Middle Ear Modeling – a Tutorial

Total Page:16

File Type:pdf, Size:1020Kb

Middle Ear Modeling – a Tutorial Middle Ear Modeling – A Tutorial [Hello, I am Fereshteh Kalantari. I am a Ph.D student in Electronic Engineering at K. N. Toosi University of Technology, Tehran, Iran. In this Tutorial, I want to explain Middle Ear Modeling, which is my project topic for the Neuro-Muscular System Control course. This course is instructed by Dr. Delrobaei. If you have any questions, please send me an Email ([email protected]). Now let's read and learn.] ave you ever imagined that you cannot hear your around sounds? Do you know how you hear sounds by your ears? H Have your ears ever damaged by loud sounds? Do you know how your ears are safe from annoying sounds? To understand this questions, we need to investigate different parts of an ear and their functions. The middle ear is one of them, which we explain about it in this tutorial. Where Is the Middle Ear? There are three main parts in an ear, they consist of the outer ear, the middle ear and the inner ear. As shown in Figure 1, the middle ear lies between the outer ear and inner ear. In hearing process, the middle ear is like an amplifying interface between the outer ear and the inner ear. Figure 1. The structure of an ear with three main parts. The outer ear, the middle ear and the inner ear. 1 What Does the Middle Ear Do? In Figure 2, we illustrated how we hear by an ear step by step and what the middle ear's main job is. According to Figure 2, after sound waves enter the outer ear, they travel through the ear canal and make their way to the middle ear. There is the eardrum, which is a thin piece of skin stretched tight like a drum. The eardrum separates the outer ear from the middle ear. The middle ear's main job is to take those sound waves and turn them into vibrations and amplify them. The vibrations then move to the inner ear (the cochlea). This is a fluid filled, snail shaped structure that is lined by tiny hair receptors. These hair receptors are attached to nerve endings and as the vibrations wash over the hair receptors, the nerves carry signals to the brain which interprets these stimuli as sound. How Sound waves enter our outer ear and Our eardrum vibrates with the incoming travel through the ear canal to your sound and sends the vibrations to three tiny we Hear eardrum. bones in our middle ear. Our auditory nerve carries this The bones in our middle ear amplify the sound vibrations electrical signal to the brain, and send them to our inner ear, or cochlea. The sound which translate it into a sound vibrations activate tiny hair cells in the inner ear, which in you can understand. turn release neurochemical messengers. Figure 2. The steps of hearing by an ear. The Structure of the Middle Ear The middle ear consists of an air-filled cavity called the tympanic cavity and includes the three ossicles and their attaching ligaments; the auditory tube; and the round and oval windows. The ossicles are three small bones that function together to receive, amplify, and transmit the sound from the eardrum to the inner ear. These bones also act as a protective mechanism to prevent very loud sounds from damaging the inner ear. In Figure 3, we shown the different parts of the middle ear and described about every part in the following. "The Middle Ear has the ossicles, which are three small bones that function together to receive, amplify, and transmit the sound from the eardrum to the inner ear." 2 Auditory ossicles Malleus Incus Stapes Stabilizing ligaments Oval window External acoustic meatus Round window Tympanic membrane Eustachian tube Tympanic cavity (Middle Ear) Figure 3. The structure of the middle ear. The Structure - The Auditory Ossicles The eardrum is very thin, measures approximately 8-10 mm in diameter and is stretched by means of small muscles. The pressure from sound waves makes the eardrum vibrate. The vibrations are transmitted further into the ear via ossicles that are three bones in the middle ear: the hammer (malleus), the anvil (incus) and the stirrup (stapes). The stapes is the smallest named bone in the body. These three bones form a kind of bridge, the malleus receives vibrations from sound pressure on the eardrum, where it is connected at its longest part (the manubrium or handle) by a ligament. It transmits vibrations to the incus, which in turn transmits the vibrations to the small stapes bone. The wide base of the stapes rests on the oval window. As the stapes vibrates, vibrations are transmitted through the oval window, causing movement of fluid within the cochlea. The Structure - The Oval Window The oval window is a membrane covering the entrance to the cochlea in the inner ear. When the eardrum vibrates, the sound waves travel via the hammer and anvil to the stirrup and then on to the oval window. When the sound waves are transmitted from the eardrum to the oval window, the middle ear is functioning as an acoustic transformer amplifying the sound waves before they move on into the inner ear. The pressure of the sound waves on the oval window is some 20 times higher than on the eardrum. 