Notes on the Diet of the Tiger Keelback (Rhabdophis Tigrinus Lateralis), an Alleged Anuran Specialist

Total Page:16

File Type:pdf, Size:1020Kb

Notes on the Diet of the Tiger Keelback (Rhabdophis Tigrinus Lateralis), an Alleged Anuran Specialist Herpetology Notes, volume 13: 495-496 (2020) (published online on 25 June 2020) Notes on the diet of the Tiger Keelback (Rhabdophis tigrinus lateralis), an alleged anuran specialist Bartosz Borczyk1,* and Iwona Gottfried2 The tiger keelback (Rhabdophis tigrinus [Boie, 1826]) part was in good condition. We determined that the prey is a natricine snake that is widely distributed in the was probably a Wood Lemming (Myopus schisticolor; Japanese islands, eastern Russia, China, North Korea, Rodentia: Arvicolinae) based on the fur colouration South Korea, Taiwan, and Vietnam (Das, 2010). This (adults have a rusty brown patch extending from the species has attracted the attention of scientists because shoulders to the base of the tail), foot size (12.6 mm), of its peculiar defensive adaptations, i.e. the presence hair present only behind the heels and pads, foot shape of nuchal glands with toxic secretions (Hutchinson et with a diagnostic pad pattern (Figure 1), a short and al., 2007). Rhabdophis tigrinus is considered a feeding moderately haired tailed (tail length: 18 mm) (Ognev, specialist that preys on amphibians (Mori and Moriguchi, 1948; Krivoseev, 1984; Wilson et al., 2017). A second 1988; Kadowaki, 1992; Tanaka, 2002; Tanaka and Ota, specimen, a gravid female (SVL 62 cm), contained a 2002; Hirai, 2004; Mori and Vincent, 2008; Mori and freshly ingested stickleback fish (Gasterosteus sp.; total Nagata, 2016) and is often used in studies of snake length: 7.3 cm; body height: 1.6 cm; Figure 1). feeding behaviour as a model frog eater (Mori and Although the feeding habits of tiger keelbacks seem Vincent, 2008); fishes are reported only sporadically to be well studied, all published data come from as an unusual prey (e.g. Hiura, 1976). Here, we report Japanese island populations (Mori and Moriguchi, the first case of R. tigrinus feeding on a mammal and 1988; Kadowaki, 1992; Tanaka and Ota, 2002; Hirai, another case of predation of a fish. 2004; Mori and Vincent, 2008; Mori and Nagata, 2016). Four tiger keelbacks (unnumbered specimens) from The mainland populations have not been seriously the Zoological Institute of the Russian Academy of studied in this respect. Only very general accounts are Sciences were dissected to skeletonise the specimens published in field guides, and they usually contain no for another study. These snakes were collected in literature references (e.g. Das, 2010). Our observations 1978 near the Komarovka River, approximately 60–70 may indicate geographic variation in the feeding habits km north of Vladivostok, eastern Russia. Because of different R. tigrinus populations and point toward the snakes were preserved by drying, they were first the distinctiveness of the mainland form from Japanese rehydrated, and later all soft tissues were removed. populations of this species (Takeuchi et al., 2014). During this process, one of the authors (BB) found Another interesting observation is that the gravid partially digested mammal remains in the stomach of a female had well-developed eggs inside the oviducts and male (snout-vent length [SVL] 43 cm). The rodent had was actively feeding as suggested by the presence of the been ingested head-first. Although the head and anterior stickleback in her stomach. Many female snakes cease part of the prey had already been digested, the posterior feeding when gravid, especially when close to laying eggs. The snakes species has well-developed nuchal glands in their dorsal neck skin, and a highly toxic secretion is released when the snake is attacked. These toxins are ultimately sequestered from toads (Bufo sp.), which are common prey of the snakes in Japan 1 Department of Evolutionary Biology and Conservation of (Hutchinson et al., 2007). Because the sequestered toad Vertebrates, University of Wrocław, ul. Sienkiewicza 21, 50- toxins are provided to the eggs to produce offspring 335 Wrocław, Poland. 