Chapter 12 Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 12 Nervous System Chapter 12 Senses Nervous System III - Senses Sensory Receptors • specialized cells or multicellular structures that collect information from the environment General Senses • stimulate neurons to send impulses along sensory fibers to • receptors that are widely distributed throughout the the brain body Sensation • skin, various organs and joints • a feeling that occurs when brain becomes aware of sensory Special Senses impulse • specialized receptors confied to structures in the head Perception • eyes and ears • a person’s view of the stimulus; the way the brain interprets the information 1 2 Receptor Types Sensations Chemoreceptors Sensation • respond to changes in chemical concentrations occurs when the brain becomes aware of sensory impulses Pain receptors (Nociceptors) • respond to tissue damage Perception Thermoreceptors occurs when the brain interprets sensory impulses • respond to changes in temperature Mechanoreceptors Projection • respond to mechanical forces process in which the brain projects the sensation back to the apparent source Photoreceptors • respond to light 3 it allows a person to pinpoint the region of 4 stimulation 1 Sensory Adaptation General Senses • ability to ignore unimportant stimuli • senses associated with skin, muscles, joints, and viscera • involves a decreased response to a particular stimulus • three groups from the receptors (peripheral adaptations) or along the CNS pathways leading to the cerebral cortex (central • exteroceptive senses – senses associated with body surface; adaptation) touch, pressure, temperature, pain • sensory impulses become less frequent and may cease • visceroceptive senses – senses associated with changes in viscera; blood pressure stretching blood vessels, ingesting a meal • stronger stimulus is required to trigger impulses • proprioceptive senses – senses associated with changes in 5 muscles and tendons 6 Touch and Pressure Senses Touch and Pressure Receptors Free nerve endings Meissner’s corpuscles • common in epithelial • Small, oval masses of flattened tissues connective tissue cells in connective • simplest receptors tissue cells in a connective tissue • sense itching sheath with 2 or more sensory nerve fibers branching into each corpusule Pacinian corpuscles • abundant in hairless portions of • Relatively large, ellipsoidal skin; lips structures composed of connective • detect fine touch; distinguish tissue fivers and cells between two points on the skin • common in deeper subcutaneous tissues, tendons, and ligaments • detect heavy pressure and vibrations 7 8 2 Sense of Pain Temperature Senses • free nerve endings Warm receptors • sensitive to temperatures above 25oC (77o F) • widely distributed • unresponsive to temperature above 45oC (113oF) • nervous tissue of brain lacks pain receptors Cold receptors • sensitive to temperature between 10oC (50oF) and 20oC • stimulated by tissue damage, chemical, mechanical forces, (68oF) or extremes in temperature Pain receptors • adapt very little, if at all • respond to temperatures below 10oC • respond to temperatures above 45oC 9 10 Visceral Pain Referred Pain • may occur due to sensory impulses from two regions following a common nerve pathway to brain • pain receptors are the only receptors in viscera whose stimulation produces sensations • pain receptors respond differently to stimulation • not well localized • may feel as if coming from some other part of the body • known as referred pain 11 12 3 Regulation of Pain Impulses Pain Nerve Pathways Thalamus Chronic pain fibers Acute pain fibers • allows person to be aware • C fibers • A-delta fibers of pain • thin, myelinated • thin, unmyelinated Pain Inhibiting Substances • conduct impulses more • enkephalins • conduct impulses Cerebral Cortex slowly • serotonin rapidly • judges intensity of pain • associated with dull, • endorphins • associated with • locates source of pain aching pain sharp pain • produces emotional and • difficult to pinpoint • well localized motor responses to pain 13 14 Proprioceptors Visceral Senses • mechanoreceptors-respond to mechanical stress on Receptors are found on internal organs tissues Free nerve endings • send