“Dry Bite” in Venomous Snakes: a Review Toxicon

Total Page:16

File Type:pdf, Size:1020Kb

“Dry Bite” in Venomous Snakes: a Review Toxicon Toxicon 133 (2017) 63e67 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Review “Dry bite” in venomous snakes: A review DR. B. Sadananda Naik, M.D. Senior Physician Alva's Health Centre, Moodabidri 574227, Karnataka, India article info abstract Article history: It is quite interesting that when a venomous snake bites a person and the victim does not suffer from any Received 3 February 2017 signs or symptoms of envenomation. A good percentage of venomous snake bites in humans do occur Received in revised form without venom injection. This phenomenon is termed as “Dry” bite in clinical medicine. Though this was 21 April 2017 not very uncommon in toxicological practice but, our awareness of this problem has increased. In this Accepted 23 April 2017 article an effort has been made to provide an insight into the incidence, pathophysiology and patho- Available online 27 April 2017 mechanics of this unique medical enigma. © 2017 Elsevier Ltd. All rights reserved. Keywords: Envenomation Venomous snake bite Dry bite Non-envenomation Contents 1. Introduction . ................................................. 63 1.1. Inclusion of ‘dry bite’ in the grading of clinical features of snake bite envenomation . .......................64 1.2. Historical perspectives and the epidemiology of “dry bite” ....................................... ..................................64 1.3. Etiopathogenesis and pathomechanics of ‘dry bite’ .......................................... .....................................64 1.4. Possible reasons for the total absence of venom inoculation or injection of very minute quantity of venom which is insufficient to produce clinical or laboratory features of toxicity (de Rezende et al., 1998; Silveira and Nishioka Sde, 1995; Warrell, 2004) . .............64 1.5. Snake species and the morphology of the fangs . ........................65 1.6. Venom metering . ........................65 1.7. “Dry bite” by the venomous snakes in relation to lunar cycle . ........................65 1.8. Faulty delivery of the venom . ........................65 1.9. Victim's dress material . ........................65 2. Diagnosis of “dry bite” ........................................................... ................................................... 66 3. Management of “dry bite” .......................................................... ................................................. 66 4. Conclusions . ................................................. 66 Competing interests . ................................................. 66 Conflicts of interest . ................................................. 66 Ethical statement . ................................................. 66 Acknowledgements . ........................66 References................................................................. ................................ ........................66 1. Introduction threatening medical problem seen not only in the tropics but also in the rest of the world as well. More than 5 million people are Venomous snake bite is considered as a serious and life- bitten by venomous snakes in a year and nearly 100,000 of them succumb to it (Adukauskiene_ et al., 2011; Warrell, 2010). Similarly, a national mortality survey done in India has shown an estimated 46,000 people dying of snake bite in 2005 (Mohapatra et al., 2011). E-mail address: [email protected]. http://dx.doi.org/10.1016/j.toxicon.2017.04.015 0041-0101/© 2017 Elsevier Ltd. All rights reserved. 64 B.S. Naik / Toxicon 133 (2017) 63e67 Venomous snake bite could result in varying degree of toxicity, poisoning”. Later on, several other studies showed that, around from mild local symptoms to features of serious systemic toxicity 20e60% of the venomous snake bites could fall into the category of like severe coagulopathy, neuroparalysis, multi organ failure, shock ‘dry-bite’ (Russell, 1980). and finally death. But, when the poisonous snake bites and the Over here in Table 2, few important studies have been discussed, victims have no local or systemic or laboratory features of enven- with special emphasis on the venomous snake bites without fea- omation, it is termed a “Dry Bite”. This accounts for a sizable pro- tures of envenomation. However, as we see here, the incidence of portion of venomous snake bites all over the world (Tibballs, 1992; “dry-bites” varies with species of venomous snakes and from place Silveira and Nishioka Sde, 1995; Mead and Jelinek, 1996; Warrell, to place and also to some extent clinician's criteria and judgement 2010; Russell et al., 1997; Johnson, 1991). The incidence of “dry to differentiate between very mild oedema and no local signs. bites” has often been reported in any given study on venomous Kitchens and Van Mierop (1987), Barry S. Gold et al. (2002) in snake bites, but just as a statistical figure without much emphasis their study have left some cautions that some of the patients who on its implications. Dry bite is not unique to any one