Functional Anatomy of the Ciliary Muscle in Birds and Humans

Total Page:16

File Type:pdf, Size:1020Kb

Functional Anatomy of the Ciliary Muscle in Birds and Humans Functional Anatomy of the Ciliary Muscle in Birds and Humans by Machelle T. Pardue A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Vision Science and Biology Waterloo, Ontario, Canada, 1996 8 Machelle T. Pardue, 1996 National iibrary Bibliothèque nationale (*B of Canada du Canada Acquisitions and Acquisitions et Bibliographie SeNices services bibliographiques 395 Weliirrgtori Sîreeî 395. rue Wenïngton OttawaON KIAW Oüawa ON K1AW Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive 1icence allowing the exclusive parnettant à la National Liiof Canada to Bibliothècpe nationale du Canada de reproduce, loan, disbi'b9te or sell reprodune, prêter, distnLbuer ou copies of Werthesis by any means vendn des copies de sa these de and in any form or format, making qpelque manière et sous qyelqye this thesis amable to interested fome que ce soit pour metûe des persons. exemplaires de cette thèse à la disposition des personnes mtéressées. The author retains ownership of the L'auteur conserve la pro@& du copyright m hislher thesis. Neither droit d'auteur qui protège sa thèse. Ni the thesis nor sub- extmcts la thèse ni des extraits substanîiels & nom it may be @ted or otherwise celle-ci ne doivent être imprimds ou reproduced with the aufhor's autrement reproduits sans son permission. autorisation* The University of Waterloo requues the signatures of al1 persons ushg or photocopying this thesis. Please sign below, and give address and date, iii Abstract Functional Anatomy of the Ciliary Muscle in Birds and Humans The functional aaatomy of the avian ciliary muscle has beai difncdt to describe due to its inaccessible location inside the eye. This thesis compares the ciliary muscle of birds and humam in both the relaxed and contracted states. The two groups both accommodate by changing the shape of the lem, although the ciliary body and ciliary muscle morphology are very different. The ciliary muscles of the chicken (Gahga1iu.s domesticus),the pigeon (Columbiafivia), the kestrel (Faico sparverius),and the hooded merganser (Mmgus cucullatus) (four ~ieswith ditTering accommodative n&) were examined histologicdly. The ciliary muscle of ail four species can be divided into three main muscle fibre groups based on insertion and ongin: anterior, posterior and intemal. The anterior muscle fibre puporiginates at the sclera under the scleral ossicles and inserts into the inner lamellae ofthe cornea. During accommodation these fibres pull the comea posteriorly, changing the cuwature of the comea. The posterior muscle fibre group originates on the sclera and inserts posteriorly ont0 the baseplate of the ciiiary body. The posterior fibre group acts on the baseplate of the ciliary body, puiiing it fonvard to change the cuwature of the lem during accommodation. The interna1 muscle fibre group extends hmthe baseplate of the ciüary body to the imer lameiiae of the comea and thus has a role in both comeal and lenticular accommodation. Species differences do exist as seen in subgroups determined by the orientation of the fibres between the relaxed and contracted states and the percentage of fibres within the main muscle fibre gcoups). in general, the rnajority of ciiiary muscle fibres in the chicken, pigeon, and kestnl are in the antetior muscle fibre group, suggestkig an emphasis on comeal accommodation; in the ciliary muscle of the hooded merganset, the majority of fibres are in the intemal and posterior muscle fibre groups, indicating that lenticular accommodation is the predominant form of accommodation. For the study of human ciliary muscle, meen pairs ofeyes ranging Ïn age fiom O to 107 years were treated with 20% pilocarpine and 5% atropine. The ciliary muscle decreases in length (8-20%) and in width (544%)). Changes With contraction were not found in the other measurements. The fibres of the ciliary muscle do not change orientation with contraction. During accommodation the ciliary muscle teleases zonular tension by shorteaing, but not by moving forward. With age the ciliary muscle shortens, widens, and moves fornard. Changes in ciliary muscle dimensions were seen at ail ages, indicating no loss of muscle contractility. The amotmt of co~ectivetissue in the ciliary muscle increases (24%) with age. The aging ciliary muscle is able to contract, but the reduction of zonular tension bmught on by age, may prevent lenticdar changes, thereby contributing to presbyopia. Acknowledgments Numerous individuais and groups assisted in the completion of the thesis by providing tissue, technical support, andloi advice. First, 1would like to express my heart-felt appreciation to my supervisor, Dr. Jacob Sivak, for encouraping me to pursue this degree and for ali his support. In addition, 1would iike to thank my committee members, Dr. Ralph Chou and Dr. Bill Diewones for their advice and support in the development of the thesis. 1would iike to acknowledge the Kortwright Waterfowl Center, McDonald's Coilege, esp. Dr. Bird, and Pascal Vieira of Grand Valley, Ontario for allowing me to coiiect bird eyes. Human eyes were obtained hmthe Eye Bank of Canada, Ontario Division, tbugh the kind cooperation of Marilyn Schneider and Mt. Hasani. The histology tracing prognun was written by Dr. Adrian Glasser. In addition, Adrian offered much useful advice and critiques of this work. The cornputer monitors used for this study were loaned by Dr. Trefford Simpson and Dr. Sue Leat. Statistical advice was obtained fiom various sources inciudùig David Matthews, Erin Harvey, Dr. Trefford Simpson, Dr. Jeff Hovis, and Corrine Motluk. Translations ofpapers fiom German to English were graciously done by Henriette Stumper. 