information to spinal cord and CNS about body position and length and tension of muscles Lamellated corpuscles • Main kinds of proprioreceptors • Pacinian corpuscles – in joints • muscle spindles – in skeletal muscles* • Golgi tendon organs – in tendons* *stretch receptors-respond to stretching in a tissue 15 16 4 Special Senses Sense of Smell • sensory receptors are within large, complex sensory Olfactory Receptors organs in the head • chemoreceptors • respond to chemicals dissolved in liquids • smell in olfactory organs Olfactory Organs • taste in taste buds • contain olfactory receptors and supporting epithelial cells • hearing and equilibrium in ears • cover parts of nasal cavity, superior nasal conchae, • sight in eyes and a portion of the nasal septum 17 18 Olfactory Nerve Pathways Olfactory Stimulation • olfactory organs located high in the nasal cavity above the usual pathway of inhaled air Once olfactory receptors are stimulated, nerve impulses travel through • olfactory receptors undergo sensory adaptation • olfactory nerves olfactory bulbs olfactory rapidly tracts limbic system (for emotions) and olfactory cortex (for interpretation) • sense of smell drops by 50% within a second after stimulation Olfactory Code • hypothesis • odor that is stimulated by a distinct set of receptor cells and its associated receptor proteins 19 20 5 Sense of Taste Taste Receptors 75-80% of taste comes from smell Taste Buds • organs of taste • located on papillae of tongue, roof of mouth, linings of cheeks and walls of pharynx Taste Receptors • chemoreceptors • taste cells – modified epithelial cells that function as receptors • taste hairs –microvilli that protrude from taste cells; sensitive parts of taste cells 21 22 Taste Sensations Taste Nerve Pathways Five Primary Taste Sensations • sweet – stimulated by carbohydrates Sensory impulses from taste receptors travel along • sour – stimulated by acids • cranial nerves to • salty – stimulated by salts • medulla oblongata to • bitter – stimulated by many organic compounds • thalamus to • umani - stimulated by certain amino acids • gustatory cortex (for interpretation) Spicy foods activate pain receptors 23 24 6 Hearing External Ear • auricle Ear – organ of hearing • collects sounds waves • external auditory meatus • lined with ceruminous glands • carries sound to tympanic Three Sections membrane • External • terminates with tympanic • Middle membrane • Inner • tympanic membrane • vibrates in response to sound waves • tympanic reflex-two small skeletal muscles protect the 25 26 ear from loud noices Middle Ear Auditory Tube • tympanic cavity • air-filled space in temporal bone • eustachian tube • auditory ossicles • connects middle ear to • vibrate in response to tympanic throat membrane • helps maintain equal • malleus, incus, and stapes pressure on both sides • oval window of tympanic membrane • opening in wall of tympanic • usually closed by cavity valve-like flaps in throat • stapes vibrates against it to move fluids in inner ear 27 28 7 Inner Ear Equilibrium Three Parts of Labyrinths • cochlea Static Equilibrium Dynamic Equilibrium • functions in hearing • vestibule (utricle • semicircular canals • semicircular canals and saccule) • sense rotation and • functions in • sense position of movement of head and equilibrium head when body is body • vestibule • functions in not moving equilibrium 29 30 Eyelid Sight • palpebra • composed of four layers • skin Visual Accessory Organs • muscle • eyelids • connective tissue • conjunctiva • lacrimal apparatus • orbicularis oculi - closes • extrinsic eye muscles • levator palperbrae superioris – opens • tarsal glands – secrete oil onto eyelashes • conjunctiva – mucous membrane; lines eyelid and covers portion of eyeball 31 32 8 Lacrimal Apparatus Extrinsic Eye Muscles • lacrimal gland Superior rectus • lateral to eye • rotates eye up and • secretes tears medially • canaliculi • collect tears Inferior rectus • lacrimal sac • rotates eye down • collects from canaliculi • nasolacrimal duct and medially • collects from lacrimal sac • empties tears into nasal Medial rectus cavity • rotates eye medially 33 34 Extrinsic Eye Muscles Structure of the Eye Lateral rectus • rotates eye laterally • hollow • spherical • wall has 3 layers Superior oblique • outer fibrous tunic • rotates eye down and • middle vascular tunic laterally • inner nervous tunic Inferior oblique • rotates eye up and laterally 35 36 9 Outer Tunic Middle Tunic Iris Cornea • anterior portion • anterior portion • pigmented • transparent • controls light intensity by controlling the size of the • light transmission pupil • light refraction Ciliary body • anterior portion Sclera • pigmented • posterior portion • holds lens • opaque, white • moves lens for focusing • protection Choroid coat • provides blood supply • pigments absorb extra light 37 38 Anterior Portion of Eye Lens • filled with aqueous humor • transparent • biconvex • lies behind iris • largely composed of lens fibers • elastic • held in place by suspensory ligaments of ciliary body 39 40 10 Ciliary Body Accommodation • forms internal ring around front of eye • changing of lens shape to view objects • ciliary processes – radiating folds • ciliary muscles – contract and relax to move lens 41 42 Inner Tunic Posterior Cavity • retina • contains vitreous humor – thick gel that holds retina • contains visual receptors flat against
Recommended publications
  • The Distribution of Immune Cells in the Uveal Tract of the Normal Eye
    THE DISTRIBUTION OF IMMUNE CELLS IN THE UVEAL TRACT OF THE NORMAL EYE PAUL G. McMENAMIN Perth, Western Australia SUMMARY function of these cells in the normal iris, ciliary body Inflammatory and immune-mediated diseases of the and choroid. The role of such cell types in ocular eye are not purely the consequence of infiltrating inflammation, which will be discussed by other inflammatory cells but may be initiated or propagated authors in this issue, is not the major focus of this by immune cells which are resident or trafficking review; however, a few issues will be briefly through the normal eye. The uveal tract in particular considered where appropriate. is the major site of many such cells, including resident tissue macro phages, dendritic cells and mast cells. This MACRO PHAGES review considers the distribution and location of these and other cells in the iris, ciliary body and choroid in Mononuclear phagocytes arise from bone marrow the normal eye. The uveal tract contains rich networks precursors and after a brief journey in the blood as of both resident macrophages and MHe class 11+ monocytes immigrate into tissues to become macro­ dendritic cells. The latter appear strategically located to phages. In their mature form they are widely act as sentinels for capturing and sampling blood-borne distributed throughout the body. Macrophages are and intraocular antigens. Large numbers of mast cells professional phagocytes and play a pivotal role as are present in the choroid of most species but are effector cells in cell-mediated immunity and inflam­ virtually absent from the anterior uvea in many mation.1 In addition, due to their active secretion of a laboratory animals; however, the human iris does range of important biologically active molecules such contain mast cells.
    [Show full text]
  • Ciliary Zonule Sclera (Suspensory Choroid Ligament)
    ACTIVITIES Complete Diagrams PNS 18 and 19 Complete PNS 23 Worksheet 3 #1 only Complete PNS 24 Practice Quiz THE SPECIAL SENSES Introduction Vision RECEPTORS Structures designed to respond to stimuli Variable complexity GENERAL PROPERTIES OF RECEPTORS Transducers Receptor potential Generator potential GENERAL PROPERTIES OF RECEPTORS Stimulus causing receptor potentials Generator potential in afferent neuron Nerve impulse SENSATION AND PERCEPTION Stimulatory input Conscious level = perception Awareness = sensation GENERAL PROPERTIES OF RECEPTORS Information conveyed by receptors . Modality . Location . Intensity . Duration ADAPTATION Reduction in rate of impulse transmission when stimulus is prolonged CLASSIFICATION OF RECEPTORS Stimulus Modality . Chemoreceptors . Thermoreceptors . Nociceptors . Mechanoreceptors . Photoreceptors CLASSIFICATION OF RECEPTORS Origin of stimuli . Exteroceptors . Interoceptors . Proprioceptors SPECIAL SENSES Vision Hearing Olfaction Gustation VISION INTRODUCTION 70% of all sensory receptors are in the eye Nearly half of the cerebral cortex is involved in processing visual information Optic nerve is one of body’s largest nerve tracts VISION INTRODUCTION The eye is a photoreceptor organ Refraction Conversion (transduction) of light into AP’s Information is interpreted in cerebral cortex Eyebrow Eyelid Eyelashes Site where conjunctiva merges with cornea Palpebral fissure Lateral commissure Eyelid Medial commissure (a) Surface anatomy of the right eye Figure 15.1a Orbicularis oculi muscle