species of have activation of the sympathetic system due to extreme fear venomous snake and is seen in all the types venomous snake bites could mimic systemic manifestation of the venom. Extreme panic, but, with varying frequencies. In this article an attempt has been fear could result in nausea, vomiting, diarrhoea, syncope, tachy- made to highlight the incidence of “dry bite” by the venomous cardia, cold and clammy skin akin to snake envenomation. Hifumi snakes and to list out the reasons and the causes for this surprise et al. (2015) attributed the high incidence of dry bite in their and lucky escape for the victims of venomous snake bite. It should study on the pit vipers, known in Japan as “habu” (Protobothrops be the duty of every clinician to suspect dry bite whenever the local flavoviridis) as compared to the other snakes to their unique fangs. and systemic signs of snake envenomation are not evident with In the W.H.O. guidelines on the management of snake bites, Pro- clear cut evidence of snake bite either with the presence of fang fessor David Warrell, has made special mention on the incidence of marks or the snake being brought to the hospital either alive or dry bites in various snakes (Warrell, 2010). It is very fascinating to dead. know that 80% of bites by the sea snakes, one of the deadliest venomous snakes show either mild or no envenomation (Reid, 1.1. Inclusion of ‘dry bite’ in the grading of clinical features of snake 1975). Highest rate of dry bite is thought to be 70e80%, from bite envenomation brown snake bites(Pseudonaja sp.) in Australia (White, 2010). Bites by venomous snakes without envenomation [dry bite] 1.3. Etiopathogenesis and pathomechanics of ‘dry bite’ were not recognized until recent years. Clinicians all over the world used to be very sceptical about the very idea of a venomous snake It is not possible to pin point the exact reasons for the occur- bite whenever there was absence of features of envenomation. The rence of this phenomenon known as ‘dry bite’. However, there are tendency of clinicians was used to be, to brush aside such snake many possible explanations for the absence of envenomation in the bites as non-venomous ones or the theory that the venom gland victim. The incidence of ‘dry bite’ varies among the species of was empty used to be a popular explanation (Russell et al., 1997). venomous snakes, and the circumstances under which they bite. But, now it is no longer a miracle but a well-accepted clinical entity. The amount of venom injected differs when the snake strikes a prey Dry bite has been included as an important clinical manifestation in or it bites in defence as always been seen in human victims where the grading of envenomation by poisonous snakes (Adukauskiene_ the amount of venom injected would be quite small (Reid, 1968). It et al., 2011). Depending on the severity of envenoming, which is also depends on the structure of the fangs, namely the length and obviously differ depending on the species of snakes, the cases can location in the mouth, the location of opening in the fangs to deliver be classified as given in Table 1. the venom, hollow structure like the hypodermic needle or the presence groove in the fangs. 1.2. Historical perspectives and the epidemiology of “dry bite” Many biologists, herpetologists and snake handlers did observe 1.4. Possible reasons for the total absence of venom inoculation or this phenomenon for centuries but they knew very little about the injection of very minute quantity of venom which is insufficient to reasons behind it and they did nothing to document it (Russell, produce clinical or laboratory features of toxicity (de Rezende et al., 1980). It was Sir Joseph Fayrer, who probably published the first 1998; Silveira and Nishioka Sde, 1995; Warrell, 2004) case report where the an account of accidental insertion of one of the fangs of a pet rattle snake while feeding the mouse. Though he Natural or acquired immunity of the victim against the snake did not use the word “dry bite”, he did discuss the reasons for not poison showing the signs of envenomation in a venomous snake bite Absence of venom in the glands at the time of strike (Fayrer, 1892). One could find similar instances of venomous snakes Diseased venom glands wounding humans without envenoming in his “Thanatopidia” a Fangs (venom duct) of the snakes getting obstructed due to legendary book on snakes in India (Fayrer, 1872). Later on H.M. calcifications impairing the smooth and swift delivery of the Parrish
Recommended publications
  • RESEARCH ARTICLE Anti-Glioma Effect of Pseudosynanceia