2 Department of Behavioral Ecology, University of Wroclaw, ul. with better equipped chemical defences, gravid females Sienkiewicza 21, 50-335 Wrocław. have been reported to pursue toxic toad prey during * Corresponding author. E-mail: [email protected] gestation (Kojima and Mori, 2015). However, based 496 Bartosz Borczyk & Iwona Gottfried References Das, I. (2010): A field guide to reptiles of South-East Asia. City, New Holland Publishers, 376 pp. Hirai, T. (2004): Dietary shifts of frog eating snakes in response to seasonal changes in prey availability. Journal of Herpetology 38: 455–460. Hiura I. (1976): A Japanese grass snake (Rhabdophis tigrinus) eating a loach. Nature Study 22: 110 [in Japanese] Hutchinson, D.A., Mori, A., Savitzky, A.H., Burghardt, G.M., Wu, X., Meinwald, J., Schroeder, F.C. (2007): Dietary sequestration of defensive steroids in nuchal glands of the Asian snake Rhabdophis tigrinus. Proceedings of National Academy of Sciences, USA 104: 2265–2270. Kadowaki, S. (1992): Food resource overlap between two sympatric Japanese snakes (Elaphe quadrivirgata and Rhabdophis tigrinus) in the paddy fields. Japanese Journal of Ecology 42: 1–7 [in Japanese, English abstract] Kojima, Y., Mori, A. (2015): Active foraging for toxic prey during gestation in a snake with maternal provisioning of sequestered chemical defences. Proceedings of the Royal Society, Series B 282: 2014–2137. Krivoseev, W.G. (1984): Terrestrial mammals of the Far East of the USSR: A key to the identification. Nauka, Moscow. Mori A. and Moriguchi H. (1988): Food habits of the snakes in Japan: A critical review. The Snake 20: 98–113. Mori, A., Vincent, S.E. (2008): An integrative approach to specialisation: relationships among feeding morphology, mechanics, behaviour, performance and diet in two syntopic snakes. Journal of Zoology 275: 47–56. Figure 1. (Top) Remains of a tickelback (Gasterosteus sp.) Mori, A., Nagata, E. (2016): Relying on a single anuran species: found in the stomach of a gravid female Tiger Keelback feeding ecology of a snake community on Kinkasan Island, (Rhabdophis tigrinus lateralis) (SVL 62 cm). (Bottom) Miyagi Prefecture, Japan. Current Herpetology 35: 106–114. Remains of a wood lemming (Myopus schisticolor) found in Ognev, S.I. (1948): Animals of USSR and adjacent regions. Volume the stomach of a male Tiger Keelback (Rhabdophis tigrinus 7, Animals of eastern Europe and southern Asia. Soviet Academy lateralis) (SVL 43 cm). of Sciences, Leningrad-Moscow, 510–522. (in Russian) Takeuchi, H., Zhu, G.-X., Ding, L., Tang, Y., Ota, H., Mori A., Oh, H.-S., Hikida, T. (2014): Taxonomic validity and phylogeography of the East Eurasian natricine snake, Rhabdophis lateralis on the present example, gravid females appear to not (Berthold, 1859) (Serpentes: Colubridae), as inferred from necessarily distinguish between toxic and non-toxic mitochondrial DNA sequence data. Current Herpetology 33: 148–153. prey when feeding during gestation. Tanaka K. (2002): Foraging behavior of Rhabdophis tigrinus (Serpentes: Colubridae) in a gutter with dense aggregation of Acknowledgements. We thank Konstantin Mil’to and Natalia tadpoles. Current Herpetology 21: 1–8. Ananyeva (ZIN) for making the specimens available for Tanaka, K., Ota, H. (2002): Natural history of two colubrid snakes, dissection and providing a kind reception during a stay (BB) in St. Elaphe quadrivirgata and Rhabdophis tigrinus, on Yakushima Petersburg. Tomasz Gottfried and Stanisław Bury (Jagiellonian Island, southwestern Japan. Amphibia-Reptilia 23: 323–331. University) made valuable comments on an earlier version of the Wilson, D.E., Lacher, T.E., Jr., Mittermeier R.A. (eds) (2017). manuscript. Handbook of the mammals of the world. Volume 7, Rodents II. Lynx Edicions, Barcelona, 1008 pp. Accepted by Maximilian Dehling.