3 The pressure is increased due to the difference in size between the relatively large surface of the eardrum and the smaller surface of the oval window. The same principle applies when a person wearing a shoe with a sharp stiletto heel steps on your foot: The small surface of the heel causes much more pain than a flat shoe with a larger surface would. The Structure - The Round Window The round window in the middle ear vibrates in opposite phase to vibrations entering the inner ear through the oval window. In doing so, it allows fluid in the cochlea to move. The Structure - The Eustachian Tube The Eustachian tube is also found in the middle ear, and connects the ear with the rearmost part of the palate. The Eustachian tube’s function is to equalize the air pressure on both sides of the eardrum, ensuring that pressure does not build up in the ear. The tube opens when you swallow, thus equalizing the air pressure inside and outside the ear. In most cases the pressure is equalized automatically, but if this does not occur, it can be brought about by making an energetic swallowing action. The swallowing action will force the tube connecting the palate with the ear to open, thus equalizing the pressure. Built-up pressure in the ear may occur in situations where the pressure on the inside of the eardrum is different from that on the outside of the eardrum. If the pressure is not equalized, a pressure will build up on the eardrum, preventing it from vibrating properly. The limited vibration results in a slight reduction in hearing ability. A large difference in pressure will cause discomfort and even slight pain. Built-up pressure in the ear will often occur in situations where the pressure keeps changing, for example when flying or driving in mountainous areas. First Mechanical Model of the Middle Ear The human middle ear is a tiny mechanical structure consisting of the tympanic membrane, three ossicles (malleus, incus, and stapes), middle ear ligaments and muscle tendons, and the middle ear cavity. In the meantime, investigations on modeling the middle ear have been developed for a better understanding of the sound transmission mechanism in the human ear. In the Figure 4, you can see a lumped model of an ear, which is proposed by Feng and Gan (2004). This model has been drawn from external ear canal to cochlea. This lumped parametric model consisting of 6 messes connected by several pairs of spring and dashpot is proposed for mechanical analysis of the ear, including the external ear canal, tympanic membrane, middle ear ossicles, and cochlea. The air inside the external ear canal was represented by the mass M1, which coupled the mass M2, the tympanic membrane (TM), through the spring K2 and dashpot C2. Spring K1 and dashpot C1 represented the TM annulus. The three ossicular bones (malleus, incus, and stapes) were represented by masses M3, M4, and M5, respectively. The malleus-incus joint and the incus-stapes joint, which connect the three ossicles and form the ossicular chain, were represented as two pairs of springs and dashpots: K5, C5 and K6, C6, respectively. The malleus (M3) was attached to the TM (M2) through K3 and C3. The middle ear suspensory ligaments and intra aural muscles supported the ossicles. Two major ligaments suspending the malleus and incus were simulated as dashpots C4 and C7. M6 represented cochlear fluid supported by dashpots C9 and C10. The stapes coupled with the cochlear fluid through the stapedial annulus (K8 and C8). All unknown parameters are identified based on the governing equations of the system and the determined through optimization and parameter-perturbation process. This lumped model serves as the starting stage for understanding the relation between the middle ear components for sound transmission. 4 The middle Ear Tympanic Malleus membrane M2 M3 Incus Stapes M5 M4 Figure 4. Lumped parametric model of the human ear. As shown in Figure 4, you can see the model of the middle ear in red dash and its different parts are represented by using different colors. In a damped mass-spring system, the equation of motion can be represented as 푚푥̈̈ + 푐푥̇̇ + 푘푥 = 푓(푡) (1) 풙̈ : Acceleration 풙̇ : Velocity Mass Stiffness 풙 : Displacement Damping parameter f(t) : Externally applied force 푥 = 푋̂ 푒푗휔푡 (2) 푥̇ = 푗푤푋̂ 푒푗휔푡 (3) 푥̈ = −푤2푋̂ 푒푗휔푡 (4) Where m is the mass, c is the damping parameter, k is the stiffness, x is the displacement, is the acceleration, is the velocity of the system matrices, and f (t) denotes an externally applied force.