    DOI:10.31557/APJCP.2021.22.7.2295 Effect of Pseudosynanceia Melanostigma Venom on Glioblastoma Cells RESEARCH ARTICLE Editorial Process: Submission:02/14/2021 Acceptance:07/15/2021 Anti-Glioma Effect of Pseudosynanceia Melanostigma Venom on Isolated Mitochondria from Glioblastoma Cells Maral Ramezani, Fatemeh Samiei, Jalal Pourahmad* Abstract Background: Glioblastoma is the most common primary malignant tumor of the central nervous system that occurs in the spinal cord or brain. Pseudosynanceia Melanostigma is a venomous stonefish in the Persian Gulf, which our knowledge about is little. This study’s goal is to investigate the toxicity of stonefish crude venom on mitochondria isolated from U87 cells. Methods: In the first stage, we extracted venom stonefish and then isolated mitochondria have exposed to different concentrations of venom. Finally, mitochondrial toxicity parameters (Succinate dehydrogenase (SDH) activity, Reactive oxygen species (ROS), cytochrome c release, Mitochondrial Membrane Potential (MMP), and mitochondrial swelling) have evaluated. Results: To determine mitochondrial parameters, we used 115, 230, and 460 µg/ml concentrations. The results of our study show that the venom of stonefish selectively increases upstream parameters of apoptosis such as mitochondrial swelling, cytochrome c release, MMP collapse and ROS. Conclusion: This study suggests that Pseudosynanceia Melanostigma crude venom has selectively caused toxicity by increasing active mitochondrial oxygen radicals. This venom could potentially be a candidate for the treatment of glioblastoma. Keywords: Mitochondria- glioblastoma- fish venoms- cell line- tumor- toxicity-Persian Gulf Asian Pac J Cancer Prev, 22 (7), 2295-2302 Introduction freshwater or saltwater. Marine animals most commonly used for animals live in saltwater, i.e. in oceans, seas, Glioblastoma multiform is the most common group of etc.
    [Show full text]
  • Spider Bites
    Infectious Disease Epidemiology Section Office of Public Health, Louisiana Dept of Health & Hospitals 800-256-2748 (24 hr number) www.infectiousdisease.dhh.louisiana.gov SPIDER BITES Revised 6/13/2007 Epidemiology There are over 3,000 species of spiders native to the United States. Due to fragility or inadequate length of fangs, only a limited number of species are capable of inflicting noticeable wounds on human beings, although several small species of spiders are able to bite humans, but with little or no demonstrable effect. The final determination of etiology of 80% of suspected spider bites in the U.S. is, in fact, an alternate diagnosis. Therefore the perceived risk of spider bites far exceeds actual risk. Tick bites, chemical burns, lesions from poison ivy or oak, cutaneous anthrax, diabetic ulcer, erythema migrans from Lyme disease, erythema from Rocky Mountain Spotted Fever, sporotrichosis, Staphylococcus infections, Stephens Johnson syndrome, syphilitic chancre, thromboembolic effects of Leishmaniasis, toxic epidermal necrolyis, shingles, early chicken pox lesions, bites from other arthropods and idiopathic dermal necrosis have all been misdiagnosed as spider bites. Almost all bites from spiders are inflicted by the spider in self defense, when a human inadvertently upsets or invades the spider’s space. Of spiders in the United States capable of biting, only a few are considered dangerous to human beings. Bites from the following species of spiders can result in serious sequelae: Louisiana Office of Public Health – Infectious Disease Epidemiology Section Page 1 of 14 The Brown Recluse: Loxosceles reclusa Photo Courtesy of the Texas Department of State Health Services The most common species associated with medically important spider bites: • Physical characteristics o Length: Approximately 1 inch o Appearance: A violin shaped mark can be visualized on the dorsum (top).
    [Show full text]
  • Epidemiology of Snakebites from a General Hospital in Singapore: a 5-Year Retrospective Review (2004-2008) 1 Hock Heng Tan, MBBS, FRCS A&E (Edin), FAMS
    640 Epidemiology of Snakebites—Hock Heng Tan Original Article Epidemiology of Snakebites from A General Hospital in Singapore: A 5-year Retrospective Review (2004-2008) 1 Hock Heng Tan, MBBS, FRCS A&E (Edin), FAMS Abstract Introduction: This is a retrospective study on the epidemiology of snakebites that were presented to an emergency department (ED) between 2004 and 2008. Materials and Methods: Snakebite cases were identified from International Classification of Diseases (ICD) code E905 and E906, as well as cases referred for eye injury from snake spit and records of antivenom use. Results: Fifty-two cases were identified: 13 patients witnessed the snake biting or spitting at them, 22 patients had fang marks and/or clinical features of envenomations and a snake was seen and the remaining 17 patients did not see any snake but had fang marks suggestive of snakebite. Most of the patients were young (mean age 33) and male (83%). The three most commonly identified snakes were cobras (7), pythons (4) and vipers (3). One third of cases occurred during work. Half of the bites were on the upper limbs and about half were on the lower limbs. One patient was spat in the eye by a cobra. Most of the patients (83%) arrived at the ED within 4 hours of the bite. Pain and swelling were the most common presentations. There were no significant systemic effects reported. Two patients had infection and 5 patients had elevated creatine kinase (>600U/L). Two thirds of the patients were admitted. One patient received antivenom therapy and 5 patients had some form of surgical intervention, of which 2 had residual disability.