Recommended publications
  • Epidemiology of Snakebites from a General Hospital in Singapore: a 5-Year Retrospective Review (2004-2008) 1 Hock Heng Tan, MBBS, FRCS A&E (Edin), FAMS
    640 Epidemiology of Snakebites—Hock Heng Tan Original Article Epidemiology of Snakebites from A General Hospital in Singapore: A 5-year Retrospective Review (2004-2008) 1 Hock Heng Tan, MBBS, FRCS A&E (Edin), FAMS Abstract Introduction: This is a retrospective study on the epidemiology of snakebites that were presented to an emergency department (ED) between 2004 and 2008. Materials and Methods: Snakebite cases were identified from International Classification of Diseases (ICD) code E905 and E906, as well as cases referred for eye injury from snake spit and records of antivenom use. Results: Fifty-two cases were identified: 13 patients witnessed the snake biting or spitting at them, 22 patients had fang marks and/or clinical features of envenomations and a snake was seen and the remaining 17 patients did not see any snake but had fang marks suggestive of snakebite. Most of the patients were young (mean age 33) and male (83%). The three most commonly identified snakes were cobras (7), pythons (4) and vipers (3). One third of cases occurred during work. Half of the bites were on the upper limbs and about half were on the lower limbs. One patient was spat in the eye by a cobra. Most of the patients (83%) arrived at the ED within 4 hours of the bite. Pain and swelling were the most common presentations. There were no significant systemic effects reported. Two patients had infection and 5 patients had elevated creatine kinase (>600U/L). Two thirds of the patients were admitted. One patient received antivenom therapy and 5 patients had some form of surgical intervention, of which 2 had residual disability.
    [Show full text]
  • WHO Guidance on Management of Snakebites
    GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.
    [Show full text]
  • Biological and Proteomic Analysis of Venom from the Puerto Rican Racer (Alsophis Portoricensis: Dipsadidae)
    Toxicon 55 (2010) 558–569 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Biological and proteomic analysis of venom from the Puerto Rican Racer (Alsophis portoricensis: Dipsadidae) Caroline L. Weldon, Stephen P. Mackessy* School of Biological Sciences, University of Northern Colorado, 501 20th Street, CB 92, Greeley, CO 80639-0017, USA article info abstract Article history: The Puerto Rican Racer Alsophis portoricensis is known to use venom to subdue lizard prey, Received 12 August 2009 and extensive damage to specific lizard body tissues has been well documented. The Received in revised form toxicity and biochemistry of the venom, however, has not been explored extensively. We 27 September 2009 employed biological assays and proteomic techniques to characterize venom from Accepted 2 October 2009 A. portoricensis anegadae collected from Guana Island, British Virgin Islands. High metal- Available online 14 October 2009 loproteinase and gelatinase, as well as low acetylcholinesterase and phosphodiesterase activities were detected, and the venom hydrolyzed the a-subunit of human fibrinogen Keywords: Biological roles very rapidly. SDS-PAGE analysis of venoms revealed up to 22 protein bands, with masses of w Colubrid 5–160 kDa; very little variation among individual snakes or within one snake between CRISP venom extractions was observed. Most bands were approximately 25–62 kD, but MALDI- Enzymes TOF analysis of crude venom indicated considerable complexity in the 1.5–13 kD mass a-Fibrinogenase range, including low intensity peaks in the 6.2–8.8 kD mass range (potential three-finger Gland histology toxins). MALDI-TOF/TOF MS analysis of tryptic peptides confirmed that a 25 kDa band was Hemorrhage a venom cysteine-rich secretory protein (CRiSP) with sequence homology with tigrin, Mass spectrometry a CRiSP from the natricine colubrid Rhabdophis tigrinus.