    [Show full text]
  • The Proteomes of the Human Eye, a Highly Compartmentalized Organ
    Proteomics 17, 1–2, 2017, 1600340 DOI 10.1002/pmic.201600340 (1 of 3) 1600340 The proteomes of the human eye, a highly compartmentalized organ Gilbert S. Omenn Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA Proteomics has now published a series of Dataset Briefs on the EyeOme from the HUPO Received: November 2, 2016 Human Proteome Project with high-quality analyses of the proteomes of these compartments Accepted: November 4, 2016 of the human eye: retina, iris, ciliary body, retinal pigment epithelium/choroid, retrobulbar optic nerve, and sclera, with 3436, 2929, 2867, 2755, 2711, and 1945 proteins, respectively. These proteomics resources represent a useful starting point for a broad range of research aimed at developing preventive and therapeutic interventions for the various causes of blindness. Keywords: Biomedicine / Biology and Disease-driven Human Proteome Project / End Blindness by 2020 / Eye proteome / EyeOme / Human Proteome Project See accompanying articles in the EyeOme series: http://dx.doi.org/10.1002/pmic.201600229; http://dx.doi.org/10.1002/pmic.201500188; http://dx.doi.org/10.1002/pmic.201400397 Proteomics has now published a series of four papers on compartments of the eye as shown in Fig. 1. As was noted [5], the human eye proteome [1–4]. Under the aegis of the Hu- it was not feasible to assess the quality of the data or estimate man Proteome Organization Biology and Disease-driven Hu- numbers of likely false positives in the heterogeneous studies man Proteome Project (HPP), the EyeOme was organized by from which these findings were summarized.
    [Show full text]
  • ANATOMY of EAR Basic Ear Anatomy
    ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age.
    [Show full text]
  • Pupil Iris Ciliary Body
    Eye iris pupil ciliary body Eyeball Anterior segment Posterior segment Pars caeca retinae Eyeball Corpus ciliare Procesus ciliares Sclera Iris Cornea Eyebulb wall Posterior Anterior segment segment Tunica externa Sclera Cornea (fibrosa) Tunica media Chorioidea Iris, Corpus (vasculosa) ciliare Tunica interna Pars optica Pars caeca (nervosa) retinae retinae Eyeball Fibrous tunic - tunica externa oculi • Cornea • Sclera limbus conjunctiva Cornea 1. Stratified squamous epithelium 2. Bowman´s membrane-anterior limiting lamina 3. Substantia propria cornae − 200 - 250 layers of regularly organized collagen fibrils − fibrocytes /keratocytes/ 4. Descemet´s membrane-posterior limiting lamina − the basement membrane of the posterior endothelium − Posterior endothelium − simple squamous epithelium Cornea Vascular tunic - tunica media oculi - Choroid ch - loose c.t. with network of blood vessels, numerous pigment cells c - Ciliary body - loose c.t. with smooth muscle cells – musculus i ciliaris /accomodation/ - ciliary processes – generate aqueous humor - Iris - central opening of the iris - the pupil Choroid 1. Lamina suprachoroidea /lamina fusca sclerae/ 2. Lamina vasculosa 3. Lamina chorocapillaris 4. Lamina vitrea /Bruch´s membrane/ L. suprachoroidea - perichoroidal space with melanocytes, collagen and elastic sclera fibers, fibroblasts, macrophages, lymphocytes L. vasculosa – blood supply – parallelní veins – c. ciliare choroid L. chorocapilaris – capillary plexus for retina L. vitrea – five layers, including balsal retina lamina of chorid endothelium and retinal pigment epithelium, collagen and elastic fibers. Choroid Ciliary body - structure ciliary processes m. ciliaris ciliary epithelium - outer cell layer is pigmented, inner cell layer is nonpigmented (pars caeca retinae) Ciliary body Epithelium two layers – basal, pigmented (fuscin), surface w/o pigment - Continuous with optical part of retina = pars caeca retinae processus ciliares m.
