Statement on Senator Bob Kerrey's Decision Not to Seek Reelection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Statement on the Death of Representative Julian C. Dixon The
Administration of William J. Clinton, 2000 / Dec. 9 So I’m going to try to be a good citizen, good years, but if we build on it instead of and I’m going to try to help work on the things reverse it, it’s just going to get better. that I worked on as President as a private citizen But keep in mind, I will say again: It’s more but to do it in a way that doesn’t get under important that the people be pushing toward foot of the next President. And I have loved tomorrow than who has a particular office. As doing this. But the most important thing is that long as we’re open to the proposition we have people like you stay active in our party and to keep working; and we have to keep working keep pushing us to be thinking about tomorrow. together; everybody counts; everybody deserves Just keep pushing us toward the future, keep a chance; we all do better when we work to- moving, and keep reaching out like a magnet. gether. That’s what the Democrats believe, and And again, I would like to thank Ben. I would if we keep doing it, we’re going to be just fine. like to thank Bob Kerrey for the 8 years that Thank you, and God bless you. we have worked together, President and Sen- ator, and the many years of friendship before that. I want to thank Peter Hoagland, who came down from Washington with us today, for the NOTE: The President spoke at 3:38 p.m. -
And Should Not, Change Toxic Tort Causation Doctrine
THE MORE WE KNOW, THE LESS INTELLIGENT WE ARE? - HOW GENOMIC INFORMATION SHOULD, AND SHOULD NOT, CHANGE TOXIC TORT CAUSATION DOCTRINE Steve C. Gold* Advances in genomic science are rapidly increasing our understanding of dis- ease and toxicity at the most fundamental biological level. Some say this heralds a new era of certainty in linking toxic substances to human illness in the courtroom. Others are skeptical. In this Article I argue that the new sciences of molecular epidemiology and toxicogenomics will evince both remarkable explanatory power and intractable complexity. Therefore, even when these sciences are brought to bear, toxic tort claims will continue to present their familiar jurisprudential problems. Nevertheless, as genomic information is used in toxic tort cases, the sci- entific developments will offer courts an opportunity to correct mistakes of the past. Courts will miss those opportunities, however, if they simply transfer attitudesfrom classical epidemiology and toxicology to molecular and genomic knowledge. Using the possible link between trichloroethyleneand a type of kidney cancer as an exam- ple, I describe several causation issues where courts can, if they choose, improve doctrine by properly understanding and utilizing genomic information. L Introduction ............................................... 370 II. Causation in Toxic Torts Before Genomics ................... 371 A. The Problem .......................................... 371 B. Classical Sources of Causation Evidence ................ 372 C. The Courts Embrace Epidemiology - Perhaps Too Tightly ................................................ 374 D. Evidence Meets Substance: Keepers of the Gate ......... 379 E. The Opposing Tendency ................................ 382 III. Genomics, Toxicogenomics, and Molecular Epidemiology: The M ore We Know ........................................ 383 A. Genetic Variability and "Background" Risk .............. 384 B. Genetic Variability and Exposure Risk ................... 389 C. -
("DSCC") Files This Complaint Seeking an Immediate Investigation by the 7
