High-Resolution Copy-Number Variation Map Reflects Human Olfactory Receptor Diversity and Evolution
High-Resolution Copy-Number Variation Map Reflects Human Olfactory Receptor Diversity and Evolution Yehudit Hasin1., Tsviya Olender1., Miriam Khen1, Claudia Gonzaga-Jauregui1,2, Philip M. Kim3, Alexander Eckehart Urban4, Michael Snyder3,4, Mark B. Gerstein3,5,6, Doron Lancet1, Jan O. Korbel3,7* 1 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 2 Centro de Ciencias Geno´micas, Universidad Nacional Auto´noma de Me´xico, Cuernavaca, Morelos, Me´xico, 3 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America, 4 Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America, 5 Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America, 6 Department of Computer Science, Yale University, New Haven, Connecticut, United States of America, 7 Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Abstract Olfactory receptors (ORs), which are involved in odorant recognition, form the largest mammalian protein superfamily. The genomic content of OR genes is considerably reduced in humans, as reflected by the relatively small repertoire size and the high fraction (,55%) of human pseudogenes. Since several recent low-resolution surveys suggested that OR genomic loci are frequently affected by copy-number variants (CNVs), we hypothesized that CNVs may play an important role in the evolution of the human olfactory repertoire. We used high-resolution oligonucleotide tiling microarrays to detect CNVs across 851 OR gene and pseudogene loci. Examining genomic DNA from 25 individuals with ancestry from three populations, we identified 93 OR gene loci and 151 pseudogene loci affected by CNVs, generating a mosaic of OR dosages across persons.
[Show full text]