    [Show full text]
  • Research Reports
    ARAŞTIRMALAR (ResearchUnur, Ülger, Reports) Ekinci MORPHOMETRICAL AND MORPHOLOGICAL VARIATIONS OF MIDDLE EAR OSSICLES IN THE NEWBORN* Yeni doğanlarda orta kulak kemikciklerinin morfometrik ve morfolojik varyasyonları Erdoğan UNUR 1, Harun ÜLGER 1, Nihat EKİNCİ 2 Abstract Özet Purpose: Aim of this study was to investigate the Amaç: Yeni doğanlarda orta kulak kemikciklerinin morphometric and morphologic variations of middle ear morfometrik ve morfolojik varyasyonlarını ortaya ossicles. koymak. Materials and Methods: Middle ear of 20 newborn Gereç ve yöntem: Her iki cinse ait 20 yeni doğan cadavers from both sexes were dissected bilaterally and kadavrasının orta kulak boşluğuna girilerek elde edilen the ossicles were obtained to investigate their orta kulak kemikcikleri üzerinde morfometrik ve morphometric and morphologic characteristics. morfolojik inceleme yapıldı. Results: The average of morphometric parameters Bulgular: Morfometrik sonuçlar; malleus’un toplam showed that the malleus was 7.69 mm in total length with uzunluğu 7.69 mm, manibrium mallei’nin uzunluğu 4.70 an angle of 137 o; the manibrium mallei was 4.70 mm, mm, caput mallei ve processus lateralis arasındaki and the total length of head and neck was 4.85 mm; the uzaklık 4.85 mm, manibrium mallei’nin ekseni ve caput incus had a total length of 6.47 mm, total width of 4.88 mallei arasındaki açı 137 o, incus’un toplam uzunluğu mm , and a maximal distance of 6.12 mm between the 6.47 mm, toplam genişliği 4.88 mm, crus longum ve tops of the processes, with an angle of 99.9 o; the stapes breve’nin uçları arasındaki uzaklık 6.12 mm, cruslar had a total height of 3.22 mm, with stapedial base being arasındaki açı 99.9 o, stapesin toplam uzunluğu 2.57 mm in length and 1.29 mm in width.
    [Show full text]
  • Ciliary Body
    Ciliary body S.Karmakar HOD Introduction • Ciliary body is the middle part of the uveal tract . It is a ring (slightly eccentric ) shaped structure which projects posteriorly from the scleral spur, with a meridional width varying from 5.5 to 6.5 mm. • It is brown in colour due to melanin pigment. Anteriorly it is confluent with the periphery of the iris (iris root) and anterior part of the ciliary body bounds a part of the anterior chamber angle. Introduction • Posteriorly ciliary body has a crenated or scalloped periphery, known as ora serrata, where it is continuous with the choroid and retina. The ora serrata exhibits forward extensions,known as dentate process, which are well defined on the nasal side and less so temporally. • Ciliary body has a width of approximately 5.9 mm on the nasal side and 6.7 mm on the temporal side. Extension of the ciliary body On the outside of the eyeball, the ciliary body extends from a point about 1.5 mm posterior to the corneal limbus to a point 6.5 to 7.5 mm posterior to this point on the temporal side and 6.5 mm posterior on the nasal side. Parts of ciliary body • Ciliary body, in cross section, is a triangular structure ( in diagram it can be compared as ∆ AOI). Outer side of the triangle (O) is attached with the sclera with suprachoroidal space in between. Anterior side of the triangle (A) forms part of the anterior & posterior chamber. In its middle, the iris is attached. The inner side of the triangle (I) is divided into two parts.