COMPLAINT BEFORE THE FEDERAL ELECTION CBHMISSIOAl INTRODUCTXON - 1 The Democratic Senatorial Campaign Committee ("DSCC") 7-_. J _j. c files this complaint seeking an immediate investigation by the 7 c; a > Federal Election Commission into the illegal spending A* practices of the National Republican Senatorial Campaign Committee (WRSCIt). As the public record shows, and an investigation will confirm, the NRSC and a series of ostensibly nonprofit, nonpartisan groups have undertaken a significant and sustained effort to funnel "soft money101 into federal elections in violation of the Federal Election Campaign Act of 1971, as amended or "the Act"), 2 U.S.C. 5s 431 et seq., and the Federal Election Commission (peFECt)Regulations, 11 C.F.R. 85 100.1 & sea. 'The term "aoft money" as ueed in this Complaint means funds,that would not be lawful for use in connection with any federal election (e.g., corporate or labor organization treasury funds, contributions in excess of the relevant contribution limit for federal elections). THE FACTS IN TBIS CABE On November 24, 1992, the state of Georgia held a unique runoff election for the office of United States Senator. Georgia law provided for a runoff if no candidate in the regularly scheduled November 3 general election received in excess of 50 percent of the vote. The 1992 runoff in Georg a was a hotly contested race between the Democratic incumbent Wyche Fowler, and his Republican opponent, Paul Coverdell. The Republicans presented this election as a %ust-win81 election. Exhibit 1. The Republicans were so intent on victory that Senator Dole announced he was willing to give up his seat on the Senate Agriculture Committee for Coverdell, if necessary. -
Dean, School of Science
Dean, School of Science School of Science faculty members seek to answer fundamental questions about nature ranging in scope from the microscopic—where a neuroscientist might isolate the electrical activity of a single neuron—to the telescopic—where an astrophysicist might scan hundreds of thousands of stars to find Earth-like planets in their orbits. Their research will bring us a better understanding of the nature of our universe, and will help us address major challenges to improving and sustaining our quality of life, such as developing viable resources of renewable energy or unravelling the complex mechanics of Alzheimer’s and other diseases of the aging brain. These profound and important questions often require collaborations across departments or schools. At the School of Science, such boundaries do not prevent people from working together; our faculty cross such boundaries as easily as they walk across the invisible boundary between one building and another in our campus’s interconnected buildings. Collaborations across School and department lines are facilitated by affiliations with MIT’s numerous laboratories, centers, and institutes, such as the Institute for Data, Systems, and Society, as well as through participation in interdisciplinary initiatives, such as the Aging Brain Initiative or the Transiting Exoplanet Survey Satellite. Our faculty’s commitment to teaching and mentorship, like their research, is not constrained by lines between schools or departments. School of Science faculty teach General Institute Requirement subjects in biology, chemistry, mathematics, and physics that provide the conceptual foundation of every undergraduate student’s education at MIT. The School faculty solidify cross-disciplinary connections through participation in graduate programs established in collaboration with School of Engineering, such as the programs in biophysics, microbiology, or molecular and cellular neuroscience. -
HISTORY 319—THE VIETNAM WARS Fall 2017 Mr
University of Wisconsin–Madison Department of History HISTORY 319—THE VIETNAM WARS Fall 2017 Mr. McCoy I. COURSE PROCEDURES: Class Meetings: Lectures are given in 1111 Humanities by Mr. McCoy on Tuesdays and Thursdays, from 4:00 to 5:15 p.m. In addition, students will attend a one-hour discussion section each week conducted by the Teaching Assistant (TA) for this course. N.B. Laptops may used only for taking notes and may not be used to access the Internet. Office Hours: —For Marlana Margaria, Humanities Room 4274, on Tuesdays from 1:45 to 3:45 p.m. and other hours by appointment (TEL: 265-9480). Messages may be left in Humanities Mailbox No. 4041, or sent via e-mail to: <[email protected]> —For Alfred McCoy, Humanities Room 5131, Thursdays 12:00 to 2:00 p.m. and other hours by appointment (TEL: 263-1855). Messages may be left in Humanities Mailbox No. 5026, or sent via e-mail to: <[email protected]> Grading: Students shall complete three pieces of written work. On October 19, students shall take a midterm examination. On November 21, students shall submit a 5,000-word research essay with full footnotes and bibliographic references. During examination week on December 16, students shall take a two-hour final examination. Final grades shall be computed as follows: —midterm take-home exam: 20% —research essay: 30% —discussion section mark: 30% —final examination: 20% —extra credit/film viewing: 3% Course Requirements: For each of these assignments, there are different requirements for both the amount and form of work to be done: a.) Midterm take-home examination: Select two questions from a list distributed in the lecture on Thursday, October 19, and turn in two short essays totaling five typed pages, with full endnote citations, at the start of class on Tuesday, October 24. -