    [Show full text]
  • Cfreptiles & Amphibians
    HTTPS://JOURNALS.KU.EDU/REPTILESANDAMPHIBIANSTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSREPTILES • VOL15, & N AMPHIBIANSO 4 • DEC 2008 •189 28(1):34–36 • APR 2021 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS NotesFEATURE ARTICLES on Behavior in Green Keelbacks, . Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: RhabdophisOn the Road to Understanding the Ecologyplumbicolor and Conservation of the Midwest’s Giant(Cantor Serpent ...................... Joshua 1839) M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: A (Reptilia:Hypothetical Excursion ............................................................................................................................ Squamata: Natricidae)Robert W. Henderson 198 RESEARCH ARTICLES Rahul. The V.Texas Deshmukh Horned Lizard1, inSagar Central A. and Deshmukh Western Texas2 ......................., Swapnil A. Emily Badhekar Henry, Jason3, Brewer,Shubham Krista Mougey,Katgube and 4,Gad Atul Perry Bhelkar 204 5 . The Knight Anole (Anolis equestris) in Florida 1 H. N. 26, ............................................. Teacher Colony, Kalmeshwar,Brian J. Camposano,Nagpur, Maharashtra-441501, Kenneth L. Krysko, Kevin India M. Enge, ([email protected] Ellen M. Donlan, and Michael [corresponding Granatosky 212 author]) 2Behind Potdar Nursing Home, Kalmeshwar, Nagpur, Maharashtra-441501, India ([email protected]) CONSERVATION3Tiwaskarwadi, ALERT Raipur, Hingana, Nagpur, Maharashtra-441110, India ([email protected])
    [Show full text]
  • ID468 Evolution of a Special Organ, Nuchal Gland, Based on a Molecular
    ID468 Evolution of a special organ, nuchal gland, based on a molecular phylogeny of the Eurasian natricine snakes (Serpentes: Colubridae) Hirohiko Takeuchi1*, Akira Mori1, Li Ding2, Anslem de Silva3, Indraneil Das4, Tao Thien Nguyen5, Tein-Shun Tsai6, Teppei Jono7, Guang-xiang Zhu8, Dalshani Mahaulpatha9, Ye-zhong Tang2, Alan H. Savitzky10 1. Kyoto University, Japan 2. Chengdu Institute of Biology, Chinese Academy of Sciences, China 3. Gampola 4. University of Malaysia, Sarawak, Malaysia 5. Vietnam National Museum of Nature, Vietnam 6. National Pingtung University of Science and Technology, Taiwan, China 7. University of Ryukyus, Japan 8. Sichuan Agricultural University, China 9. University of Sri Jayawardenepura, Sri Lanka 10. Utah State University, USA ’Presenting author’s e-mail: [email protected] An Asian natricine snake, Rhabdophis tigrinus, has a unique series of organs, called nuchal glands, which contain cardiac steroidal toxins known as Bufadienolides. Rhabdophis tigrinus sequesters Bufadienolides from its toad prey and stores them in the nuchal glands as a defensive suBstance. Among more than 3400 species of snakes, only 18 Asian natricine species are known to have the nuchal glands. These 18 species Belong to three genera, Balanophis, Macropisthodon, and Rhabdophis. In Macropisthodon and Rhabdophis, however, species without the nuchal glands also exist. This evidence suggests multiple independent origin and/or secondarily loss of the nuchal glands. To infer the evolutionary history of the nuchal glands, we investigated the molecular phylogenetic relationships among Eurasian natricine species with and without the nuchal glands, Based on variations in partial sequences of the oocyte maturation factor Mos (c-mos) gene, the recomBination-activating gene 1 (Rag 1), and the mitochondrial cytochrome B (cyt.B) gene (total 2.6 kBp).
    [Show full text]
  • (Leptophis Ahaetulla Marginatus): Characterization of Its Venom and Venom-Delivery System
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the author's institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's Personal Copy Toxicon 148 (2018) 202e212 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Assessment of the potential toxicological hazard of the Green Parrot Snake (Leptophis ahaetulla marginatus): Characterization of its venom and venom-delivery system Matías N. Sanchez a, b, Gladys P. Teibler c, Carlos A. Lopez b, Stephen P. Mackessy d, * María E. Peichoto a, b, a Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Ministerio de Ciencia Tecnología e Innovacion Productiva, Argentina b Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud de la Nacion, Neuquen y Jujuy s/n, 3370, Puerto Iguazú, Argentina c Facultad de Ciencias Veterinarias (FCV),
    [Show full text]
  • Thermal Effects on the Antipredator Behaviour of Snakes: a Review and Proposed Terminology
    HERPETOLOGICAL JOURNAL, Vol. 14, pp. 79-87 (2004) THERMAL EFFECTS ON THE ANTIPREDATOR BEHAVIOUR OF SNAKES: A REVIEW AND PROPOSED TERMINOLOGY AKIRA MORI1 AND GORDON M. BURGHARDT2 1 Department of Zoology, Graduate School of Science, Kyoto Un iversity, Sakyo, Kyoto 606-8502, Japan 1 Departments of Psychology, and Ecology and Evolutionary Biology, University of Tennessee, Knoxville, 3 7996-0900 TN, USA The effects of temperature on the antipredator responses of snakes have been extensively studied during the last two decades. Several contradictory results have accumulated concerning the effectsof temperature on the propensity of snakes to perform variousbehaviour patterns.We review this literature and discuss fourpossible factorsrelated to these apparently contradictory results: (I) inconsistency in terms used to characterize antipredator behaviour; (2) erroneous citations; (3) interspecific differences; and (4) variable experimental designs. The last two factorsreflect biologically important phenomena, whereas the firsttwo are artificial"noise" that causes confusion and hinders scientificinterpretation. To resolve inconsistency in wording, we propose a consistent terminology for the antipredator responses of snakes. Antipredator responses were characterized from three dimensions: (I) categorization fromthe viewpoint of whether prey animals move towards or away from predators (response is considered as either "approach", "neutral", or "withdrawal"); (2) categorization from the viewpoint of how much movement is involved in the behaviour (response is considered either "locomotive", "active-in­ place'', or "static"); and (3) categorization in terms of the apparent function (response is characterized as either "threatening'', "cryptic", or "escape"). Antipredator responses of snakes, not only in relation to temperature but also in any situation, canbe well characterized fromthese three perspectives using the proposed terminology.
