Initial Report on Invertebrate Survey Findings from Across St Helena

Total Page:16

File Type:pdf, Size:1020Kb

Initial Report on Invertebrate Survey Findings from Across St Helena Initial Report on Invertebrate Survey Findings from across St Helena Liza Fowler, Sheena Isaac, Natasha Stevens St Helena National Trust DPLUS040 Securing the future for St Helena’s endemic invertebrates 1 Contents Introduction ...................................................................................................................................... 2 Background ....................................................................................................................................... 3 Method ............................................................................................................................................. 4 Results .............................................................................................................................................. 3 Are invasive predatory species impacting native species and their habitats? .................................. 4 What are the effects of seasonality on invertebrates? ..................................................................... 8 What is the invertebrate diversity and abundance difference between natural, restored and non- native habitats? .............................................................................................................................. 15 The effect of conservation efforts for habitats on invertebrates. ................................................... 46 Are there shifts of Invertebrate due to Global Warming? .............................................................. 47 Acknowledgements ........................................................................................................................ 48 References ...................................................................................................................................... 49 1 2 Introduction This document reports on the findings of an invertebrate survey on the island of St Helena, primarily the results of malaise traps operated from January to November 2017. This is complemented by other work undertaken during DPLUS040. The aim of the survey was to determine species abundance, diversity and distribution over a longer time period than previously undertaken by any invertebrate survey. Several specific research questions relating to invertebrates were examined, including effects of invasive predatory species, seasonality, conservation efforts, diversity and abundance, and global warming. The survey was part of the St Helena National Trust’s ‘Securing the future for St Helena’s endemic invertebrates’ project. It was funded by the Darwin Initiative through funds allocated by the UK Government. St Helena is a small volcanic island, situated in the South Atlantic Ocean, approximately 1,800km from the west coast of Angola and 3,200km from the east coast of Brazil. It is a British Overseas Territory which is hugely important in terms of its biodiversity, with a high level of endemism. Around 30% of the endemic species of the UK and its Overseas Territories are found on St Helena (Churchyard 2014). This small island is home to many endemic plants, birds, and marine life, but most importantly of all, St Helena hosts a vast array of invertebrates unique to the island, making it a global hotspot for invertebrate biodiversity. Figure 1. Map showing location of St Helena (businessinsider.com) St Helena is approximately 10 miles by 6 miles in size, and has a diverse range of habitats, ranging from desert to cloud forest, with the high central ridge (the Peaks) reaching 823m above sea level. Small pockets of native vegetation persist in isolated locations, but most of the island is vegetated by non-native, often invasive species. The outskirts of the island are primarily rocky and barren slopes, denuded of native vegetation by the historic presence of 2 3 goats, with rabbits and other pest species now continuing to prevent natural recolonization of many native species without intensive restoration efforts. This legacy of environmental change is likely to have had great impacts on invertebrate biodiversity on St Helena. Despite significant changes to its environment, there are still known to be over 400 invertebrate species endemic to St Helena. Three of the highest profile species are presumed extinct (Giant Earwig Labidura herculeana, Giant Ground Beetle Aplothorax burchelli, the St Helena Darter Dragonfly Sympetrum dilatatum), and other easily recognisable species are at risk of extinction if no action is taken to protect and conserve them (e.g. the Critically Endangered Spiky yellow woodlouse Pseudolaureola atlantica). However, a lack of baseline information about invertebrate abundance, diversity and distribution, as well as limited identification skills on island, has hindered efforts to protect and conserve these. The survey reported in this document has greatly improved knowledge on St Helena’s invertebrates. Questions that was aimed to be answered during this project(change to question) Aims of the surveys during this project: 1. What are the impact of invasive predatory species on native invertebrate species and habitats? 2. What are the effects of seasonality on invertebrates? 3. What are the effects of conservation efforts for habitats on invertebrates? 4. What are the invertebrate diversity and abundance differences between natural, restored and non-native habitats? 