Periglacial and Glacial Landform Mapping in the Las Veguitas Catchment, Cordillera Frontal of the Andes (Argentina)

Total Page:16

File Type:pdf, Size:1020Kb

Periglacial and Glacial Landform Mapping in the Las Veguitas Catchment, Cordillera Frontal of the Andes (Argentina) Department of Physical Geography Periglacial and glacial landform mapping in the Las Veguitas catchment, Cordillera Frontal of the Andes (Argentina) Eirini Makopoulou Master’s thesis NKA 211 Physical Geography and Quaternary Geology, 60 Credits 2018 Preface This Master’s thesis is Eirini Makopoulou’s degree project in Physical Geography and Quaternary Geology at the Department of Physical Geography, Stockholm University. The Master’s thesis comprises 60 credits (two terms of full-time studies). Supervisors have been Peter Kuhry at the Department of Physical Geography, Stockholm University and Dario Trombotto at the Geocryology, CONICET, Mendoza (Argentina). Examiner has been Johan Kleman at the Department of Physical Geography, Stockholm University. The author is responsible for the contents of this thesis. Stockholm, 12 June 2018 Lars-Ove Westerberg Vice Director of studies Abstract The semi-arid and arid Andes of South America are characterized by large areas with glacial and periglacial environments. This study focusses on the distribution of glacial and periglacial landforms in the Las Veguitas catchment, Cordillera Frontal, Argentina. A detailed geomorphological map of the Las Veguitas catchment is presented, based on high-resolution elevation data (ALOSPALSAR), satellite imagery (Landsat 8, World View 2, Google Earth), and field studies. First, a general topographical analysis is performed for the entire Las Veguitas catchment, including elevation, slope and aspect characteristics. Second, the altitudinal range of glacial features (glaciers, debris covered glaciers and thermokarst ponds on glaciers) and the altitudinal range and predominant aspect of periglacial features (active, inactive and fossil rock glaciers) are analyzed. Currently, glaciers are restricted to ≥ 4300m, but moraines are identified to elevations of c. 3200m. Active rock glaciers extend down to c. 3450m and have a more southern aspect then both inactive and fossil rock glaciers. Third, a temporal analysis has been performed of glacier and rock glacier flow using a time series of remote sensing images. Glacier flow traced by the displacement of thermokarst lake features (2006-2016) had a mean velocity of 6.66m/yr. The mean velocity of rock glaciers (1963-2017) was much lower at 0.63m/yr. Finally, the thesis discusses limitations and uncertainties in study methods and suggestions for further research activities. Keywords: geomorphological map, glaciers, thermokarst lakes, mountain permafrost, rock glaciers, Argentinean Andes, remote sensing images, ArcGIS, spatial and temporal analyses Contents 1 Introduction ............................................................................................................................ 5 2 Background ............................................................................................................................ 7 2.1 The Cordillera de los Andes ........................................................................................... 7 2.2. Glacial history in the Central Andes ............................................................................. 8 2.3 Glacial Processes and landforms .................................................................................... 9 2.4 Periglacial Processes and landforms ............................................................................ 11 3 Study area............................................................................................................................. 15 3.1 Geology ........................................................................................................................ 15 3.2 Climate ......................................................................................................................... 16 3.3 Vegetation cover .......................................................................................................... 17 3.4 Permafrost distribution ................................................................................................. 17 4 Material and Methods .......................................................................................................... 17 4.1 Pre-field preparatory steps .................................................................................................... 19 4.2 Fieldwork ................................................................................................................................ 20 4.3 Final processing ..................................................................................................................... 21 4.4 Temporal analysis .................................................................................................................. 22 5 Results .................................................................................................................................. 23 5.1 Topography Maps ........................................................................................................ 23 5.2 Land cover and SAVI maps ......................................................................................... 25 5.3 The geomorphological map .......................................................................................... 25 6 Spatial and temporal analyses .............................................................................................. 27 6.1 Topographic analysis ................................................................................................... 