Recommended publications
  • ANATOMY of EAR Basic Ear Anatomy
    ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age.
    [Show full text]
  • Research Reports
    ARAŞTIRMALAR (ResearchUnur, Ülger, Reports) Ekinci MORPHOMETRICAL AND MORPHOLOGICAL VARIATIONS OF MIDDLE EAR OSSICLES IN THE NEWBORN* Yeni doğanlarda orta kulak kemikciklerinin morfometrik ve morfolojik varyasyonları Erdoğan UNUR 1, Harun ÜLGER 1, Nihat EKİNCİ 2 Abstract Özet Purpose: Aim of this study was to investigate the Amaç: Yeni doğanlarda orta kulak kemikciklerinin morphometric and morphologic variations of middle ear morfometrik ve morfolojik varyasyonlarını ortaya ossicles. koymak. Materials and Methods: Middle ear of 20 newborn Gereç ve yöntem: Her iki cinse ait 20 yeni doğan cadavers from both sexes were dissected bilaterally and kadavrasının orta kulak boşluğuna girilerek elde edilen the ossicles were obtained to investigate their orta kulak kemikcikleri üzerinde morfometrik ve morphometric and morphologic characteristics. morfolojik inceleme yapıldı. Results: The average of morphometric parameters Bulgular: Morfometrik sonuçlar; malleus’un toplam showed that the malleus was 7.69 mm in total length with uzunluğu 7.69 mm, manibrium mallei’nin uzunluğu 4.70 an angle of 137 o; the manibrium mallei was 4.70 mm, mm, caput mallei ve processus lateralis arasındaki and the total length of head and neck was 4.85 mm; the uzaklık 4.85 mm, manibrium mallei’nin ekseni ve caput incus had a total length of 6.47 mm, total width of 4.88 mallei arasındaki açı 137 o, incus’un toplam uzunluğu mm , and a maximal distance of 6.12 mm between the 6.47 mm, toplam genişliği 4.88 mm, crus longum ve tops of the processes, with an angle of 99.9 o; the stapes breve’nin uçları arasındaki uzaklık 6.12 mm, cruslar had a total height of 3.22 mm, with stapedial base being arasındaki açı 99.9 o, stapesin toplam uzunluğu 2.57 mm in length and 1.29 mm in width.
    [Show full text]
  • Topographical Anatomy and Morphometry of the Temporal Bone of the Macaque
    Folia Morphol. Vol. 68, No. 1, pp. 13–22 Copyright © 2009 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Topographical anatomy and morphometry of the temporal bone of the macaque J. Wysocki 1Clinic of Otolaryngology and Rehabilitation, II Medical Faculty, Warsaw Medical University, Poland, Kajetany, Nadarzyn, Poland 2Laboratory of Clinical Anatomy of the Head and Neck, Institute of Physiology and Pathology of Hearing, Poland, Kajetany, Nadarzyn, Poland [Received 7 July 2008; Accepted 10 October 2008] Based on the dissections of 24 bones of 12 macaques (Macaca mulatta), a systematic anatomical description was made and measurements of the cho- sen size parameters of the temporal bone as well as the skull were taken. Although there is a small mastoid process, the general arrangement of the macaque’s temporal bone structures is very close to that which is observed in humans. The main differences are a different model of pneumatisation and the presence of subarcuate fossa, which possesses considerable dimensions. The main air space in the middle ear is the mesotympanum, but there are also additional air cells: the epitympanic recess containing the head of malleus and body of incus, the mastoid cavity, and several air spaces on the floor of the tympanic cavity. The vicinity of the carotid canal is also very well pneuma- tised and the walls of the canal are very thin. The semicircular canals are relatively small, very regular in shape, and characterized by almost the same dimensions. The bony walls of the labyrinth are relatively thin.
