lipolysis in Clonal Pancreatic ␤-Cells (HIT) Gordon C. Yaney, Vildan N. Civelek, Ann-Marie Richard, Joseph S. Dillon, Jude T. Deeney, James A. Hamilton, Helen M. Korchak, Keith Tornheim, Barbara E. Corkey, and Aubrey E. Boyd, III Glucagon-like peptide 1 (GLP-1) is the most potent incretin rather than a secretagogue (5). Activation of PKA physiological incretin for insulin secretion from the leads to phosphorylation of multiple ␤-cell proteins, many of pancreatic ␤-cell, but its mechanism of action has not which have been hypothesized to play a role in insulin secre- been established. It interacts with specific cell-surface tion (6–8). The nature of the endogenous substrates for PKA receptors, generates cAMP, and thereby activates pro- that may potentiate insulin secretion is unknown. Because the ␤ tein kinase A (PKA). Many changes in pancreatic -cell islet contains large stores of triglycerides (9), particularly in function have been attributed to PKA activation, but the diabetes (10), another possible role of the normal rise in contribution of each one to the secretory response is unknown. We show here for the first time that GLP-1 cAMP could be to stimulate lipolysis (via lipase activation), rapidly released free fatty acids (FFAs) from cellular thereby providing the cell with free fatty acids (FFAs). Recent research on hormone-sensitive lipase (HSL) in ␤-cells stores, thereby lowering intracellular pH (pHi) and stimulating FFA oxidation in clonal ␤-cells (HIT). Sim- yielded results consistent with that notion (11). The released ilar changes were observed with forskolin, suggesting FFAs may directly effect secretion, or they may do so indi- that stimulation of lipolysis was a function of PKA rectly via generation of other lipids, including the putative activation in ␤-cells.
    [Show full text]
  • Vidarabine Phosphate (BANM, USAN, Rinnm) Stability
    912 Antivirals Pharmacopoeias. In US. ◊ Reviews. Pharmacopoeias. In US. USP 31 (Valganciclovir Hydrochloride). A white to off-white 1. Freeman RB. Valganciclovir: oral prevention and treatment of USP 31 (Vidarabine). A white to off-white powder. Very slightly powder. Freely soluble in alcohol; practically insoluble in ace- cytomegalovirus in the immunocompromised host. Expert Opin soluble in water; slightly soluble in dimethylformamide. Store in tone or in ethyl acetate; slightly soluble in hexane; very soluble Pharmacother 2004; 5: 2007–16. airtight containers. in isopropyl alcohol. Store in airtight containers at a temperature 2. Cvetković RS, Wellington K. Valganciclovir: a review of its use in the management of CMV infection and disease in immuno- of 25°, excursions permitted between 15° and 30°. compromised patients. Drugs 2005; 65: 859–78. Vidarabine Phosphate (BANM, USAN, rINNM) Stability. References. Administration in renal impairment. Doses of oral valgan- Ara-AMP; Arabinosyladenine Monophosphate; CI-808; Fosfato 1. Anaizi NH, et al. Stability of valganciclovir in an extemporane- ciclovir should be reduced in renal impairment according to cre- de vidarabina; Vidarabine 5′-Monophosphate; Vidarabine, Phos- ously compounded oral liquid. Am J Health-Syst Pharm 2002; atinine clearance (CC). Licensed product information recom- phate de; Vidarabini Phosphas. 9-β-D-Arabinofuranosyladenine 59: 1267–70. mends the following doses: 5′-(dihydrogen phosphate). 2. Henkin CC, et al. Stability of valganciclovir in extemporaneous- • CC 40 to 59 mL/minute: 450 mg twice daily for induction and Видарабина Фосфат ly compounded liquid formulations. Am J Health-Syst Pharm 2003; 60: 687–90. 450 mg daily for maintenance or prevention C10H14N5O7P = 347.2.