    [Show full text]
  • Rhabdophis Tigrinus Is Not a Pit Viper but Its Bites Result in Venom-Induced
    Silva et al. Journal of Intensive Care 2014, 2:43 http://www.jintensivecare.com/content/2/1/43 LETTER TO THE EDITOR Open Access Rhabdophis tigrinus is not a pit viper but its bites result in venom-induced consumptive coagulopathy similar to many viper bites Anjana Silva1*, Toru Hifumi2*, Atsushi Sakai3, Akihiko Yamamoto4, Masahiro Murakawa5, Manabu Ato6, Keigo Shibayama4, Akihiko Ginnaga7, Hiroshi Kato8, Yuichi Koido8, Junichi Inoue9, Yuko Abe2, Kenya Kawakita2, Masanobu Hagiike2 and Yasuhiro Kuroda2 Abstract As a response to the recent article by Hifumi et al. published in the Journal of Intensive Care, the present correspondence clarifies the family-level taxonomy of the yamakagashi (Rhabdophis tigrinus). Further, the relevance of the term ‘venom-induced consumptive coagulopathy,’ instead of disseminated intravascular coagulation, in describing the procoagulant coagulopathy of R. tigrinus is highlighted. Keywords: Viperidae, Colubridae, Natricinae, Rhabdophis, Coagulopathy Correspondence under the subfamily Natricinae and genus Rhabdophis Anjana Silva [3,4], and therefore is not a pit viper but is a colubrid. Al- Dear Editor, though some authors have suggested treating natricines as I read with interest, the research article titled ‘Clinical a separate family called Natricidae [5], recent molecular characteristics of yamakagashi (Rhabdophis tigrinus) bites: work confirmed the placement of natricines within the a national survey in Japan, 2000–2013’ by Hifumi et al. [1] Colubridae as a subfamily [6]. All vipers (family: Viperidae) published recently in the Journal of Intensive Care.Under- are venomous and possess front fangs. Pit vipers are an reporting of snakebites has been a challenge in confront- evolutionarily distinct group within the family Viperidae.
    [Show full text]
  • Foraging Behavior of Rhabdophis Tigrinus (Serpentes: Colubridae) in a Gutter with a Dense Aggregation of Tadpoles
    Current Herpetology 21 (1): 1-8, June 2002 (C)2002 by The Herpetological Society of Japan Foraging Behavior of Rhabdophis tigrinus (Serpentes: Colubridae) in a Gutter with a Dense Aggregation of Tadpoles KOJI TANAKA Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, JAPAN Abstract: Field observations were made on the foraging behavior of Rhabdo- phis tigrinus in a gutter where numerous Hyla japonica larvae aggregated. It seemed that not only chemical cues but also visual cues play important roles in the foraging behavior in this snake. Rhabdophis tigrinus performed predatory behaviors characteristic of generalists, not of aquatic specialists. Examinations of stomach contents revealed that froglets were the dominant prey item although tadpoles were seemingly more abundant in the gutter. It is likely that this biased predation on froglets is attributable to the differential vulnerability to predation among the developmental stages of the frog. The present obser- vations support the idea that R. tigrinus is not well adapted to an aquatic life. Possible significance of success ratio of predatory attempt as an index is discussed. Key words: Rhabdophis tigrinus; Foraging behavior; Anuran larvae; Aquatic prey; Ratio of successful strike of the specialization in feeding habits in a INTRODUCTION particular species, field observation is desir- Snakes are all carnivorous predators that able because natural surroundings influence eat various types and sizes of prey, ranging animal behavior and place constraints on it from small invertebrates to large mammals that are often difficult to control in the (Mushinsky, 1987; Greene, 1997). From the laboratory. viewpoint of feeding habits, each species Rhabdophis tigrinus is a medium-sized, is placed at a certain position on a con- diurnal colubrid snake commonly seen on tinuum between two extremes, "general- the main islands (exclusive of Hokkaido) ist" and "specialist".