    [Show full text]
  • Download PDF Intratemporal Course of the Facial Nerve
    Romanian Journal of Morphology and Embryology 2010, 51(2):243–248 ORIGINAL PAPER Intratemporal course of the facial nerve: morphological, topographic and morphometric features NICOLETA MĂRU1), A. C. CHEIŢĂ2), CARMEN AURELIA MOGOANTĂ3), B. PREJOIANU4) 1)Department of Anatomy, Faculty of Dental Medicine 2)PhD candidate, ENT specialist “Carol Davila” University of Medicine and Pharmacy, Bucharest 3)ENT resident, Emergency County Hospital, Craiova University of Medicine and Pharmacy of Craiova 4)Tehno Electro Medical Company, Bucharest Abstract The purpose of this study is to present some morphological and morphometric aspects of the facial nerve and especially of the tympanic and mastoid segments of this nerve. The authors follow up a mesoscopic study concerning the tract (length, angulation, width) of these segments and the anatomic relations with the important structures of the middle ear. At the same time, some anatomical variations which involve the canal of the facial nerve (dehiscences, tract deviation or other anatomical deviations) are presented. To evaluate the risk of the facial nerve injury during operations for chronic otitis media with or without cholesteatoma, stapedectomy in otosclerosis, exploratory tympanotomy, tympanoplasty, canaloplasty, osteomas surgery or other otologic surgery that involve facial nerve area. The intricate course of the facial nerve through the temporal bone is of vital concern to all otologic surgeons, since it often traverses the surgical field. Therefore, authors will review the course of the facial canal through the petrosal portion of the temporal bone from the internal auditory meatus to the stylomastoid foramen, paying particular attention to its relations to adjacent structures. Keywords: intratemporal part, facial nerve.
    [Show full text]
  • 1 Surgical Anatomy Alexander Rauchfuss
    Chapter 1 1 1 Surgical Anatomy Alexander Rauchfuss The temporal bone presents a very complex anatomy. Therefore this overview is restricted to some major points from the viewpoint of surgical anatomy. For more detailed information see “Suggested Reading”. Thetemporalboneaccordingtoitsdevelopmentalanatomyisdivisibleinto four parts: the squamous, mastoid, petrous, and tympanic portions. Points of topographical reference on the lateral surface are the external acoustic meatus with its suprameatal spine, the temporal line, and the mastoid process. Thebaseofthezygomaextendsasacrestposteriorlyandslightlyupward, forming the supramastoid crest or temporal line. The temporal line as a land- mark corresponds to the base of the medial cranial fossa/tegmen tympani, which in most cases of surgery can easily be identified. In combination with the radiological anatomy in a Schüller view it allows adequate planning of the surgical approach to the antrum via the mastoid. All figures show the anatomy of a left ear. 2 1 Surgical Anatomy Figs. 1.1–1.5. Temporal bone and sigmoid sinus Fig. 1.1. Temporal bone. The degree of pneumatization is inconstant. The extent and arrangement of air cells varies considerably from a minimal air cell system in the surroundings of the antrum to involvement of most of the tempo- ral bone. Pneumatization usually begins in late fetal life, progressing until the end of childhood. The pneumatization process starts from the antrum. In most cases one can describe the topography of the cells as follows: periantral, sino- dural, perisinual, perifacial and mastoid tip cells. According to the extension of the cells, there is only one rule: the further from the antrum, the bigger the cells Fig.