27 6.1.1 Elevation, slope and aspect........................................................................................... 27 6.1.2 Landform coverage ........................................................................................................ 29 6.1.3 Altitudinal distribution of current glacial features .................................................... 29 6.1.4 Altitudinal distribution and aspect of rock glaciers .................................................. 31 6.2 Temporal Analysis ....................................................................................................... 33 6.2.1 Thermokarst lake displacement in debris covered glacier (2006-2016)................. 33 6.2.2 Stepanek and Franke rock glacier flow (1963-2017) ................................................ 35 7 Discussion ............................................................................................................................ 37 8 Conclusions .......................................................................................................................... 39 3 9 Limitations and further research .......................................................................................... 40 Acknowledgments................................................................................................................... 41 References ............................................................................................................................... 42 Appendix ................................................................................................................................. 45 4 1 Introduction The Central Andes of South America between Santiago, Chile and Mendoza, Argentina, consists of three major parts: the Cordillera Principal, the Cordillera Frontal, and the Precordillera. The Argentinean Andes have abundant mineral resources that attract mining (Angillieri, 2016). Many deposits are located at higher elevations in periglacial environments. High altitudes in combination with low mean annual air temperature are the main factors for Andean permafrost (Trombotto, 2000). Table 1 includes variable information about the climate, the types of landforms, and the geographic region for every mountain permafrost zone along the Cordillera de los Andes (Garleff and Stingl, 1986). In Argentina, the presence of continuous permafrost depends on topography and a mean annual temperature of -2o C to -4oC. At 33o S, it is found at > 4200m. The discontinuous permafrost zone can be identified by the presence of rock glaciers (Barsch, 1977). Currently, the lower permafrost limit in the Central Andes is generally found at an elevation of 3700-3800m (Trombotto, 2000). The term island permafrost was introduced for landform features found as isolated patches at c. 4000m and relict permafrost is represented by frozen ground at elevations as low as 3400m, predominantly in rock glaciers (Trombotto, 2000). Knowledge about the spatial distribution of rock glaciers and permafrost is important for studies that include the environment and water management, because rock glaciers are stores of frozen water (Brenning, 2008). In the high Andes of Argentina and Chile, glacial and periglacial processes have been studied since the 1970s (Corte, 1976; Wayne, 1984; Lothar, 1996; Trombotto 2000; Trombotto et al., 1999, 2004; Trombotto and Borzotta, 2009; Azocar, 2010; Angillieri, 2016). Knowledge of landforms, surface processes, and material distribution supplies critical information for land practices, especially in dynamic and complex mountainous areas (Barsch et al., 1987). A geomorphological map should contain information about lithology, morphography, structure, hydrography, age, and process or genesis (Gustavsson et al., 2006). This thesis aims to visualize and understand the landscape and its dynamics in the area of Las Veguitas, Central Andes, by mapping glacial and periglacial landforms. The general description of the geomorphology in this region has been presented by Wayne (1984),
Recommended publications
  • Ice on the Rocks: a Glacier Shapes the Land
    Title Advance Preparation Ice on the Rocks: A Glacier Shapes the 1. Place rocks and sand in each bowl and add Land 2.5 cm of water. Allow the sand to settle, and freeze the contents solid. Later, add water until Investigative Question the bowls are nearly full and again freeze What are glaciers and how did they change the solid. These are the "glaciers" for part 1. landscape of Illinois? 2. Assemble the other materials. You may wish to do parts 1 and 3 in a laboratory setting Overview or out-of-doors because these activities are Students learn how glaciers, through abrasion, likely to be messy. transportation, and deposition, change the 3. Copy the student pages. surfaces over which they flow. Introducing the Activity Objective Hold up a square, normal-sized ice cube. Next Students conduct simulations and demonstrate to it hold up a toothpick that is as tall as the what a glacier does and how it can change the cube is thick. Ask students to picture the tallest landscape. building in Chicago, the Sears Tower. If the toothpick represents the Sears Tower, the ice Materials cube represents a glacier. The Sears Tower is Introductory activity: an ice cube and a about as tall as a glacier was thick! That was toothpick. the Wisconsinan glacier that was over 400 Part 1. For each group of five students: two meters thick and covered what is now the city plastic 1- or 2-qt. bowls; several small, of Chicago! irregularly shaped rocks or pebbles; a handful of coarse sand; a common, unglazed brick or a Procedure masonry brick (washed and cleaned); several Part 1 flat paving stones (limestone); water; access to 1.