Precision Medicine Initiative: Building a Large US Research Cohort
Precision Medicine Initiative: Building a Large U.S. Research Cohort February 11-12, 2015 PARTICIPANT LIST Goncalo Abecasis, D. Phil. Philip Bourne, Ph.D. Professor of Biostatistics Associate Director for Data Science University of Michigan, Ann Arbor Office of the Director National Institutes of Health Christopher Austin, M.D. Director Murray Brilliant, Ph.D. National Center for Advancing Translational Sciences Director National Institutes of Health Center for Human Genetics Marshfield Clinic Research Foundation Vikram Bajaj, Ph.D. Chief Scientist Greg Burke, M.D., M.Sc. Google Life Sciences Professor and Director Wake Forest School of Medicine Dixie Baker, Ph.D. Wake Forest University Senior Partner Martin, Blanck and Associates Antonia Calafat, Ph.D. Chief Dana Boyd Barr, Ph.D. Organic Analytical Toxicology Branch Professor, Exposure Science and Environmental Health Centers for Disease Control and Prevention Rollins School of Public Health Emory University Robert Califf, M.D. Vice Chancellor for Clinical and Translational Research Jonathan Bingham, M.B.A. Duke University Medical Center Product Manager, Genomics Google, Inc. Rex Chisholm, Ph.D. Adam and Richard T. Lind Professor of Medical Eric Boerwinkle, Ph.D. Genetics Professor and Chair Vice Dean for Scientific Affairs and Graduate Studies Human Genetics Center Associate Vice President for Research University of Texas Health Science Center Northwestern University Associate Director Human Genome Sequencing Center Rick Cnossen, M.S. Baylor College of Medicine Director Global Healthcare Solutions Erwin Bottinger, M.D. HIMSS Board of Directors Professor PCHA/Continua Health Alliance Board of Directors The Charles Bronfman Institute for Personalized Intel Corporation Medicine Icahn School of Medicine at Mount Sinai - 1 - Francis Collins, M.D., Ph.D. -
Statement on Senator Bob Kerrey's Decision Not to Seek Reelection
Jan. 20 / Administration of William J. Clinton, 2000 Statement on Senator Bob Kerrey’s Decision Not To Seek Reelection January 20, 2000 I have said before of Senator Bob Kerrey the forefront of the fight for educational excel- that he is always willing to be on the cutting lence, entitlement and tax reform, a stronger edge of change. But the change he announces military, and a modern intelligence capability. today is a bittersweet one for his family, his His leadership of the Democratic Senatorial colleagues in the United States Senate, and his Campaign Committee and recruitment of new constituents in Nebraska. blood and funds helped shape a party that is Our Government and Nation are better be- firmly focused on the future and prepared to cause of Bob Kerrey’s public service. I first got do well in this year’s elections. to know him when we served as Governors in As Senator, Governor, Medal of Honor recipi- the 1980’s, when we shared a passion for edu- ent, Bob Kerrey served our Nation above and cation reform, farm problems, and deficit reduc- beyond the call of duty. ‘‘If I added to their tion. pride of America, I am happy,’’ said Carl Sand- In the Senate, Bob Kerrey provided pivotal burg. By that measure, Senator Kerrey should leadership to turn our economy around by get- be happy, indeed. Hillary and I wish him well ting rid of the deficit. His creativity, political as he embarks on a new chapter in his remark- courage, and farsightedness have kept him at able life. -
Count Down: Six Kids Vie for Glory at the World's Toughest Math