    [Show full text]
  • WHO Guidance on Management of Snakebites
    GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.
    [Show full text]
  • Violent Incidents Between Humans and Orcas in Captivity
    Violent incidents between humans and orcas in captivity Several accounts of violent incidents with humans have appeared in books and news clips, with little information on the dates or details of those incidents. Other descriptions have made headlines, and some were captured on video tape. There are also anecdotal reports of incidents that were never officially documented. NO. DATE AQUARIUM WHALEs INCIDENT SOURCE early years New York When water level was lowered for pool cleaning, young female Lupa sent Edward R. Riciuti, , New #1 1968 Lupa York, Walker & Co., 1973, Aquarium, USA trainers scrambling from the pool, snapping her jaws threatening. pp. 227-228. Edward R. Riciuti, Killers of the Sea, New York, Young male Cuddles became so increasingly aggressive, having a hold of at Walker & Co., 1973, pp. Flamingo Park, least two trainers, that keepers had to clean the pool from the protection of a 227-228; Reading #2 1969-1970 Cuddles England shark cage. Cuddles also dragged keeper Don Robinson into the pool when he Eagle, August 15, was at Dudley Zoo but that was possibly a PR stunt. 1971; Doug Cartlidge, personal communication, March 2010. Karen Pryor writes, "I have since heard... of at least one killer whale which Karen Pryor, Lads Before the Wind, New York, #3 1970s unknown unknown launched an unprovoked attack on a favorite trainer, in normal circumstances, Harper & Row, 1976, p. savaged him very badly, and nearly killed him." 220. Vancouver Trainer Doug Pemberton described young female Skana as the dominant Cranky killer whales put trainers through their #4 1970's Aquarium, Skana animal in the pool.
    [Show full text]
  • Awareness, Prevention and Treatment of World-Wide Marine Stings and Bites
    Awareness, Prevention and Treatment of world-wide marine stings and bites Dr Peter Fenner Honorary Medical Officer, Surf Life Saving Australia International Life Saving Federation Medical/Rescue Conference Proceedings September 1997 Abstract The most common world-wide first aid treatment used by the average lifesaver/lifeguard is the treatment of marine envenomation, especially the treatment of jellyfish stings. It is important to use the correct first aid treatment for each type of envenomation. This study provides a simplified protocol for: - 1. Awareness of the geographical distribution and possibilities of envenomation enabling: - 2. Preventative strategies to reduce morbidity and mortality from marine envenomation 3. First aid treatment of marine envenomation by jellyfish or other marine animals This discussion is based on protocols developed for Surf Life Saving Australia and other first aid providers in Australia over the past ten years. Their success has been proven by a 30% reduction in the number of stings over the past 10 years (statistics from the author’s records). Information for this article has been taken from: - 1. Venomous and poisonous marine animals: a medical and biological handbook produced by Surf Life Saving Queensland 2. The global problem of cnidarian stinging. MD Thesis by the author for the University of London. Introduction The global problem of marine envenomation is not fully appreciated. Each year hundreds of deaths occur from poisoning (by ingestion or eating) or by envenomation (stinging by jellyfish, or biting by venomous marine animals). The morbidity is even greater with jellyfish stings world-wide being numbered in their millions. Each summer it is estimated that up to half a million stings occur on the east coast of the United States from the Portuguese man-o’-war (Physalia physalis).