    [Show full text]
  • Apolipoprotein O Is Mitochondrial and Promotes Lipotoxicity in Heart
    Apolipoprotein O is mitochondrial and promotes lipotoxicity in heart Annie Turkieh, … , Philippe Rouet, Fatima Smih J Clin Invest. 2014;124(5):2277-2286. https://doi.org/10.1172/JCI74668. Research Article Cardiology Diabetic cardiomyopathy is a secondary complication of diabetes with an unclear etiology. Based on a functional genomic evaluation of obesity-associated cardiac gene expression, we previously identified and cloned the gene encoding apolipoprotein O (APOO), which is overexpressed in hearts from diabetic patients. Here, we generated APOO-Tg mice, transgenic mouse lines that expresses physiological levels of human APOO in heart tissue. APOO-Tg mice fed a high-fat diet exhibited depressed ventricular function with reduced fractional shortening and ejection fraction, and myocardial sections from APOO-Tg mice revealed mitochondrial degenerative changes. In vivo fluorescent labeling and subcellular fractionation revealed that APOO localizes with mitochondria. Furthermore, APOO enhanced mitochondrial uncoupling and respiration, both of which were reduced by deletion of the N-terminus and by targeted knockdown of APOO. Consequently, fatty acid metabolism and ROS production were enhanced, leading to increased AMPK phosphorylation and Ppara and Pgc1a expression. Finally, we demonstrated that the APOO-induced cascade of events generates a mitochondrial metabolic sink whereby accumulation of lipotoxic byproducts leads to lipoapoptosis, loss of cardiac cells, and cardiomyopathy, mimicking the diabetic heart–associated metabolic phenotypes.
    [Show full text]
  • Ep 2079311 B1
    (19) TZZ Z¥___T (11) EP 2 079 311 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 47/00 (2006.01) 08.03.2017 Bulletin 2017/10 (86) International application number: (21) Application number: 07844213.4 PCT/US2007/081195 (22) Date of filing: 12.10.2007 (87) International publication number: WO 2008/051733 (02.05.2008 Gazette 2008/18) (54) BIGUANIDE COMPOSITION WITH LOW TERMINAL AMINE BIGUANID-ZUSAMMENSETZUNG MIT GERINGEM ENDGRUPPEN-AMIN-ANTEIL COMPOSITION DE BIGUANIDE AVEC AMINE TERMINALE BASSE (84) Designated Contracting States: (72) Inventor: HEILER, David Joseph AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Avon, NY 14414 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Riegler, Norbert Hermann et al Lonza Ltd. (30) Priority: 23.10.2006 US 853579 P Patent Department 20.03.2007 US 895770 P Münchensteinerstrasse 38 4052 Basel (CH) (43) Date of publication of application: 22.07.2009 Bulletin 2009/30 (56) References cited: WO-A-00/35861 WO-A-98/20738 (73) Proprietor: Arch Chemicals, Inc. US-A- 4 954 636 US-A- 5 965 088 Norwalk, CT 06856-5204 (US) US-A1- 2003 032 768 US-B1- 6 423 748 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • A Role for the Malonyl-Coa/Long-Chain Acyl-Coa
    A Role for the Malonyl-CoA/Long-Chain Acyl-CoA Pathway of Lipid Signaling in the Regulation of Insulin Secretion in Response to Both Fuel and Nonfuel Stimuli Raphae¨l Roduit,1 Christopher Nolan,1 Cristina Alarcon,2 Patrick Moore,2 Annie Barbeau,1 Viviane Delghingaro-Augusto,1 Ewa Przybykowski,1 Johane Morin,1 Fre´de´ric Masse´,1 Bernard Massie,3 Neil Ruderman,4 Christopher Rhodes,2,5 Vincent Poitout,2,6 and Marc Prentki1 The malonyl-CoA/long-chain acyl-CoA (LC-CoA) model between the metabolic coupling factor malonyl-CoA, the of glucose-induced insulin secretion (GIIS) predicts partitioning of fatty acids, and the stimulation of insulin that malonyl-CoA derived from glucose metabolism in- secretion to both fuel and nonfuel stimuli. Diabetes 53: hibits fatty acid oxidation, thereby increasing the avail- 1007–1019, 2004 ability of LC-CoA for lipid signaling to cellular processes involved in exocytosis. For directly testing the model, INSr3 cell clones overexpressing malonyl- CoA decarboxylase in the cytosol (MCDc) in a tetracy- lthough glucose is the most potent nutrient cline regulatable manner were generated, and INS(832/ secretagogue for the islet ␤-cell, its effective- 13) and rat islets were infected with MCDc-expressing ness as such can be markedly modulated by adenoviruses. MCD activity was increased more than other fuel stimuli, hormones, and neurotrans- fivefold, and the malonyl-CoA content was markedly A mitters (1–3). Of the nutrient modulators, fatty acids are diminished. This was associated with enhanced fat oxi- particularly important as, at one extreme, islet fatty acid dation at high glucose, a suppression of the glucose- induced increase in cellular free fatty acid (FFA) deprivation essentially abolishes glucose-induced insulin content, and reduced partitioning at elevated glucose of secretion (GIIS) (4–7), whereas at the other extreme, exogenous palmitate into lipid esterification products.
    [Show full text]