    [Show full text]
  • Topographical Anatomy and Morphometry of the Temporal Bone of the Macaque
    Folia Morphol. Vol. 68, No. 1, pp. 13–22 Copyright © 2009 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Topographical anatomy and morphometry of the temporal bone of the macaque J. Wysocki 1Clinic of Otolaryngology and Rehabilitation, II Medical Faculty, Warsaw Medical University, Poland, Kajetany, Nadarzyn, Poland 2Laboratory of Clinical Anatomy of the Head and Neck, Institute of Physiology and Pathology of Hearing, Poland, Kajetany, Nadarzyn, Poland [Received 7 July 2008; Accepted 10 October 2008] Based on the dissections of 24 bones of 12 macaques (Macaca mulatta), a systematic anatomical description was made and measurements of the cho- sen size parameters of the temporal bone as well as the skull were taken. Although there is a small mastoid process, the general arrangement of the macaque’s temporal bone structures is very close to that which is observed in humans. The main differences are a different model of pneumatisation and the presence of subarcuate fossa, which possesses considerable dimensions. The main air space in the middle ear is the mesotympanum, but there are also additional air cells: the epitympanic recess containing the head of malleus and body of incus, the mastoid cavity, and several air spaces on the floor of the tympanic cavity. The vicinity of the carotid canal is also very well pneuma- tised and the walls of the canal are very thin. The semicircular canals are relatively small, very regular in shape, and characterized by almost the same dimensions. The bony walls of the labyrinth are relatively thin.
    [Show full text]
  • Eye External Anatomy of Eye Accessory Structures
    4/22/16 Eye Bio 40B Dr. Kandula External Anatomy of Eye Accessory Structures l Eyebrows l Levator Palpebrae Superioris - opens eye l Eyelashes l Ciliary glands – modified sweat glands l Small sebaceous glands l Sty is inflamed ciliary glands or small sebaceous glands 1 4/22/16 Terms: Lacrimal gland and duct Surface of eye Lacrimal puncta Lacrimal sac Nasolacrimal duct Nasal cavity Tears / Lacrimal fluid l a watery physiologic saline, with a plasma-like consistency, l contains the bactericidal enzyme lysozyme; l it moistens the conjunctiva and cornea, l provides nutrients and dissolved O2 to the cornea. Extrinsic Muscles of the Eye: Lateral/medial rectus Important to know Superior/inferior rectus actions and nerve Superior/inferior oblique supply in table 2 4/22/16 Extrinsic Eye Muscles • Eye movements controlled by six extrinsic eye muscles Four recti muscles § Superior rectus – moves eyeball superiorly supplied by Cranial Nerve III § Inferior rectus - moves eyeball inferiorly supplied by Cranial Nerve III § Lateral rectus - moves eyeball laterally supplied by Cranial Nerve VI § Medial rectus - moves eyeball medially supplied by Cranial Nerve III Extrinsic Eye Muscles Two oblique muscles rotate eyeball on its axis § Superior oblique rotates eyeball inferiorly and laterally and is supplied by Cranial Nerve IV § Inferior oblique rotates superiorly and laterally and is supplied by Cranial Nerve III Convergence of the Eyes l Binocular vision in humans has both eyes looking at the same object l As you look at an object close to your face,
    [Show full text]
  • Download PDF Intratemporal Course of the Facial Nerve
    Romanian Journal of Morphology and Embryology 2010, 51(2):243–248 ORIGINAL PAPER Intratemporal course of the facial nerve: morphological, topographic and morphometric features NICOLETA MĂRU1), A. C. CHEIŢĂ2), CARMEN AURELIA MOGOANTĂ3), B. PREJOIANU4) 1)Department of Anatomy, Faculty of Dental Medicine 2)PhD candidate, ENT specialist “Carol Davila” University of Medicine and Pharmacy, Bucharest 3)ENT resident, Emergency County Hospital, Craiova University of Medicine and Pharmacy of Craiova 4)Tehno Electro Medical Company, Bucharest Abstract The purpose of this study is to present some morphological and morphometric aspects of the facial nerve and especially of the tympanic and mastoid segments of this nerve. The authors follow up a mesoscopic study concerning the tract (length, angulation, width) of these segments and the anatomic relations with the important structures of the middle ear. At the same time, some