    [Show full text]
  • 1922 Elizabeth T
    co.rYRIG HT, 192' The Moootainetro !scot1oror,d The MOUNTAINEER VOLUME FIFTEEN Number One D EC E M BER 15, 1 9 2 2 ffiount Adams, ffiount St. Helens and the (!oat Rocks I ncoq)Ora,tecl 1913 Organized 190!i EDITORlAL ST AitF 1922 Elizabeth T. Kirk,vood, Eclttor Margaret W. Hazard, Associate Editor· Fairman B. L�e, Publication Manager Arthur L. Loveless Effie L. Chapman Subsc1·iption Price. $2.00 per year. Annual ·(onl�') Se,·ent�·-Five Cents. Published by The Mountaineers lncorJ,orated Seattle, Washington Enlerecl as second-class matter December 15, 19t0. at the Post Office . at . eattle, "\Yash., under the .-\0t of March 3. 1879. .... I MOUNT ADAMS lllobcl Furrs AND REFLEC'rION POOL .. <§rtttings from Aristibes (. Jhoutribes Author of "ll3ith the <6obs on lltount ®l!!mµus" �. • � J� �·,,. ., .. e,..:,L....._d.L.. F_,,,.... cL.. ��-_, _..__ f.. pt",- 1-� r�._ '-';a_ ..ll.-�· t'� 1- tt.. �ti.. ..._.._....L- -.L.--e-- a';. ��c..L. 41- �. C4v(, � � �·,,-- �JL.,�f w/U. J/,--«---fi:( -A- -tr·�� �, : 'JJ! -, Y .,..._, e� .,...,____,� � � t-..__., ,..._ -u..,·,- .,..,_, ;-:.. � --r J /-e,-i L,J i-.,( '"'; 1..........,.- e..r- ,';z__ /-t.-.--,r� ;.,-.,.....__ � � ..-...,.,-<. ,.,.f--· :tL. ��- ''F.....- ,',L � .,.__ � 'f- f-� --"- ��7 � �. � �;')'... f ><- -a.c__ c/ � r v-f'.fl,'7'71.. I /!,,-e..-,K-// ,l...,"4/YL... t:l,._ c.J.� J..,_-...A 'f ',y-r/� �- lL.. ��•-/IC,/ ,V l j I '/ ;· , CONTENTS i Page Greetings .......................................................................tlristicles }!}, Phoiitricles ........ r The Mount Adams, Mount St. Helens, and the Goat Rocks Outing .......................................... B1/.ith Page Bennett 9 1 Selected References from Preceding Mount Adams and Mount St.
    [Show full text]
  • 1961 Climbers Outing in the Icefield Range of the St
    the Mountaineer 1962 Entered as second-class matter, April 8, 1922, at Post Office in Seattle, Wash., under the Act of March 3, 1879. Published monthly and semi-monthly during March and December by THE MOUNTAINEERS, P. 0. Box 122, Seattle 11, Wash. Clubroom is at 523 Pike Street in Seattle. Subscription price is $3.00 per year. The Mountaineers To explore and study the mountains, forests, and watercourses of the Northwest; To gather into permanent form the history and traditions of this region; To preserve by the encouragement of protective legislation or otherwise the natural beauty of Northwest America; To make expeditions into these regions in fulfillment of the above purposes; To encourage a spirit of good fellowship among all lovers of outdoor Zif e. EDITORIAL STAFF Nancy Miller, Editor, Marjorie Wilson, Betty Manning, Winifred Coleman The Mountaineers OFFICERS AND TRUSTEES Robert N. Latz, President Peggy Lawton, Secretary Arthur Bratsberg, Vice-President Edward H. Murray, Treasurer A. L. Crittenden Frank Fickeisen Peggy Lawton John Klos William Marzolf Nancy Miller Morris Moen Roy A. Snider Ira Spring Leon Uziel E. A. Robinson (Ex-Officio) James Geniesse (Everett) J. D. Cockrell (Tacoma) James Pennington (Jr. Representative) OFFICERS AND TRUSTEES : TACOMA BRANCH Nels Bjarke, Chairman Wilma Shannon, Treasurer Harry Connor, Vice Chairman Miles Johnson John Freeman (Ex-Officio) (Jr. Representative) Jack Gallagher James Henriot Edith Goodman George Munday Helen Sohlberg, Secretary OFFICERS: EVERETT BRANCH Jim Geniesse, Chairman Dorothy Philipp, Secretary Ralph Mackey, Treasurer COPYRIGHT 1962 BY THE MOUNTAINEERS The Mountaineer Climbing Code· A climbing party of three is the minimum, unless adequate support is available who have knowledge that the climb is in progress.
