Detection of the Oyashio and Kuroshio Fronts Under the Projected Climate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PICES Sci. Rep. No. 2, 1995
TABLE OF CONTENTS Page FOREWORD vii Part 1. GENERAL INTRODUCTION AND RECOMMENDATIONS 1.0 RECOMMENDATIONS FOR INTERNATIONAL COOPERATION IN THE OKHOTSK SEA AND KURIL REGION 3 1.1 Okhotsk Sea water mass modification 3 1.1.1Dense shelf water formation in the northwestern Okhotsk Sea 3 1.1.2Soya Current study 4 1.1.3East Sakhalin Current and anticyclonic Kuril Basin flow 4 1.1.4West Kamchatka Current 5 1.1.5Tides and sea level in the Okhotsk Sea 5 1.2 Influence of Okhotsk Sea waters on the subarctic Pacific and Oyashio 6 1.2.1Kuril Island strait transports (Bussol', Kruzenshtern and shallower straits) 6 1.2.2Kuril region currents: the East Kamchatka Current, the Oyashio and large eddies 7 1.2.3NPIW transport and formation rate in the Mixed Water Region 7 1.3 Sea ice analysis and forecasting 8 2.0 PHYSICAL OCEANOGRAPHIC OBSERVATIONS 9 2.1 Hydrographic observations (bottle and CTD) 9 2.2 Direct current observations in the Okhotsk and Kuril region 11 2.3 Sea level measurements 12 2.4 Sea ice observations 12 2.5 Satellite observations 12 Part 2. REVIEW OF OCEANOGRAPHY OF THE OKHOTSK SEA AND OYASHIO REGION 15 1.0 GEOGRAPHY AND PECULIARITIES OF THE OKHOTSK SEA 16 2.0 SEA ICE IN THE OKHOTSK SEA 17 2.1 Sea ice observations in the Okhotsk Sea 17 2.2 Ease of ice formation in the Okhotsk Sea 17 2.3 Seasonal and interannual variations of sea ice extent 19 2.3.1Gross features of the seasonal variation in the Okhotsk Sea 19 2.3.2Sea ice thickness 19 2.3.3Polynyas and open water 19 2.3.4Interannual variability 20 2.4 Sea ice off the coast of Hokkaido 21 -
Oceanographic Structure in the Bering Sea
Title OCEANOGRAPHIC STRUCTURE IN THE BERING SEA Author(s) OHTANI, Kiyotaka Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 21(1), 65-106 Issue Date 1973-10 Doc URL http://hdl.handle.net/2115/21855 Type bulletin (article) File Information 21(1)_P65-106.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP OCEANOGRAPHIC STRUCTURE IN THE BERING SEA Kiyotaka OHTANI Faculty of Fisherie8, Hokkaido Univer8ity, Hakodate, Japan Contents 1. Introduction ..•••••....•.•.•...•.•••••.....•.••.•.•.•..••......... 65 1. Preface ...................................................... 65 2. Subarctic region ............................................. 66 3. Sources of data . .. 67 4. Bottom configuration ............................................ 68 II. Waters Coming into the Bering Sea from the Pacific Ocean .............. 70 ill. Current Pattern in the Bering Sea . .. 73 IV. Waters in the Bering Sea Basin . .. 76 1. Vertical structure of the basin water ..... .. .. .. .. .. .. .. .. .. ... 76 2. Types of vertical distribution of salinity and temperature .. .. 81 3. Process of formation of various Types .............................. 82 V. Waters on the Continental Shelf ...................................... 85 1. Horizontal distribution of salinity and temperature ............... 85 2. Vertical section ............................................... 91 3. Classification to type of vertical structure ....................... 94 VI. Interaction between the Shelf Waters and the Basin Waters -
Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
- 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]]. -
Late Pleistocene and Holocene Paleoenvironments of the North Pacific Coast
Quaternary Science Reviews, Vol. 14, pp. 449-47 1, 1995. Pergamon Copyright 0 1995 Elsevier Science Ltd. Printed in Great Britain. All rights reserved. 0277-3791l95 $29.00 0277-3791(9S)ooo&X LATE PLEISTOCENE AND HOLOCENE PALEOENVIRONMENTS OF THE NORTH PACIFIC COAST DANIEL H. MANN* and THOMAS D. HAMILTON? *Alaska Quaternary Center; University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775, U.S.A. I-US. Geological Survey, 4200 University Drive, Anchorage, AK 99508, U.S.A. Abstract - Unlike the North Atlantic, the North Pacific Ocean probably remained free of sea ice during the last glacial maximum (LGM), 22,000 to 17,000 BP. Following a eustatic low in sea level of ca. -120 m at 19,000 BP, a marine transgression had flooded the Bering and Chukchi shelves by 10,000 BP. Post-glacial sea-level history varied widely in other parts of the North QSR Pacific coastline according to the magnitude and timing of local tectonism and glacio-isostatic rebound. Glaciers covered much of the continental shelf between the Alaska Peninsula and British Columbia during the LGM. Maximum glacier extent during the LGM was out of phase between southern Alaska and southern British Columbia with northern glaciers reaching their outer limits earlier, between 23,000 and 16,000 BP, compared to 15,00&14,000 BP in the south. Glacier retreat was also time-transgressive, with glaciers retreating from the continental shelf of southern Alaska before 16,000 BP but not until 14,000-13,000 BP in southwestern British Columbia. Major climat- ic transitions occurred in the North Pacific at 24,000-22,000, 15,000-13,000 and 11,OOO-9000 BP. -