1wodd also Like to thank ail the graduate dents, facuity, and staffof the School ofûptometry for theu firiendship and assistance. Financial support was provided through the Natural Science and Engineering Research Council of Canada (NSERC) awarded to Dr. Jacob Sivak. Lastly, 1 would l&e to thank my husband, Je& for his love and support, and my daughter, Emily, who reminds me of the simple Wgs in life. Table of Contents General Ln~du~ti~nomm~ommmmmmmmomomomoomommmmmmmmmomomm~momommmmm~momomommmmmmmmammmmmmmomoom~o~mmmmo~mmmommmoo1 The.. Vertebrate Eye...................................................................................... 2 Ciliary Body Anatomy ................................................................................. 3 Hlllnatu........................................................................................... 3 Bir& ................................................................................................ 7 Gened Muscle Structwe............................................................................. 10 Ciliary Muscle Structure .......................................................... 12 Hl,unam................................................................................ 12 BK~S..................................................................................... 13 Accommodation........................................................................................... 14 Hm............................................................................. ............... 14 Bir& .................................................... .......... Thesis Objectives ......................................................................................... Section 1 The Functional Anatomy of the Curry Muscle in Four Avian Spceies.......... Introduction.............*......*...*...................*...............*................*................... Methods.......................................................................................*............... Results...............................*......................................................................... Chicken Muscle Fibre Groups and Subdivisioas ... ........ .....*.... Pigeon Muscle Fibre Groups and Subdivisions.............................. Kestrel Muscle Fibre Groups and SuMivisions........ .. ..... ...... Hooded Merganser Muscle Fibre Groups and Subdivisions..... ...... Asymmetfy...................................................................................... Discussion .........................................................................................*...*..... Species Accommodative Needs ...................................................... Role of the Cïl.iary Muscle in Accommodation...... ............ .......... Species Diaemces.................................................................0....... Asymmetry .............. ................................................................... Effect of Contraction ........... ... ..........*......................*.............. vii Section II The Functional Anatomy of the CüUry Muscle in Humons across Age .......... 72 htroduction. ................................................................................................. 73 Chary. Muscle Function.................................................................. 74 Ciiiary. Muscle Aging ...................................................................... 78 Morphologicai Changes with Age ..................cal.....................79 Functiod Changes with Age ............................................. Role of the Ciliary Muscle m Presbyopia.......................... Methods ...................................................................................................... Results ........................ ...............................................................................
Recommended publications
  • The Distribution of Immune Cells in the Uveal Tract of the Normal Eye
    THE DISTRIBUTION OF IMMUNE CELLS IN THE UVEAL TRACT OF THE NORMAL EYE PAUL G. McMENAMIN Perth, Western Australia SUMMARY function of these cells in the normal iris, ciliary body Inflammatory and immune-mediated diseases of the and choroid. The role of such cell types in ocular eye are not purely the consequence of infiltrating inflammation, which will be discussed by other inflammatory cells but may be initiated or propagated authors in this issue, is not the major focus of this by immune cells which are resident or trafficking review; however, a few issues will be briefly through the normal eye. The uveal tract in particular considered where appropriate. is the major site of many such cells, including resident tissue macro phages, dendritic cells and mast cells. This MACRO PHAGES review considers the distribution and location of these and other cells in the iris, ciliary body and choroid in Mononuclear phagocytes arise from bone marrow the normal eye. The uveal tract contains rich networks precursors and after a brief journey in the blood as of both resident macrophages and MHe class 11+ monocytes immigrate into tissues to become macro­ dendritic cells. The latter appear strategically located to phages. In their mature form they are widely act as sentinels for capturing and sampling blood-borne distributed throughout the body. Macrophages are and intraocular antigens. Large numbers of mast cells professional phagocytes and play a pivotal role as are present in the choroid of most species but are effector cells in cell-mediated immunity and inflam­ virtually absent from the anterior uvea in many mation.1 In addition, due to their active secretion of a laboratory animals; however, the human iris does range of important biologically active molecules such contain mast cells.