    [Show full text]
  • High-Mountain Permafrost in the Austrian Alps (Europe)
    HIGH-MOUNTAIN PERMAFROST IN THE AUSTRIAN ALPS (EUROPE) Gerhard Karl Lieb Institute of Geography University of Graz Heinrichstrasse 36 A-8010 Graz e-mail: [email protected] Abstract Permafrost research in the Austrian Alps (Eastern Alps) is based on a variety of methods, including at large scales, the measurement of the temperature of springs and of the base of winter snow cover, and at small scales, mainly an inventory of some 1450 rock glaciers. Taking all the information available into consideration, the lower limit of discontinuous permafrost is situated near 2500 m in most of the Austrian Alps. These results can be used for modelling the permafrost distribution within a geographical information system. Detailed investi- gations were carried out in the Doesen Valley (Hohe Tauern range) using additional methods, including several geophysical soundings. In this way, realistic estimates of certain permafrost characteristics and the volume of a large active rock glacier (some 15x106m3) were possible. This rock glacier has been chosen as a monitoring site to observe the effects of past and future climatic change. Introduction snow cover (BTS) and geophysical soundings, such as seismic, geoelectric, electromagnetic and ground pene- Although mountain permafrost in the Austrian Alps trating radar surveys have been published (survey and has caused construction problems and damage to buil- references in Lieb, 1996). The best results for mapping dings at several high-altitude locations, specific investi- the mere existence of permafrost were obtained by mea- gations of permafrost did not start until 1980. Since suring spring temperatures and BTS, both procedures then, studies of the distribution and certain characteris- being easily applicable and providing quite accurate tics of permafrost have been carried out at a number of interpretation.
    [Show full text]
  • Late Wisconsin Climate Inferences from Rock Glaciers in South-Central
    LateWisconsin climatic inlerences from rock glaciers in south-centraland west-central New Mexico andeast-central Arizona byJohn W. Blagbrough, P0 Box8063, Albuquerque, NewMexico 87198 Abstract Inactive rock glaciersof late Wisconsin age occur at seven sites in south-central and west-central New Mexico and in east-centralArizona. They are at the base of steep talus in the heads of canyons and ravines and have surfacefeatures indicating they are ice-cemented (permafrost) forms that moved by the flow of interstitial ice. The rock glaciersindicate zones of alpine permafrost with lower levels that rise from approximately 2,400m in the east region to 2,950 m in the west. Within the zones the mean annual temperaturewas below freezing, and the climatewas marked by much diurnal freezing and thawing resulting in the production of large volumes of talus in favorableterrain. The snow cover was thin and of short duration, which fa- vored ground freezing and cryofraction. The rock glaciers in the east region occur near the late Wisconsin 0'C air isotherm and implv that the mean annual temperature was depressedapproximately 7 to 8'C during a periglacial episodein the late Wisconsin.A dry continental climate with a seasonaldistribution of precipitation similar to that of the present probably prevailed, and timberline former timberlines. may have been depresseda minimum of 1,240m. The rise in elevation of the rock glaciersfrom east to west acrossthe region is attributed to greater snowfall in west-centralNew Mexico and east-centralArizona, which reducedthe inten- sity and depth of ground freezing near the late Wisconsin 0"C air isotherm.
    [Show full text]
  • Alaska Range
    Alaska Range Introduction The heavily glacierized Alaska Range consists of a number of adjacent and discrete mountain ranges that extend in an arc more than 750 km long (figs. 1, 381). From east to west, named ranges include the Nutzotin, Mentas- ta, Amphitheater, Clearwater, Tokosha, Kichatna, Teocalli, Tordrillo, Terra Cotta, and Revelation Mountains. This arcuate mountain massif spans the area from the White River, just east of the Canadian Border, to Merrill Pass on the western side of Cook Inlet southwest of Anchorage. Many of the indi- Figure 381.—Index map of vidual ranges support glaciers. The total glacier area of the Alaska Range is the Alaska Range showing 2 approximately 13,900 km (Post and Meier, 1980, p. 45). Its several thousand the glacierized areas. Index glaciers range in size from tiny unnamed cirque glaciers with areas of less map modified from Field than 1 km2 to very large valley glaciers with lengths up to 76 km (Denton (1975a). Figure 382.—Enlargement of NOAA Advanced Very High Resolution Radiometer (AVHRR) image mosaic of the Alaska Range in summer 1995. National Oceanic and Atmospheric Administration image mosaic from Mike Fleming, Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska. The numbers 1–5 indicate the seg- ments of the Alaska Range discussed in the text. K406 SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD and Field, 1975a, p. 575) and areas of greater than 500 km2. Alaska Range glaciers extend in elevation from above 6,000 m, near the summit of Mount McKinley, to slightly more than 100 m above sea level at Capps and Triumvi- rate Glaciers in the southwestern part of the range.