Effect of Pleistocene Glaciation Upon Oceanographic Characteristics of the North Pacific Ocean and Bering Sea
Deep-Sea Research, Vol. 30, No. 8A, pp. 851 to 869, 1983. 0198-0149/83 $3.00 + 0.00 Printed in Great Britain. (c) 1983 Pergamon Press Ltd. Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea CONSTANCE SANCETTA* (Received 23 October 1982; in revisedform 28 January 1983; accepted 28 April 1983) Abstract--During intervals of Pleistocene glaciation, insolation of the high-latitude northern hemisphere was lower than today, particularly during summer. Growth of continental ice sheets resulted in a lowering of sea level by more than 100 m in the Bering Sea. As a result, the Bering Strait was closed and most of the Bering continental shelf exposed. A proposed model predicts that (1) sea-ice formation would occur along the (modern) outer continental shelf, (2)advection would transport the sea ice over the deep basin, and (3) brine would flow into the basin at some inter- mediate depth to enhance the halocline. The result would be a low-salinity surface layer with a cold, thick halocline and reduced vertical mixing. Diatom microfossils and lithologic changes in sediment cores from the North Pacific Ocean and Bering Sea support the model and suggest that the proposed oceanographic conditions extended into the North Pacific, where the cold low-salinity laycr was enhanced by meltwater from continentally derived icebergs. INTRODUCTION IN THE last decade, marine geologists have begun to make observations and interpretations bearing on the physical oceanography and climate of the earth in the past (e.g., CLIMAP, 1976; Coauss, 1979; KEIGWIN, BENDER and KENNETT, 1979). -
ATOC 5051: Introduction to Physical Oceanography HW #1: Given Sep 2; Due Sep 16, 2014 Answerkey
ATOC 5051: Introduction to Physical Oceanography HW #1: Given Sep 2; Due Sep 16, 2014 Answerkey Note: you may use any “reliable” resources (peer-reviewed journal articles, books, official websites such as NOAA website, etc.) – in addition to the class materials - to complete this homework. Please list the extra-references (if you have used any) at the end of your homework. 1. Ocean basin and climate (30pts) 1a) Draw a schematic diagram showing the common features of ocean basins; specify the percentage (in volume) that each part roughly occupies. (5pts) Although each ocean basin varies in its location and size, all oceans have common features. They have continental shelf (7.4% of the ocean volume), continental slope, continental rise (slope+rise 15.9%), and abyssal plain (76.7%) with ridges and trenches. See schematic diagram below. Schematic diagram showing the common features of ocean basins. 1b) In which ocean is the thermohaline circulation strong? (2pts) Discuss its basin geometry (including the area, zonal and meridional extent, mean depth) (3pts); Provide a reason for why you think this ocean favors the thermohaline circulation. (2pts) The Atlantic. The Atlantic Ocean has a total meridional extent: It extends from the Arctic to Antarctic. Its zonal largest extent, however, spans little more than 8300km from the Gulf of Mexico to the coast of northwest Africa. It has the largest number of adjacent seas. With all its adjacent seas, Atlantic Ocean covers 106 ×106 km2. Its mean depth is 3300m. 1 The full North-South extent of the Atlantic allows the ocean to extend farther north, where it is cold enough to produce heavier surface water than the subsurface water and thus cause convection and deep- water formation. -
Global Ocean Surface Velocities from Drifters: Mean, Variance, El Nino–Southern~ Oscillation Response, and Seasonal Cycle Rick Lumpkin1 and Gregory C
JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 2992–3006, doi:10.1002/jgrc.20210, 2013 Global ocean surface velocities from drifters: Mean, variance, El Nino–Southern~ Oscillation response, and seasonal cycle Rick Lumpkin1 and Gregory C. Johnson2 Received 24 September 2012; revised 18 April 2013; accepted 19 April 2013; published 14 June 2013. [1] Global near-surface currents are calculated from satellite-tracked drogued drifter velocities on a 0.5 Â 0.5 latitude-longitude grid using a new methodology. Data used at each grid point lie within a centered bin of set area with a shape defined by the variance ellipse of current fluctuations within that bin. The time-mean current, its annual harmonic, semiannual harmonic, correlation with the Southern Oscillation Index (SOI), spatial gradients, and residuals are estimated along with formal error bars for each component. The time-mean field resolves the major surface current systems of the world. The magnitude of the variance reveals enhanced eddy kinetic energy in the western boundary current systems, in equatorial regions, and along the Antarctic Circumpolar Current, as well as three large ‘‘eddy deserts,’’ two in the Pacific and one in the Atlantic. The SOI component is largest in the western and central tropical Pacific, but can also be seen in the Indian Ocean. Seasonal variations reveal details such as the gyre-scale shifts in the convergence centers of the subtropical gyres, and the seasonal evolution of tropical currents and eddies in the western tropical Pacific Ocean. The results of this study are available as a monthly climatology. Citation: Lumpkin, R., and G. -