    [Show full text]
  • Ciliary Zonule Sclera (Suspensory Choroid Ligament)
    ACTIVITIES Complete Diagrams PNS 18 and 19 Complete PNS 23 Worksheet 3 #1 only Complete PNS 24 Practice Quiz THE SPECIAL SENSES Introduction Vision RECEPTORS Structures designed to respond to stimuli Variable complexity GENERAL PROPERTIES OF RECEPTORS Transducers Receptor potential Generator potential GENERAL PROPERTIES OF RECEPTORS Stimulus causing receptor potentials Generator potential in afferent neuron Nerve impulse SENSATION AND PERCEPTION Stimulatory input Conscious level = perception Awareness = sensation GENERAL PROPERTIES OF RECEPTORS Information conveyed by receptors . Modality . Location . Intensity . Duration ADAPTATION Reduction in rate of impulse transmission when stimulus is prolonged CLASSIFICATION OF RECEPTORS Stimulus Modality . Chemoreceptors . Thermoreceptors . Nociceptors . Mechanoreceptors . Photoreceptors CLASSIFICATION OF RECEPTORS Origin of stimuli . Exteroceptors . Interoceptors . Proprioceptors SPECIAL SENSES Vision Hearing Olfaction Gustation VISION INTRODUCTION 70% of all sensory receptors are in the eye Nearly half of the cerebral cortex is involved in processing visual information Optic nerve is one of body’s largest nerve tracts VISION INTRODUCTION The eye is a photoreceptor organ Refraction Conversion (transduction) of light into AP’s Information is interpreted in cerebral cortex Eyebrow Eyelid Eyelashes Site where conjunctiva merges with cornea Palpebral fissure Lateral commissure Eyelid Medial commissure (a) Surface anatomy of the right eye Figure 15.1a Orbicularis oculi muscle
    [Show full text]
  • Microscopic Anatomy of the Eye Dog Cat Horse Rabbit Monkey Richard R Dubielzig Mammalian Globes Mammalian Phylogeny General Anatomy Dog
    Microscopic Anatomy of the eye Dog Cat Horse Rabbit Monkey Richard R Dubielzig Mammalian globes Mammalian Phylogeny General Anatomy Dog Arterial Blood Vessels of the Orbit General Anatomy Dog * Horizontal section Long Posterior Ciliary a. Blood enters the globe Short Post. Ciliary a Long Post. Ciliary a. Anterior Ciliary a. Blood Supply General Anatomy Dog Major arterial circle of the iris Orbital Anatomy Dog Brain Levator Dorsal rectus Ventral rectus Zygomatic Lymph node Orbital Anatomy Dog Orbital Anatomy Dog Cartilaginous trochlea and the tendon of the dorsal oblique m. Orbital Anatomy Dog Rabbit Orbital Anatomy Dog Zygomatic salivary gland mucinous gland Orbital Anatomy Dog Gland of the Third Eyelid Eye lids (dog) Eye lids (dog) Meibomian glands at the lid margin Holocrine secretion Eye lids (primate) Upper tarsal plate Lower tarsal plate Eye lids (rabbit) The Globe The Globe Dog Cat Orangutan Diurnal Horse Diurnal Cornea Epithelium Stromal lamellae Bowman’s layer Dolphin Descemet’s m Endothelium TEM of surface epithelium Cornea Doubling of Descemet’s Vimentin + endothelium Iris Walls: The vertebrate eye Iris Sphincter m. Dilator m Blue-eye, GFAP stain Iris Collagen Iris Cat Sphinctor m. Dilator m. Iris Cat Phyomelanocytes Iris Equine Corpora nigra (Granula iridica) seen in ungulates living without shade Ciliary body Pars plicata Ciliary muscle Pars plana Ciliary body Zonular ligaments Ciliary body Primarily made of fibrillin A major component of elastin Ciliary body Alcian Blue staining acid mucopolysaccharides: Hyaluronic acid Ciliary
    [Show full text]
  • Affections of Uvea Affections of Uvea
    AFFECTIONS OF UVEA AFFECTIONS OF UVEA Anatomy and physiology: • Uvea is the vascular coat of the eye lying beneath the sclera. • It consists of the uvea and uveal tract. • It consists of 3 parts: Iris, the anterior portion; Ciliary body, the middle part; Choroid, the third and the posterior most part. • All the parts of uvea are intimately associated. Iris • It is spongy having the connective tissue stroma, muscular fibers and abundance of vessels and nerves. • It is lined anteriorly by endothelium and posteriorly by a pigmented epithelium. • Its color is because of amount of melanin pigment. Mostly it is brown or golden yellow. • Iris has two muscles; the sphincter which encircles the pupil and has parasympathetic innervation; the dilator which extends from near the sphincter and has sympathetic innervation. • Iris regulates the amount of light admitted to the interior through pupil. • The iris separates the anterior chamber from the posterior chamber of the eye. Ciliary Body: • It extends backward from the base of the iris to the anterior part of the choroid. • It has ciliary muscle and the ciliary processes (70 to 80 in number) which are covered by ciliary epithelium. Choroid: • It is located between the sclera and the retina. • It extends from the ciliaris retinae to the opening of the optic nerve. • It is composed mainly of blood vessels and the pigmented tissue., The pupil • It is circular and regular opening formed by the iris and is larger in dogs in comparison to man. • It contracts or dilates depending upon the light source, due the sphincter and dilator muscles of the iris, respectively.