    [Show full text]
  • The Nervous System: General and Special Senses
    18 The Nervous System: General and Special Senses PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • Sensory information arrives at the CNS • Information is “picked up” by sensory receptors • Sensory receptors are the interface between the nervous system and the internal and external environment • General senses • Refers to temperature, pain, touch, pressure, vibration, and proprioception • Special senses • Refers to smell, taste, balance, hearing, and vision © 2012 Pearson Education, Inc. Receptors • Receptors and Receptive Fields • Free nerve endings are the simplest receptors • These respond to a variety of stimuli • Receptors of the retina (for example) are very specific and only respond to light • Receptive fields • Large receptive fields have receptors spread far apart, which makes it difficult to localize a stimulus • Small receptive fields have receptors close together, which makes it easy to localize a stimulus. © 2012 Pearson Education, Inc. Figure 18.1 Receptors and Receptive Fields Receptive Receptive field 1 field 2 Receptive fields © 2012 Pearson Education, Inc. Receptors • Interpretation of Sensory Information • Information is relayed from the receptor to a specific neuron in the CNS • The connection between a receptor and a neuron is called a labeled line • Each labeled line transmits its own specific sensation © 2012 Pearson Education, Inc. Interpretation of Sensory Information • Classification of Receptors • Tonic receptors
    [Show full text]
  • INVITED REVIEW Insights in the Physiology of the Human Mastoid
    Int. Adv. Otol. 2012; 8:(2) 296-310 INVITED REVIEW Insights in the Physiology of the Human Mastoid: Message to the Surgeon Bernard Ars, Joris Dirckx, Nicole Ars-Piret, Jan Buytaert ENT Department – University Hospital Antwerp and Temporal Bone Foundation, Brussels Avenue du Polo 68 B-1150 Brussel Belgium (BA, NCP) Laboratory of BioMedical Physics – University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgium (JD, JB) Abstract To reach the temporal bone, surgeons often consider making access through the mastoid. It is, however, imperative that the surgeon is aware of the mastoid’s morphology, physiology, its functional parameters and the implications of damaging or altering this structure. We review established findings on the developmental and functional morphology, and the delicate pressure balance variations in the middle ear cleft. Then, an overview is given of the possible surgical access methods for the temporal bone through the mastoid. We look for implications of each procedure, which can only be understood through the knowledge of the preceding outline, so that surgeons can justify a certain surgical approach. Introduction functional aspects of the middle ear cleft. The middle ear cleft includes the tympanic cavity and the mastoid Ear surgeons should be aware of the embryological, gas cell system, cf. Figure 1. anatomical and not to forget physiological aspects of the mastoid cavity when considering this structure as a surgical approach to the temporal bone. Different anatomical ways of access have been described that allow reaching the targeted structures (cf. section 5), trying to avoid fundamental constitutive elements susceptible to injury. In our opinion, an initial better understanding of the developmental and functional aspects of the mastoid gas cells system is essential for the surgeon to justify a certain surgical approach.