Chapter 2. Ocean Observations
Chapter 2. Ocean observations 2.1 Observational methods Before we introduce the observational instruments and methods, we will first introduce some definitions related to observations. Accuracy: The difference between a result obtained and the true value. Precision: Ability to measure consistently within a given data set (variance in the measurement itself due to instrument noise). Generally the precision of oceanographic measurements is better than the accuracy. 2.1.1 Measurements of depth. Each oceanographic variable, such as temperature (T), salinity (S), density , and current , is a function of space and time, and therefore a function of depth. In order to determine to which depth an instrument has been lowered, we need to measure ``depth''. Meter wheel. The wire is passed over a meter wheel, which is simply a pulley of known circumference with a counter attached to the pulley to count the number of turns, thus giving the depth the instrument is lowered. This method is accurate when the sea is calm with negligible currents. In reality, ship is moving and currents are strong, the wire is not straight. The real depth is shorter than the distance the wire paid out. Measure pressure. Derive depth from hydrostatic relation: where g=9.8m/s2 is acceleration of gravity and is depth. (i) Protected and unprotected reversing thermometer developed especially for oceanographic use. They are mercury- in-glass thermometers which are attached to a water sampling bottle. The pressure was measured using the pair of reversing thermometers - one protected from seawater pressure by a vacuum and the other open to the seawater pressure. -
Numerical Study on the Oyashio Water Pathways in the Kuroshio±Oyashio Con¯Uence*
1174 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 34 Numerical Study on the Oyashio Water Pathways in the Kuroshio±Oyashio Con¯uence* HUMIO MITSUDERA,1,11 BUNMEI TAGUCHI,# YASUSHI YOSHIKAWA,@ HIROHIKO NAKAMURA,& TAKUJI WASEDA,1 AND TANGDONG QU** 1FRSGC, Yokohama, Japan, and IPRC, SOEST, University of Hawaii, Honolulu, Hawaii #Department of Meteorology, SOEST, University of Hawaii, Honolulu, Hawaii @Japan Marine Science and Technology Center, Yokosuka, Japan &Fisheries Department, Kagoshima University, Kagoshima, Japan **IPRC, SOEST, University of Hawaii, Honolulu, Hawaii 11ILTS, Hokkaido University, Sapporo, Japan (Manuscript received 21 October 2002, in ®nal form 3 September 2003) ABSTRACT In this paper, results of a high-resolution regional model of the Kuroshio±Oyashio con¯uence, where the mixed water region (MWR) forms off the northeastern coast of Japan, are discussed. The model simulates major characteristics of the Kuroshio and the Oyashio system well, such as the separation of the Kuroshio Extension from the Japanese coast and southward intrusion of the Oyashio. Further, potential temperature and salinity structures in the intermediate layer su 5 27.0 resemble those obtained from historical data. Upon the success of this simulation, the authors focus on the diagnosis of the Oyashio water pathways intruding into the subtropics. It is found that the pathways of the Oyashio water form in the vicinity of the Japanese coast, where warm core rings and the Oyashio intrusion are active. These pathways are shown to be primarily eddy driven. Of particular interest is the water that originates in the Sea of Okhotsk, characterized by low potential vorticity (PV). Impacts of the Okhotsk water are identi®ed by conducting an experiment in which the exchange of waters between the Paci®c Ocean and the Sea of Okhotsk is blocked. -
Late Quaternary Changes in Intermediate Water Oxygenation And