    [Show full text]
  • The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
    Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life.
    [Show full text]
  • Passport to Success
    The following terms and other boldface terms in the chapter are defined in the Glossary accommodation choroid After careful study of this chapter, you should be able to: cochlea conjunctiva 1. Describe the function of the sensory system convergence 2. Differentiate between the special and general senses and give examples of each cornea 3. Describe the structure of the eye gustation 4. List and describe the structures that protect the eye lacrimal apparatus 5. Define refraction and list the refractive parts of the eye lens (crystalline lens) 6. Differentiate between the rods and the cones of the eye olfaction 7. Compare the functions of the extrinsic and intrinsic muscles of organ of Corti the eye ossicle 8. Describe the nerve supply to the eye proprioceptor 9. Describe the three divisions of the ear refraction 10. Describe the receptor for hearing and explain how it functions retina 11. Compare static and dynamic equilibrium and describe the sclera location and function of these receptors semicircular canal 12. Explain the function of proprioceptors sensory adaptation 13. List several methods for treatment of pain sensory receptor 14. Describe sensory adaptation and explain its value tympanic membrane 15. Show how word parts are used to build words related to the vestibule sensory system (see Word Anatomy at the end of the chapter) vitreous body PASSport to Success Visit thePoint or see the Student Resource CD in the back of this book for definitions and pronun- ciations of key terms as well as a pretest for this chapter. ® Paul’s Second Case: Seeing More of the Sun’s Effects aul glanced once again at the postcard condition, and it does have a hereditary fac- sitting on his entranceway table as he ar- tor.” The doctor dilated Paul’s eyes with drops Prived home in the evening.
    [Show full text]
  • Eyes and Pupillary Assessment
    Eye and Pupillary Assessment GFR Training January 29, 2017 What are some things you should look for? Pupil Size Pupil Shape Reactivity Tracking Redness Trauma What assessment questions may provide more information? Sudden blurry vision? Difficult to focus? Sudden double vision? Sudden loss of vision? Seeing things? Seeing black spots? Flashes of light? Any eye pain? Sudden, severe headaches? Any recent trauma? Anatomy What might happen if there is damage to the ciliary body or the nerves that control the ciliary body? Muscles in the iris control pupil size: What is the pupil? What might happen if there is damage to these muscles or to the nerves that control them? Eye Muscles and Nerves Normal Eyes Unusual Eyes Description Condition Unilateral Dilated Pupil III Nerve Compression Bilateral Dilated Pupils Midbrain Injury Irregular Pupils Orbital Trauma Conjugate Gaze Frontal Lobe Lesion Deviation Small / Pinpoint Pontine Injury, Opiate Administration Pupils of Different Sizes Irregular/Misshapen Pupils Abnormal Tracking/Movement When scanning a room, reading, etc., human eyes move in a rapid, jerky fashion. This is called saccadic eye movements. When following (tracking) a single object, eye movements should be smooth and not saccadic. With serious head injuries, eyes often exhibit abnormal tracking movements. Jerky Tracking Other things to look for: Slow tracking Unilateral tracking Lack of tracking (no control or no movement at all) ***Be sure to check both vertically and horizontally!!*** Eyes pointing in different directions Bruising Skull Fracture Broken Nose Possible Causes? Trauma Globe Rupture Protect Swelling Ice Foreign Objects One time GFD had a call for a middle-aged man who was using a power drill, and somehow the drill ended up in his eye.