    [Show full text]
  • A Guide to Harmful and Toxic Creatures in the Goa of Jordan
    Published by the Royal Marine Conservation Society of Jordan. P. O. Box 831051, Abdel Aziz El Thaalbi St., Shmesani 11183. Amman Copyright: © The Royal Marine Conservation Society of Jordan Reproduction of this publication for educational and other non- commercial purposes is authorized without prior written approval from the copyright holder provided the source is fully acknowledged. ISBN: 978-9957-8740-1-8 Deposit Number at the National Library: 2619/6/2016 Citation: Eid, E and Al Tawaha, M. (2016). A Guide to Harmful and Toxic Creature in the Gulf of Aqaba of Jordan. The Royal Marine Conservation Society of Jordan. ISBN: 978-9957-8740-1-8. Pp 84. Material was reviewed by Dr Nidal Al Oran, International Research Center for Water, Environment and Energy\ Al Balqa’ Applied University,and Dr. Omar Attum from Indiana University Southeast at the United State of America. Cover page: Vlad61; Shutterstock Library All photographs used in this publication remain the property of the original copyright holder, and it should not be reproduced or used in other contexts without permission. 1 Content Index of Creatures Described in this Guide ......................................................... 5 Preface ................................................................................................................ 6 Part One: Introduction ......................................................................................... 8 1.1 The Gulf of Aqaba; Jordan ......................................................................... 8 1.2 Aqaba;
    [Show full text]
  • Cfreptiles & Amphibians
    HTTPS://JOURNALS.KU.EDU/REPTILESANDAMPHIBIANSTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSREPTILES • VOL15, & N AMPHIBIANSO 4 • DEC 2008 •189 28(1):34–36 • APR 2021 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS NotesFEATURE ARTICLES on Behavior in Green Keelbacks, . Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: RhabdophisOn the Road to Understanding the Ecologyplumbicolor and Conservation of the Midwest’s Giant(Cantor Serpent ...................... Joshua 1839) M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: A (Reptilia:Hypothetical Excursion ............................................................................................................................ Squamata: Natricidae)Robert W. Henderson 198 RESEARCH ARTICLES Rahul. The V.Texas Deshmukh Horned Lizard1, inSagar Central A. and Deshmukh Western Texas2 ......................., Swapnil A. Emily Badhekar Henry, Jason3, Brewer,Shubham Krista Mougey,Katgube and 4,Gad Atul Perry Bhelkar 204 5 . The Knight Anole (Anolis equestris) in Florida 1 H. N. 26, ............................................. Teacher Colony, Kalmeshwar,Brian J. Camposano,Nagpur, Maharashtra-441501, Kenneth L. Krysko, Kevin India M. Enge, ([email protected] Ellen M. Donlan, and Michael [corresponding Granatosky 212 author]) 2Behind Potdar Nursing Home, Kalmeshwar, Nagpur, Maharashtra-441501, India ([email protected]) CONSERVATION3Tiwaskarwadi, ALERT Raipur, Hingana, Nagpur, Maharashtra-441110, India ([email protected])
    [Show full text]
  • ID468 Evolution of a Special Organ, Nuchal Gland, Based on a Molecular
    ID468 Evolution of a special organ, nuchal gland, based on a molecular phylogeny of the Eurasian natricine snakes (Serpentes: Colubridae) Hirohiko Takeuchi1*, Akira Mori1, Li Ding2, Anslem de Silva3, Indraneil Das4, Tao Thien Nguyen5, Tein-Shun Tsai6, Teppei Jono7, Guang-xiang Zhu8, Dalshani Mahaulpatha9, Ye-zhong Tang2, Alan H. Savitzky10 1. Kyoto University, Japan 2. Chengdu Institute of Biology, Chinese Academy of Sciences, China 3. Gampola 4. University of Malaysia, Sarawak, Malaysia 5. Vietnam National Museum of Nature, Vietnam 6. National Pingtung University of Science and Technology, Taiwan, China 7. University of Ryukyus, Japan 8. Sichuan Agricultural University, China 9. University of Sri Jayawardenepura, Sri Lanka 10. Utah State University, USA ’Presenting author’s e-mail: [email protected] An Asian natricine snake, Rhabdophis tigrinus, has a unique series of organs, called nuchal glands, which contain cardiac steroidal toxins known as Bufadienolides. Rhabdophis tigrinus sequesters Bufadienolides from its toad prey and stores them in the nuchal glands as a defensive suBstance. Among more than 3400 species of snakes, only 18 Asian natricine species are known to have the nuchal glands. These 18 species Belong to three genera, Balanophis, Macropisthodon, and Rhabdophis. In Macropisthodon and Rhabdophis, however, species without the nuchal glands also exist. This evidence suggests multiple independent origin and/or secondarily loss of the nuchal glands. To infer the evolutionary history of the nuchal glands, we investigated the molecular phylogenetic relationships among Eurasian natricine species with and without the nuchal glands, Based on variations in partial sequences of the oocyte maturation factor Mos (c-mos) gene, the recomBination-activating gene 1 (Rag 1), and the mitochondrial cytochrome B (cyt.B) gene (total 2.6 kBp).