PALEOCEANOGRAPHY, VOL. 22, PA3213, doi:10.1029/2005PA001234, 2007 Late Quaternary changes in intermediate water oxygenation and oxygen minimum zone, northern Japan: A benthic foraminiferal perspective Akihiko Shibahara,1 Ken’ichi Ohkushi,2 James P. Kennett,3 and Ken Ikehara4 Received 20 October 2005; revised 20 May 2007; accepted 8 June 2007; published 24 August 2007. [1] A strong oxygen minimum zone (OMZ) currently exists at upper intermediate water depths on the northern Japanese margin, NW Pacific. The OMZ results largely from a combination of high surface water productivity and poor ventilation of upper intermediate waters. We investigated late Quaternary history (last 34 kyr) of ocean floor oxygenation and the OMZ using quantitative changes in benthic foraminiferal assemblages in three sediment cores taken from the continental slope off Shimokita Peninsula and Tokachi, northern Japan, at water depths between 975 and 1363 m. These cores are well located within the present-day OMZ, a region of high surface water productivity, and in close proximity to the source region of North Pacific Intermediate Water. Late Quaternary benthic foraminiferal assemblages experienced major changes in response to changes in dissolved oxygen concentration in ocean floor sediments. Foraminiferal assemblages are interpreted to represent three main groups representing oxic, suboxic, and dysoxic conditions. Assemblage changes in all three cores and hence in bottom water oxygenation coincided with late Quaternary climatic episodes, similar to that known for the southern California margin. These episodes, in turn, are correlated with orbital and millennial climate episodes in the Greenland ice core including the last glacial episode, Bølling-A˚ llerød (B/A), Younger Dryas, Preboreal (earliest Holocene), early Holocene, and late Holocene. -
Alaska Exclusive Economic Zone: Ocean Exploration and Research Bibliography
Alaska Exclusive Economic Zone: Ocean Exploration and Research Bibliography Hope Shinn, Librarian, NOAA Central Library Jamie Roberts, Librarian, NOAA Central Library NCRL subject guide 2020-08 doi: 10.25923/k182-6s39 September 2020 U.S. Department of Commerce National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research NOAA Central Library – Silver Spring, Maryland Table of Contents Background ............................................................................................................................................... 3 Scope ......................................................................................................................................................... 3 Sources Reviewed ..................................................................................................................................... 7 Acknowledgements ................................................................................................................................... 7 Section I: Aleutian Islands ......................................................................................................................... 8 Section II: Aleutian Islands, Beaufort Sea, Bering Sea, Chukchi Sea, Gulf of Alaska ............................... 26 Section III: Aleutian Islands, Bering Sea, Gulf of Alaska .......................................................................... 27 Section IV: Aleutian Islands, Central Gulf of Alaska ............................................................................... -
Characteristics of Mesoscale Eddies in the Kuroshio–Oyashio Extension Region Detected from the Distribution of the Sea Surface Height Anomaly
1018 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 40 Characteristics of Mesoscale Eddies in the Kuroshio–Oyashio Extension Region Detected from the Distribution of the Sea Surface Height Anomaly SACHIHIKO ITOH AND ICHIRO YASUDA Ocean Research Institute, University of Tokyo, Tokyo, Japan (Manuscript received 2 April 2009, in final form 28 September 2009) ABSTRACT This study investigates the distribution of the sea surface height anomaly (SSHA) with the aim of quan- tifying the characteristics of mesoscale eddies in the Kuroshio–Oyashio extension region (KOER), where intense mesoscale eddies are commonly observed during hydrographic surveys. Dense distributions of both anticyclonic eddies (AEs) and cyclonic eddies (CEs) are detected for the first time in KOER with sufficient temporal and spatial coverage, using the Okubo–Weiss parameter without smoothing. Their contribution to the total SSHA variance is estimated to be about 50%. The zones of highest amplitudes are located north and south of the axis of the Kuroshio Extension (KE) for AEs and CEs, which represent warm-core and cold-core rings, respectively; the areas extend poleward along the Japan and Kuril–Kamchatka Trenches, especially for AEs. Eddies of both polarities and with moderate amplitudes are also recognized along the Subarctic Front (SAF). Eddies in areas north and south of the KE generally propagate westward, at a mean rate of 1–5 cm s21; those along the trenches south of 468N and along the SAF propagate poleward at mean rates of 1–2 and 0.5–1 cm s21, respectively. Because of the asymmetric distribution of the AEs and CEs in the areas north and south of the KE, and the asymmetric amplitude of them along the Japan and Kuril–Kamchatka Trenches, there exist significant eddy fluxes of vorticity, heat, and salinity in these areas.