    [Show full text]
  • The Proteomes of the Human Eye, a Highly Compartmentalized Organ
    Proteomics 17, 1–2, 2017, 1600340 DOI 10.1002/pmic.201600340 (1 of 3) 1600340 The proteomes of the human eye, a highly compartmentalized organ Gilbert S. Omenn Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA Proteomics has now published a series of Dataset Briefs on the EyeOme from the HUPO Received: November 2, 2016 Human Proteome Project with high-quality analyses of the proteomes of these compartments Accepted: November 4, 2016 of the human eye: retina, iris, ciliary body, retinal pigment epithelium/choroid, retrobulbar optic nerve, and sclera, with 3436, 2929, 2867, 2755, 2711, and 1945 proteins, respectively. These proteomics resources represent a useful starting point for a broad range of research aimed at developing preventive and therapeutic interventions for the various causes of blindness. Keywords: Biomedicine / Biology and Disease-driven Human Proteome Project / End Blindness by 2020 / Eye proteome / EyeOme / Human Proteome Project See accompanying articles in the EyeOme series: http://dx.doi.org/10.1002/pmic.201600229; http://dx.doi.org/10.1002/pmic.201500188; http://dx.doi.org/10.1002/pmic.201400397 Proteomics has now published a series of four papers on compartments of the eye as shown in Fig. 1. As was noted [5], the human eye proteome [1–4]. Under the aegis of the Hu- it was not feasible to assess the quality of the data or estimate man Proteome Organization Biology and Disease-driven Hu- numbers of likely false positives in the heterogeneous studies man Proteome Project (HPP), the EyeOme was organized by from which these findings were summarized.
    [Show full text]
  • Iris Mammillations: Significance and Associations
    IRIS MAMMILLATIONS: SIGNIFICANCE AND ASSOCIATIONS 2 l NICOLA K. RAGGEL2, 1. ACHESON and A. LINN MURPHREE Los Angeles and London SUMMARY mammiform (nipple- or teat-like) protuberances. Iris mammillations are rarely described, distinctive Iris mammillations are an occasional finding with few previous reports. They are most commonly villiform protuberances that can cover the iris. In the l--6 majority of reported cases they are unilateral and found in association with melanosis oculi, with or sporadic, and are seen in association with oculodermal without periocular skin involvement in a naevus of melanosis. In past literature and current clinical Ota. They are thus often less precisely referred to as practice they are frequently confused with tbe iris iris melanosis, a term which should best be reserved nodules seen in neurofibromatosis type 1. Their clinical for increased pigmentation of the iris, irrespective of significance is not established, although it has been the presence of iris elevations overlying the pigmen­ 7 suggested that iris mammillations may be an external ted areas. This is supported by the rare descriptions sign of ocular hypertension or intraocular malignancy. of iris elevations in the absence of any increased iris We report a series of 9 patients between the ages of 3 pigmentation?,8 and 28 years with iris mammillations. The mammilla­ Iris mammillations are usually unilateral, often tions appear as regularly spaced, deep brown, smooth, presenting as heterochromia iridis. Occasional bilat­ 7 conical elevations on the iris, of uniform height or eral cases have been described. ,8 Iris mammillations increasing in height as the pupil margin is approached.