    [Show full text]
  • The Autogenic Landform Change in a Fluvial-Aeolian Interacting Field
    Fifth Intl Planetary Dunes Workshop 2017 (LPI Contrib. No. 1961) 3001.pdf IN DYNAMIC EQUILIBRIUM: THE AUTOGENIC LANDFORM CHANGE IN A FLUVIAL-AEOLIAN INTERACTING FIELD. B. Liu 1 and T. Coulthard 2, 1 College of the Environment and Ecology, Xiamen Univer- sity, Xiamen, Xiang’an South Road, 361102 China, [email protected], 2 School of Environmental Sciences, University of Hull, Cottingham Road, HU6 7SR United Kingdom, [email protected]. Aeolian and fluvial systems are usually studied in- doubtedly due to the influence of climatic change, tec- dependently which leaves many questions unresolved tonics or even human activities. Nevertheless, this as- in terms of how they interact. When sand dunes and sumption could has prevented researchers from consid- rivers coincide with each other, the interaction of sedi- ering that large scale of landform instability may be ment transport fluxes between the two systems may inherent and driven by internal forces in the system in lead to change in either or both systems therefore can dynamic equilibrium. Hence, a sudden landscape significantly change surface morphology. An inventory change may be inherent in the normal development of a is presented from 230 globally distributed study sites fluvial-aeolian interacting field and that a change in an from locations where fluvial and aeolian systems inter- external variable is not always required for a signifi- act with each other. At each location key attributes, cant geomorphic event to occur but depends on the wind/river direction, net sand transport direction, dune system intrinsic geomorphic threshold. If this geo- morphology, river channel pattern were identified and morphic threshold condition can be identified, not only relationships between each factors were analyzed.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Landform Geography (4 Credit Hours) Course Description: Hydrolo
    GEOGRAPHY 201 LANDFORM GEOGRAPHY BULLETIN INFORMATION GEOG 201 - Landform Geography (4 credit hours) Course Description: Hydrology, soil science, and interpretation of physical features formed by water, wind, and ice, with emphasis on environmental change Note: Three hours of lecture and one two-hour laboratory per week. Instructor Contact Information: SAMPLE COURSE OVERVIEW This course is an introduction to landforms; that is, the physical features on the Earth's surface such as valleys, hill-slopes, beaches, sand dunes, and stream channels. Students will learn, from the study of landforms, of past environmental conditions, how they have changed, and the processes involved, including human actions and natural agents. Students also will learn about soils, hydrology, and processes of landform creation by water, wind, ice, and gravity. ITEMIZED LEARNING OUTCOMES Upon successful completion of Geography 201 students will be able to: 1. Explain scientific methods and terminology including hypothesis formulation and testing, experimental design, the method of multiple working hypotheses, and opposite concepts such as inductive vs. deductive reasoning and empirical vs. theoretical methods. 2. Interpret topographic maps and geospatial data such as remote sensing and Geographic Information Systems (GIS). 3. Collect and analyze laboratory and field measurement data to describe Earth materials, soil properties, sediment grain-size distributions, and landform features. 4. Evaluate the merits of various theories of landscape change, such as catastrophism, uniformitarianism, and neo-catastrophism, and to explain how landforms are created and change over various time scales. 5. Comprehend the environmental history of Earth’s surface from the recent geologic past to present with an emphasis on Quaternary processes and changes (the Quaternary is the current geological period that began ~2 million years ago), and interactions between climate, humans, and environmental response during and after the Neolithic period of human culture.