anatomical variations which involve the canal of the facial nerve (dehiscences, tract deviation or other anatomical deviations) are presented. To evaluate the risk of the facial nerve injury during operations for chronic otitis media with or without cholesteatoma, stapedectomy in otosclerosis, exploratory tympanotomy, tympanoplasty, canaloplasty, osteomas surgery or other otologic surgery that involve facial nerve area. The intricate course of the facial nerve through the temporal bone is of vital concern to all otologic surgeons, since it often traverses the surgical field. Therefore, authors will review the course of the facial canal through the petrosal portion of the temporal bone from the internal auditory meatus to the stylomastoid foramen, paying particular attention to its relations to adjacent structures. Keywords: intratemporal part, facial nerve.
    [Show full text]
  • Anatomy & Physiology of The
    Anatomy & Physiology of The Eye 2017-2018 Done By: 433 Team Abdullah M. Khattab Important Doctor’s Notes Extra Abdullah AlOmair Resources: Team 433, Doctors Notes, Vaughan & Asbury’s General ophthalmology. Editing File Embryology of The Eye ............................................................................................. 2 ● Defects: ........................................................................................................................... 2 Development of The Eye After Birth .......................................................................... 3 ● Refractive power depends on two factors: ...................................................................... 3 The Orbit ................................................................................................................... 4 ● Seven bones contribute the bony orbit and surrounded by nasal sinuses. .................... 4 ● The orbital wall, pear-like shaped, formed by: ................................................................ 4 ● Structures Passing Through the Optic Openings: ........................................................... 4 Extraocular Muscles .................................................................................................. 1 ● Anatomy .......................................................................................................................... 1 ● Notes: .............................................................................................................................. 1 ● Field of action:
    [Show full text]
  • 1 Surgical Anatomy Alexander Rauchfuss
    Chapter 1 1 1 Surgical Anatomy Alexander Rauchfuss The temporal bone presents a very complex anatomy. Therefore this overview is restricted to some major points from the viewpoint of surgical anatomy. For more detailed information see “Suggested Reading”. Thetemporalboneaccordingtoitsdevelopmentalanatomyisdivisibleinto four parts: the squamous, mastoid, petrous, and tympanic portions. Points of topographical reference on the lateral surface are the external acoustic meatus with its suprameatal spine, the temporal line, and the mastoid process. Thebaseofthezygomaextendsasacrestposteriorlyandslightlyupward, forming the supramastoid crest or temporal line. The temporal line as a land- mark corresponds to the base of the medial cranial fossa/tegmen tympani, which in most cases of surgery can easily be identified. In combination with the radiological anatomy in a Schüller view it allows adequate planning of the surgical approach to the antrum via the mastoid. All figures show the anatomy of a left ear. 2 1 Surgical Anatomy Figs. 1.1–1.5. Temporal bone and sigmoid sinus Fig. 1.1. Temporal bone. The degree of pneumatization is inconstant. The extent and arrangement of air cells varies considerably from a minimal air cell system in the surroundings of the antrum to involvement of most of the tempo- ral bone. Pneumatization usually begins in late fetal life, progressing until the end of childhood. The pneumatization process starts from the antrum. In most cases one can describe the topography of the cells as follows: periantral, sino- dural, perisinual, perifacial and mastoid tip cells. According to the extension of the cells, there is only one rule: the further from the antrum, the bigger the cells Fig.
    [Show full text]