    [Show full text]
  • Attempt to Develop Rat Disseminated Intravascular Coagulation Model Using Yamakagashi (Rhabdophis Tigrinus) Venom Injection
    toxins Article Attempt to Develop Rat Disseminated Intravascular Coagulation Model Using Yamakagashi (Rhabdophis tigrinus) Venom Injection Akihiko Yamamoto 1,*, Takashi Ito 2 and Toru Hifumi 3 1 Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Tokyo 208-0011, Japan 2 Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; [email protected] 3 Emergency and Critical Care Medicine St. Luke’s International Hospital Tokyo 104-8560, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-42-561-0771 (ext. 3734) Abstract: Disseminated intravascular coagulation, a severe clinical condition caused by an underlying disease, involves a markedly continuous and widespread activation of coagulation in the circulating blood and the formation of numerous microvascular thrombi. A snakebite, including that of the Yamakagashi (Rhabdophis tigrinus), demonstrates this clinical condition. Thus, an animal model using Yamakagashi venom was constructed. Yamakagashi venom was administered to rats, and its lethality and the changes in blood coagulation factors were detected after venom injection. When 300 µg venom was intramuscularly administered to 12-week-old rats, (1) they exhibited hematuria with plasma hemolysis and died within 48 h; (2) Thrombocytopenia in the blood was observed in the rats; (3) irreversible prolongation of prothrombin time in the plasma to the measurement limit occurred; (4) fibrinogen concentration in the plasma irreversibly decreased below the measurement limit; and Citation: Yamamoto, A.; Ito, T.; (5) A transient increase in the plasma concentration of D-dimer was observed. In this model, a fixed Hifumi, T.
    [Show full text]
  • (Northern Ireland) Order 2004 (Modification) Order (Northern Ireland) 2010
    STATUTORY RULES OF NORTHERN IRELAND 2010 No. 5 DANGEROUS WILD ANIMALS The Dangerous Wild Animals (Northern Ireland) Order 2004 (Modification) Order (Northern Ireland) 2010 Made - - - - 13th January 2010 Coming into operation- - 22nd February 2010 The Department of the Environment makes the following Order in exercise of the powers conferred by Article 11 of the Dangerous Wild Animals (Northern Ireland) Order 2004(a). In accordance with that Article the Department is satisfied that the scope of that Order should be extended so as to include animals of a kind not for the time being specified in the Schedule to that Order. Citation and commencement 1. This Order may be cited as the Dangerous Wild Animals (Northern Ireland) Order 2004 (Modification) Order (Northern Ireland) 2010 and shall come into operation on 22nd February 2010. Modification to the Dangerous Wild Animals (Northern Ireland) Order 2004 2. For the Schedule to the Dangerous Wild Animals (Northern Ireland) Order 2004 substitute the Schedule set out in the Schedule to this Order. Sealed with the Official Seal of the Department of the Environment on 13th January 2010. Maggie Smith A senior official of the Department of the Environment (a) 2004 No. 1993 (N.I. 16) SCHEDULE Regulation 2 “SCHEDULE Article 2 KINDS OF DANGEROUS WILD ANIMALS Note: See Article 2(6) for the effect of the second column of this Schedule Scientific name of kind Common name or names MAMMALS Marsupials Family Dasyuridae: The Tasmanian devil. The species Sarcophilus laniarius Family Macropodidae: The western and eastern grey kangaroos, the The species Macropus fuliginosus, wallaroo and the red kangaroo.
    [Show full text]
  • Guidelines for the Management of Snake-Bites
    Guidelines for the management of snake-bites David A Warrell WHO Library Cataloguing-in-Publication data Warrel, David A. Guidelines for the management of snake-bites 1. Snake Bites – education - epidemiology – prevention and control – therapy. 2. Public Health. 3. Venoms – therapy. 4. Russell's Viper. 5. Guidelines. 6. South-East Asia. 7. WHO Regional Office for South-East Asia ISBN 978-92-9022-377-4 (NLM classification: WD 410) © World Health Organization 2010 All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication.
    [Show full text]