    [Show full text]
  • Eye Based Authentication: Iris and Retina Detection
    The University of Saskatchewan Department of Computer Science Technical Report #2011-04 Eye Based Authentication: Iris and Retina Recognition Minhaz Fahim Zibran 2009 Department of Computer Science The University of Saskatchewan, Canada Abstract Biometric authentication comes in play to release the users from the difficulties of remembering and protecting passwords as required by traditional authenti- cation systems. Among all the biometrics in use today, eye biometrics (iris and retina) offers the highest level of uniqueness, universality, permanence, and ac- curacy. Despite these convincing properties of iris and retina biometrics, they have not been in widespread use. Moreover, humans have more or less a natural ability to recognize individuals staring at the person's eye. So, it is interesting to investigate to what extent the eye based biometrics (iris and retina recog- nition) are capable of distinguishing individuals, and what factors are there, which hinder the adoption of these technologies. This report presents a comparative study on iris and retina biometrics based on literature review. The study aims to investigate the two biometrics, conduct a comparative analysis in a fair level of technical detail, and identify the challenges and future possibilities towards their ubiquitous use. In presenting the findings, the study contributes in three ways: (1) This report may serve as a tutorial of eye biometric for those who are new in the area, (2) The comparison between iris and retina biometrics will be helpful for individuals and organizations in choosing the appropriate eye biometric for use in their context. (3) The technical, security, and usability issues identified by the study reveal avenue for further research in order to improve eye biometrics.
    [Show full text]
  • Pupil Iris Ciliary Body
    Eye iris pupil ciliary body Eyeball Anterior segment Posterior segment Pars caeca retinae Eyeball Corpus ciliare Procesus ciliares Sclera Iris Cornea Eyebulb wall Posterior Anterior segment segment Tunica externa Sclera Cornea (fibrosa) Tunica media Chorioidea Iris, Corpus (vasculosa) ciliare Tunica interna Pars optica Pars caeca (nervosa) retinae retinae Eyeball Fibrous tunic - tunica externa oculi • Cornea • Sclera limbus conjunctiva Cornea 1. Stratified squamous epithelium 2. Bowman´s membrane-anterior limiting lamina 3. Substantia propria cornae − 200 - 250 layers of regularly organized collagen fibrils − fibrocytes /keratocytes/ 4. Descemet´s membrane-posterior limiting lamina − the basement membrane of the posterior endothelium − Posterior endothelium − simple squamous epithelium Cornea Vascular tunic - tunica media oculi - Choroid ch - loose c.t. with network of blood vessels, numerous pigment cells c - Ciliary body - loose c.t. with smooth muscle cells – musculus i ciliaris /accomodation/ - ciliary processes – generate aqueous humor - Iris - central opening of the iris - the pupil Choroid 1. Lamina suprachoroidea /lamina fusca sclerae/ 2. Lamina vasculosa 3. Lamina chorocapillaris 4. Lamina vitrea /Bruch´s membrane/ L. suprachoroidea - perichoroidal space with melanocytes, collagen and elastic sclera fibers, fibroblasts, macrophages, lymphocytes L. vasculosa – blood supply – parallelní veins – c. ciliare choroid L. chorocapilaris – capillary plexus for retina L. vitrea – five layers, including balsal retina lamina of chorid endothelium and retinal pigment epithelium, collagen and elastic fibers. Choroid Ciliary body - structure ciliary processes m. ciliaris ciliary epithelium - outer cell layer is pigmented, inner cell layer is nonpigmented (pars caeca retinae) Ciliary body Epithelium two layers – basal, pigmented (fuscin), surface w/o pigment - Continuous with optical part of retina = pars caeca retinae processus ciliares m.
    [Show full text]
  • Ciliary Body
    Ciliary body S.Karmakar HOD Introduction • Ciliary body is the middle part of the uveal tract . It is a ring (slightly eccentric ) shaped structure which projects posteriorly from the scleral spur, with a meridional width varying from 5.5 to 6.5 mm. • It is brown in colour due to melanin pigment. Anteriorly it is confluent with the periphery of the iris (iris root) and anterior part of the ciliary body bounds a part of the anterior chamber angle. Introduction • Posteriorly ciliary body has a crenated or scalloped periphery, known as ora serrata, where it is continuous with the choroid and retina. The ora serrata exhibits forward extensions,known as dentate process, which are well defined on the nasal side and less so temporally. • Ciliary body has a width of approximately 5.9 mm on the nasal side and 6.7 mm on the temporal side. Extension of the ciliary body On the outside of the eyeball, the ciliary body extends from a point about 1.5 mm posterior to the corneal limbus to a point 6.5 to 7.5 mm posterior to this point on the temporal side and 6.5 mm posterior on the nasal side. Parts of ciliary body • Ciliary body, in cross section, is a triangular structure ( in diagram it can be compared as ∆ AOI). Outer side of the triangle (O) is attached with the sclera with suprachoroidal space in between. Anterior side of the triangle (A) forms part of the anterior & posterior chamber. In its middle, the iris is attached. The inner side of the triangle (I) is divided into two parts.
    [Show full text]