    [Show full text]
  • Dangerous Creatures of the Maltese Sea: Injuries and Treatment - Part 2
    REVIEW ARTICLE Dangerous creatures of the Maltese sea: Injuries and treatment - Part 2 DR DAVID JAMES SAMMUT ABSTRACT deeper than the epidermis. The common Mediterranean This is the second of a two-part article intended sea urchin does not possess any venom in its spines, thus to give information about different organisms which injury is often of a minor nature. inhabit the Maltese sea and which are potentially harmful. Doctors working in the primary health setup Treatment and sometimes also in secondary care are often faced Treatment options vary. Embedded spines can either with injuries related to these organisms. The nature of be removed immediately, after a few days, or left to come the injury and its treatment is then discussed. Treatment out spontaneously. Any large projecting spines should however is not evidenced based as little if any studies be carefully removed with tweezers (Drobina, 2008). have been conducted in this field of medicine. After the Deeper spines are more difficult to remove. Removing first article considered venomous organisms, this second them immediately is often time consuming, painful and article will review sea creatures that may cause injury may cause more trauma to the site. Superficial spines are through bites, spines and electricity. best left undisturbed, as they will eventually be rejected spontaneously as the epidermis renews itself. Deeper KEY WORDS spines will come out easier if left for a few days before Bites, moray eel bites, sea urchin puncture attempting to remove them. The skin over the spine is broken with a needle and the spine is easily removed by INTRODUCTION applying pressure at the sides of the spine.
    [Show full text]
  • (Leptophis Ahaetulla Marginatus): Characterization of Its Venom and Venom-Delivery System
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the author's institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's Personal Copy Toxicon 148 (2018) 202e212 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Assessment of the potential toxicological hazard of the Green Parrot Snake (Leptophis ahaetulla marginatus): Characterization of its venom and venom-delivery system Matías N. Sanchez a, b, Gladys P. Teibler c, Carlos A. Lopez b, Stephen P. Mackessy d, * María E. Peichoto a, b, a Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Ministerio de Ciencia Tecnología e Innovacion Productiva, Argentina b Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud de la Nacion, Neuquen y Jujuy s/n, 3370, Puerto Iguazú, Argentina c Facultad de Ciencias Veterinarias (FCV),
    [Show full text]
  • A Summary of the Effects of Captivity on Orcas
    A Summary of the Effects of Captivity on Orcas PEOPLE FOR THE ETHICAL TREATMENT OF ANIMALS Contents The Eff ects of Captivity on Tilikum and Orcas Generally at SeaWorld…………..................................…………......3 I. Orcas Are Extremely Intelligent Mammals Whose Brains Are Highly Developed in Areas Responsible for Complex Cognitive Functions, Including Self-Awareness, Social Cognition, Culture, and Language …………………………………………...............................................................................................…...4 II. Tilikum Is Deprived of Every Facet of His Culture and the Opportunity to Engage in Natural Behavior, Causing Extreme Stress and Suff ering….…………….….......................................................5 A. The Tanks at SeaWorld Provide Inadequate Space and Result in Stress……….…...........................5 B. SeaWorld’s Constant Manipulation of Tilikum’s Social Structure Results in Stress.................7 C. The Tanks at SeaWorld Create a Distressing Acoustic Environment…….………..….........................9 III. The Stressors of the Captive Environment at SeaWorld Result in Aggressiveness, Self- Injury, and Other Physical and Behavioral Abnormalities………………….……..............................................10 A. Aggression Between Orcas and Between Orcas and Humans……..……………..............................……10 B. Stereotypic Behavior………………….……………………………………….......................................................................….…..13 1. Painful Dental Problems Caused by Chewing Metal Gates and Concrete Tanks.....14 2.
    [Show full text]