    [Show full text]
  • Anatomy of the Ear
    Anatomy of the Ear Neuroanatomy block-Anatomy-Lecture 10 Editing file Objectives At the end of the lecture, students should be able to: ● List the parts of the ear: External, Middle (tympanic cavity) and Internal (labyrinth). ● Describe the parts of the external ear: auricle and external auditory meatus. ● Identify the boundaries of the middle ear : roof, floor and four walls (anterior, posterior, medial and lateral). ● Define the contents of the tympanic cavity: I. Ear ossicles (malleus, incus, and stapes) II. Muscles (tensor tympani and stapedius III. Nerves (branches of facial and glossopharyngeal) ● List the parts of the inner ear,bony part filled with perilymph (cochlea, vestibule, and semicircular canals), in which is suspended the membranous part that is filled with Color guide endolymph ● Only in boys slides in Green ● List the organs of hearing and equilibrium ● Only in girls slides in Purple ● important in Red ● Notes in Grey The External Ear Formed By The External Auditory The Auricle Canal ● It has a characteristic shape ● is a curved S-shaped tube about and it collects air vibrations 2.5 cm, that conducts & collects ● It consists of a thin plate of sound waves from the auricle to elastic cartilage covered by a the tympanic membrane. Its double layer of skin outer 1/3rd is elastic cartilage, ● It receives the insertion of Tympanic while its inner 2/3rds are bony extrinsic muscles which are membrane ● Its lined by skin, and its outer supplied by the facial nerve. External 1/3rd is provided with hairs, Sensation is carried by acoustic meatus sebaceous and ceruminous greater auricular & glands (modified sweat glands auriculotemporal nerves that secrete a yellowish brownish substance called ear wax) * The auricle is also called pinna * The external auditory canal is also called the external auditory (acoustic) meatus 3 Middle Ear (Tympanic Cavity) ● The middle ear is a narrow, oblique slit-like cavity (air-filled) in the petrous temporal bone & lined with mucous membrane.
    [Show full text]
  • Ossicles (Malleus, Incus Stapes) Semicircular Canals Viiith Cranial Nerve Tympanic Membrane Pinna Outer Ear Middle Ear Inner
    Outer ear Middle ear Inner ear Ossicles (Malleus, Incus Semicircular Stapes) Canals Pinna VIIIth Cranial Nerve External Auditory Canal Tympanic Membrane Vestibule Eustachian Tube Cochlea The ear is the organ of hearing and balance. The parts of the ear include: External or outer ear, consisting of: o Pinna or auricle. This is the outside part of the ear. o External auditory canal or tube. This is the tube that connects the outer ear to the inside or middle ear. Tympanic membrane (eardrum). The tympanic membrane divides the external ear from the middle ear. Middle ear (tympanic cavity), consisting of: o Ossicles. Three small bones that are connected and transmit the sound waves to the inner ear. The bones are called: . Malleus . Incus . Stapes o Eustachian tube. A canal that links the middle ear with the back of the nose. The eustachian tube helps to equalize the pressure in the middle ear. Equalized pressure is needed for the proper transfer of sound waves. The eustachian tube is lined with mucous, just like the inside of the nose and throat. Inner ear, consisting of: o Cochlea. This contains the nerves for hearing. o Vestibule. This contains receptors for balance. o Semicircular canals. This contains receptors for balance. How do you hear? Hearing starts with the outer ear. When a sound is made outside the outer ear, the sound waves, or vibrations, travel down the external auditory canal and strike the eardrum (tympanic membrane). The eardrum vibrates. The vibrations are then passed to 3 tiny bones in the middle ear called the ossicles.
    [Show full text]
  • Analysis of Eardrum Pathologies Using the Finite Element Method
    ANALYSIS OF EARDRUM PATHOLOGIES USING THE FINITE ELEMENT METHOD ¶ || FERNANDA GENTIL*,†,§, CAROLINA GARBE*, , MARCO PARENTE*, , |||| PEDRO MARTINS*,**, ANTÓNIO FERREIRA*,††, , RENATO NATAL JORGE*,‡‡, ¶¶ CARLA SANTOS*,§§ and JOA~OPACO‡, *IDMEC, Faculdade de Engenharia da Universidade do Porto, Portugal †Cl{nica ORL-Dr. Eurico Almeida, Widex, ESTSP ‡Hospital CUF, Faculdade de Medicina da Universidade de Lisboa, Portugal §[email protected][email protected] ||[email protected] **[email protected] ††[email protected] ‡‡[email protected] §§[email protected] ¶¶[email protected] †† Corresponding author. |||| Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia. This work investigates the effect of eardrum perforations and myringosclerosis in the mech- anical behavior of the tympano-ossicular chain. A 3D model for the tympano-ossicular chain was created and different numerical simulations were made, using the finite element method. For the eardrum perforations, three different calibers of perforated eardrums were simulated. For the micro perforation (0.6 mm of diameter) no differences were observed between the perforated and normal eardrum. For the numerical simulation of the eardrum with the largest perforation caliber, small displacements were obtained in the stapes footplate, when compared with the model representative of normal ossicular-chain, at low frequencies, which is related with major hearing loss in this frequency range. For the numerical simulations of myringo- sclerosis, the larger differences in the displacement field between the normal and modified model were obtained in the umbo. When observing the results in the stapes footplate, there were no significant differences between the two models, which is in accordance to the clinical data.