    [Show full text]
  • Area Changes of Glaciers on Active Volcanoes in Latin America Between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery
    Journal of Glaciology (2019), 65(252) 542–556 doi: 10.1017/jog.2019.30 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery JOHANNES REINTHALER,1,2 FRANK PAUL,1 HUGO DELGADO GRANADOS,3 ANDRÉS RIVERA,2,4 CHRISTIAN HUGGEL1 1Department of Geography, University of Zurich, Zurich, Switzerland 2Centro de Estudios Científicos, Valdivia, Chile 3Instituto de Geofisica, Universidad Nacional Autónoma de México, Mexico City, Mexico 4Departamento de Geografía, Universidad de Chile, Chile Correspondence: Johannes Reinthaler <[email protected]> ABSTRACT. Glaciers on active volcanoes are subject to changes in both climate fluctuations and vol- canic activity. Whereas many studies analysed changes on individual volcanoes, this study presents for the first time a comparison of glacier changes on active volcanoes on a continental scale. Glacier areas were mapped for 59 volcanoes across Latin America around 1986, 1999 and 2015 using a semi- automated band ratio method combined with manual editing using satellite images from Landsat 4/5/ 7/8 and Sentinel-2. Area changes were compared with the Smithsonian volcano database to analyse pos- sible glacier–volcano interactions. Over the full period, the mapped area changed from 1399.3 ± 80 km2 − to 1016.1 ± 34 km2 (−383.2 km2)or−27.4% (−0.92% a 1) in relative terms.
    [Show full text]
  • A Review of the Current State and Recent Changes of the Andean Cryosphere
    feart-08-00099 June 20, 2020 Time: 19:44 # 1 REVIEW published: 23 June 2020 doi: 10.3389/feart.2020.00099 A Review of the Current State and Recent Changes of the Andean Cryosphere M. H. Masiokas1*, A. Rabatel2, A. Rivera3,4, L. Ruiz1, P. Pitte1, J. L. Ceballos5, G. Barcaza6, A. Soruco7, F. Bown8, E. Berthier9, I. Dussaillant9 and S. MacDonell10 1 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT CONICET Mendoza, Mendoza, Argentina, 2 Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Géosciences de l’Environnement, Grenoble, France, 3 Departamento de Geografía, Universidad de Chile, Santiago, Chile, 4 Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile, 5 Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Bogotá, Colombia, 6 Instituto de Geografía, Pontificia Universidad Católica de Chile, Santiago, Chile, 7 Facultad de Ciencias Geológicas, Universidad Mayor de San Andrés, La Paz, Bolivia, 8 Tambo Austral Geoscience Consultants, Valdivia, Chile, 9 LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France, 10 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile The Andes Cordillera contains the most diverse cryosphere on Earth, including extensive areas covered by seasonal snow, numerous tropical and extratropical glaciers, and many mountain permafrost landforms. Here, we review some recent advances in the study of the main components of the cryosphere in the Andes, and discuss the Edited by: changes observed in the seasonal snow and permanent ice masses of this region Bryan G. Mark, The Ohio State University, over the past decades. The open access and increasing availability of remote sensing United States products has produced a substantial improvement in our understanding of the current Reviewed by: state and recent changes of the Andean cryosphere, allowing an unprecedented detail Tom Holt, Aberystwyth University, in their identification and monitoring at local and regional scales.
    [Show full text]
  • Glacier Fluctuations During the Past 2000 Years
    Quaternary Science Reviews 149 (2016) 61e90 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Invited review Glacier fluctuations during the past 2000 years * Olga N. Solomina a, , Raymond S. Bradley b, Vincent Jomelli c, Aslaug Geirsdottir d, Darrell S. Kaufman e, Johannes Koch f, Nicholas P. McKay e, Mariano Masiokas g, Gifford Miller h, Atle Nesje i, j, Kurt Nicolussi k, Lewis A. Owen l, Aaron E. Putnam m, n, Heinz Wanner o, Gregory Wiles p, Bao Yang q a Institute of Geography RAS, Staromonetny-29, 119017 Staromonetny, Moscow, Russia b Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA c Universite Paris 1 Pantheon-Sorbonne, CNRS Laboratoire de Geographie Physique, 92195 Meudon, France d Department of Earth Sciences, University of Iceland, Askja, Sturlugata 7, 101 Reykjavík, Iceland e School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA f Department of Geography, Brandon University, Brandon, MB R7A 6A9, Canada g Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT CONICET Mendoza, CC 330 Mendoza, Argentina h INSTAAR and Geological Sciences, University of Colorado Boulder, USA i Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway j Uni Research Climate AS at Bjerknes Centre for Climate Research, Bergen, Norway k Institute of Geography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria l Department of Geology,
    [Show full text]