Count Down Six Kids Vie for Glory | at the World's TOUGHEST MATH COMPETITION STEVE OLSON author of MAPPING HUMAN HISTORY, National Book Award finalist $Z4- 00 ACH SUMMER SIX MATH WHIZZES selected from nearly a half million EAmerican teens compete against the world's best problem solvers at the Interna• tional Mathematical Olympiad. Steve Olson, whose Mapping Human History was a Na• tional Book Award finalist, follows the members of a U.S. team from their intense tryouts to the Olympiad's nail-biting final rounds to discover not only what drives these extraordinary kids but what makes them both unique and typical. In the process he provides fascinating insights into the creative process, human intelligence and learning, and the nature of genius. Brilliant, but defying all the math-nerd stereotypes, these athletes of the mind want to excel at whatever piques their cu• riosity, and they are curious about almost everything — music, games, politics, sports, literature. One team member is ardent about water polo and creative writing. An• other plays four musical instruments. For fun and entertainment during breaks, the Olympians invent games of mind-boggling difficulty. Though driven by the glory of winning this ultimate math contest, in many ways these kids are not so different from other teenagers, finding pure joy in indulging their personal passions. Beyond the Olympiad, Steve Olson sheds light on such questions as why Americans feel so queasy about math, why so few girls compete in the subject, and whether or not talent is innate. Inside the cavernous gym where the competition takes place, Count Down reveals a fascinating subculture and its engaging, driven inhabitants. -
Interview with Melvin I. Simon
MELVIN I. SIMON (b. 1937) INTERVIEWED BY SHIRLEY K. COHEN May 24 and June 5, 2005 Melvin I. Simon ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Biology Abstract Interview in two sessions, May 24 and June 5, 2005, with Melvin I. Simon, Anne P. and Benjamin F. Biaggini Professor of Biological Sciences, emeritus, in the Division of Biology. Dr. Simon received his BS from City College of New York in 1959 and his PhD in biochemistry from Brandeis in 1963. After receiving his degree, he was a postdoctoral fellow with Arthur Pardee at Princeton for a year and a half and then joined the faculty of the University of California at San Diego. In 1978, Dr. Simon and his UCSD colleague John Abelson established the Agouron Institute in San Diego, focusing on problems in molecular biology. He (along with Abelson) joined the faculty of Caltech as a full professor in 1982, and he served as chair of the Biology Division from 1995 to 2000. http://resolver.caltech.edu/CaltechOH:OH_Simon_M In this interview, he discusses his education in Manhattan’s Yeshiva High School (where science courses were taught by teachers from the Bronx High School of Science), at CCNY, and as a Brandeis graduate student working working with Helen Van Vunakis on bacteriophage. Recalls his unsatisfactory postdoc experience at Princeton and his delight at arriving at UC San Diego, where molecular biology was just getting started. Discusses his work on bacterial organelles; recalls his and Abelson’s vain efforts to get UCSD to back a full-scale initiative in molecular biology and their subsequent founding of their own institute. -
Boston, Cambridge Are Ground Zero for Life Sciences
OPINION | JUAN ENRIQUEZ Boston, Cambridge are ground zero for life sciences BOYDEN PHOTO BY DOMINICK REUTER; LINDQUIST BY JOHN SOARES/WHITEHEAD INSTITUTE; GLOBE STAFF PHOTOS Top row: Robert Langer, Jack Szostak, and George Church. Bottom: Susan Lindquist and Edward S. Boyden. MARCH 16, 2015 BOSTONCAMBRIDGE is ground zero for the development and deployment of many of the bleeding edge life science discoveries and technologies. One corner alone, Vassar and Main Street in Cambridge, will likely generate 1 to 2 percent of the future world GDP. On a per capitSah baraesis, nowhere else coTmweese tclose in terms o3f Creomsemaerncths grants, patents, and publications that drive new gene code, which in turn alters the evolution of bacteria, plants, animals, and ourselves. CONTINUE READING BELOW ▼ At MIT, Bob Langer is generating the equivalent of a small country’s economy out of a single lab; his more than 1,080 patents have helped launch or enabled more than 300 pharma, chemical, biotech, and medical device companies. At Harvard, George Whitesides’ 12 companies have generated a market capitalization of over $20 billion. Harvard Med’s resident geniusenfant terrible, George Church, is the brains behind dozens and dozens of successful startups. (All this of course in addition to these folks being at the very top of their academic fields). In terms of the most basic questions about life itself, Ting Wu takes billions of lines of gene code across all organisms and meticulously compares each and every gene, looking for highly conserved gene code. She is narrowing in on exactly what DNA sequences are essential to all life forms, from bacteria through plants, animals, and even politicians. -