    [Show full text]
  • Tympanic Membrane (Membrana Tympanica, Myrinx)
    Auditory and vestibular system Auris, is = Us, oton Auditory and vestibular system • external ear (auris externa) • middle ear (auris media) • internal ear (auris interna) = organum vestibulo- cochleare External ear (Auris externa) • auricle (auricula, pinna) – elastic cartilage • external acoustic meatus (meatus acusticus externus) • tympanic membrane (membrana tympanica, myrinx) • helix Auricle – crus, spina, cauda – (tuberculum auriculare Darwini, apex auriculae) • antihelix – crura, fossa triangularis • scapha • concha auriculae – cymba, cavitas • tragus • antitragus • incisura intertragica • lobulus auriculae posterior surface = negative image of the anterior one ligaments: lig. auriculare ant., sup., post. muscles – innervation: n. facialis • extrinsic muscles = facial muscles – mm. auriculares (ant., sup., post.) – m. temporoparietalis • intrinsic muscles: rudimentary – m. tragicus + antitragicus – m. helicis major+minor – m. obliquus + transversus auriculae, m. pyramidalis auriculae cartilage: cartilago auriculae - elastic skin: dorsally more loosen, ventrally firmly fixed to perichondrium - othematoma Auricle – supply • arteries: a. temporalis superficialis → rr. auriculares ant. a. carotis externa → a. auricularis post. • veins: v. jugularis ext. • lymph: nn.ll. parotidei, mastoidei • nerves: sensory – nn. auriculares ant. from n. auriculotemporalis (ventrocranial 2/3) – r. auricularis n. X. (concha) – n. occipitalis minor (dosrocranial) – n. auricularis magnus (cudal) motor: n. VII. External acoustic meatus (meatus acusticus
    [Show full text]
  • Some Anatomical Studies on the Tympanic Cavity of the Goat (Capra Aegagrus Hircus) with Special Reference to Their Ossicles
    Advances in Biological Research 10 (6): 398-403, 2016 ISSN 1992-0067 © IDOSI Publications, 2016 DOI: 10.5829/idosi.abr.2016.398.403 Some Anatomical Studies on the Tympanic Cavity of the Goat (Capra Aegagrus Hircus) with Special Reference to Their Ossicles Ayman Tolba Department of Anatomy and Embryology, Faculty of Veterinary, Medicine Cairo University, Giza, Egypt Abstract: The present study was applied on six heads cadavers and four dried skulls of goat. The examined specimens showed that, the tympanic cavity was consisted of 3 parts; epitympanic recess, tympanic cavity proper and hypotympanicum. The lateral wall of the tympanic cavity was oriented by tympanic membrane while the medial wall was supported by promontory, fenestra vestibule and fenestra cochlea. The bony structures of the middle ear were achieved by 3 ear ossicles; Malleus, incus and stapes. The former one was the longest and drum stick in shape and consisted of head and neck that carried rostral and lateral processes in addition to handle. The incus was short wide tooth-shaped and it consisted of body and two; long and short diverging roots. The stapes was the most medial one of ear ossicles and constricted from head, two crus and foot plate. Stapes structures were excavated internally forming the obturator foramen. Average measurements of length, width and diameter for each ossicle were applied. The results obtained were discussed with the literatures in the same scope. In conclusion, the anatomy of the structures within the middle ear of goat can help the surgeons for easy approaches in the cavity of the middle ear.
    [Show full text]