Sustaining Environmental Capital: Protecting Society and the Economy
REPORT TO THE PRESIDENT SUSTAINING ENVIRONMENTAL CAPITAL: PROTECTING SOCIETY AND THE ECONOMY Executive Office of the President President’s Council of Advisors on Science and Technology JULY 2011 REPORT TO THE PRESIDENT SUSTAINING ENVIRONMENTAL CAPITAL: PROTECTING SOCIETY AND THE ECONOMY Executive Office of the President President’s Council of Advisors on Science and Technology JULY 2011 About the President’s Council of Advisors on Science and Technology The President’s Council of Advisors on Science and Technology (PCAST) is an advisory group of the nation’s leading scientists and engineers, appointed by the President to augment the science and tech nology advice available to him from inside the White House and from cabinet departments and other Federal agencies. PCAST is consulted about and often makes policy recommendations concerning the full range of issues where understandings from the domains of science, technology, and innovation may bear on the policy choices before the President. PCAST is administered by the White House Office of Science and Technology Policy (OSTP). For more information about PCAST, see www.whitehouse.gov/ostp/pcast. The President’s Council of Advisors on Science and Technology Co-Chairs John P. Holdren Eric Lander Assistant to the President for President Science and Technology Broad Institute of Harvard and MIT Director, Office of Science and Technology Policy Vice-Chairs William Press Maxine Savitz Raymer Professor in Computer Science and Vice President Integrative Biology National Academy of Engineering University of Texas at Austin Members Rosina Bierbaum Shirley Ann Jackson Dean, School of Natural Resources and President Environment Rensselaer Polytechnic Institute University of Michigan Richard C. -
Short Cross-Disciplinary Cycles in Co-Authorship Graphs
How small is the center of science? Short cross-disciplinary cycles in co-authorship graphs Chris Fields 528 Zinnia Court Sonoma, CA 95476 USA fi[email protected] October 17, 2014 Abstract Cycles that cross two or more boundaries between disciplines in the co-authorship graph for all of science are used to set upper limits on the number of co-authored pa- pers required to cross 15 disciplines or subdisciplines ranging from macroeconomics to neurology. The upper limits obtained range from one (discrete mathematics, macroe- conomics and nuclear physics) to six (neuroscience). The 15 disciplines or subdis- ciplines examined form a “small world” with an average separation of only 2.0 co- authorship links. It is conjectured that the high-productivity, high average degree centers of all scientific disciplines form a small world, and therefore that the diameter of the co-authorship graph of all of science is only slightly larger than the average diameter of the co-authorship graphs of its subdisciplines. Keywords: Cross-displinary brokers; Field mobility; Graph centrality; Graph diameter; Nobel laureates; Preferential attachment; Small-world networks 1 Introduction Numerous studies have now confirmed the finding of Newman (2001, 2004) that the co- authorship graphs of many scientific disciplines can be characterized as “small worlds” comprising many dense clusters of researchers separated by relatively short (mean length 1 l ≤ 10) minimum paths (reviewed by Mali, Kronegger, Doreian and Ferligoj, 2012). Despite over two decades of efforts to make the world of science as a whole more interconnected by encouraging inter-, multi- or trans-disciplinary collaborations, however, the research enterprise remains organized into disciplines (Jacobs and Frickel, 2009).