5. What are the Assessments made on shifts in distribution of invertebrates attributable to global warming? Background Historic surveys, previous knowledge and projects Many well-known entomological and amateurs have visited and contributed to collections and publications on St Helena’s fauna dating back as far as the 1700’s. Joseph Banks 1771, Charles Darwin in 1836, the Swedish Academy of Sciences contributed in 1853, In 1860 Mr. C. Bewicke made a small collection of beetles, and Thomas Vernon Wollaston (1822-78) arrived in 1860 competent to naturalist John Charles Melliss who later arrived with his wife Edith in September 1875 to 1876. Captain W.H. Turton in 1884 to 1886 interested in subfossil but collected extinct endemic snails and encountered Arthur Loveridge in 1957 that retired on island and began studying the island's fauna. More recently, the invertebrates of St Helena have been subject to several surveys over the islands history. Targeted surveys have included an expedition by Belgian scientists in the late 3 4 1960s (1965-1967), a Central Peaks Survey by Mendel, Ashmole and Ashmole (2008), and surveys around the construction of the St Helena Airport (Ashmole and Ashmole, 2004, Pryce and Paajanen, 2014). These have most often focussed on a single season or specific areas of the island. Their research outcomes were generally focussed on the taxonomy and biology of species, with the ecology and habitats, with the role of invertebrates in the environment, being of lower priority. Buglife recognised that there was a gap in knowledge and understanding of St Helena’s invertebrates, so they supported the project Bugs on the Brink that saw a more holistic and ecosystem-based approach to habitat restoration on St Helena. This resulted in strategic and practical conservation working towards halting the loss of St Helena's endemic invertebrates. Bugs on the Brink had successfully integrated invertebrate work of the St Helena Government (SHG) and NGOs, resulting in a five year invertebrate strategy. Two hundred and eighty five invertebrates are now protected through new legislation and red listing started that initially started as just sixteen invertebrates. Ten weeks of training saw forty- one training opportunities delivered for SHG and NGO staff and a dataset collated with 3,000 species baseline and 10,000 records; and an invertebrate guide and reference collection established. There was also extensive engagement with Saints (local people from St Helena) with 77 education events with 1720 opportunities for children; and with 39 teachers trained on invertebrate education and wide audience of islanders . This survey builds on a previous project, Bugs on the Brink, run by the St Helena National Trust, to improve capacity on the island to identify and record invertebrates, and improve recognition of this important biological resource. While there are over 400 extant endemic species, there are also numerous non-native and invasive species that have colonised the island since the island was discovered in 1502. While the past 30 years have seen increased conservation efforts on St Helena, these have primarily focussed on improving the outlook for endangered plant species, with less attention on the smaller inhabitants that may also benefit from conservation action. This project built on the work achieved by the Bugs on the Brink project, provided an important baseline to further improve invertebrate conservation management and track changes in distribution and/or abundance of species, both native and non-native. Method (1) Survey methods The survey used standard invertebrate trapping methods including malaise traps, pitfall traps and targeted hand or sweep net searches, as well as opportunistic observations. Complementary 4 5 to this are two reports completed by visiting specialists on the project Dr Howard Mendel, a Coleopterist from the Natural History Museum, London, and Dr Timm Karisch, a Lepidopterist from the Museum for Natural Science and Prehistory, Germany (Karisch 2018 and Mendel 2018) Malaise traps are passive and capture predominantly flying invertebrates that are on an intercept path or those that crawl up into the collection
Recommended publications
  • Taxonomic Status of Halophytes in Coastal Kachchh District, Gujarat Shah JP* Research Fellow, Earth and Eco-Science Research Institute, India
    Open Access Journal of Advancements in Plant Science RESEARCH ARTICLE ISSN: 2639-1368 Taxonomic Status of Halophytes in Coastal Kachchh District, Gujarat Shah JP* Research Fellow, Earth and Eco-science Research Institute, India *Corresponding author: Shah JP, Research Fellow, Earth and Eco-science Research Institute, 119, Lions nagar, Mundra Road, Bhuj- Kachchh, India, Tel: 09429401571, E-mail: [email protected] Citation: Shah JP (2018) Taxonomic Status of Halophytes in Coastal Kachchh District, Gujarat. J Adv Plant Sci 1: 201 Article history: Received: 26 May 2018, Accepted: 30 July 2018, Published: 02 August 2018 Abstract District Kachchh, despite having arid climate and long coastline, can be considered as biologically rich region. For the present study the floristic surveys of both inland and coastal plants were carried out during July 2011 to October 2012, which resulted in record of total of 203 angiosperm taxa. They fall under 145 genera and 57 families. Out of that 102 halophytic species were recorded during rapid survey that belongs to 53 genera and 37 families. The dominant families were Poaceae (16 taxa), Asteraceae, Cyperaceae, and Chenopodiaceae present with seven taxa. Kachchh represents mainly one worst invasive exotic species namely Prosopis jullflora, which may pose survival threat to the indigenous flora. Out of these, 74 species distributed predominantly among xerohalophytic communities naturally and 28 hydrohalophytic have been listed by present survey with special reference to their life form and main localities of their distribution. Keywords: Vegetation; Flora; Halophyte; Kachchh; Coastal Introduction Halophytes are defined as plants that naturally inhabit saline environments and benefit from having substantial amounts of salt in the growth media.
    [Show full text]
  • Entomology of the Aucklands and Other Islands South of New Zealand: Lepidoptera, Ex­ Cluding Non-Crambine Pyralidae
    Pacific Insects Monograph 27: 55-172 10 November 1971 ENTOMOLOGY OF THE AUCKLANDS AND OTHER ISLANDS SOUTH OF NEW ZEALAND: LEPIDOPTERA, EX­ CLUDING NON-CRAMBINE PYRALIDAE By J. S. Dugdale1 CONTENTS Introduction 55 Acknowledgements 58 Faunal Composition and Relationships 58 Faunal List 59 Key to Families 68 1. Arctiidae 71 2. Carposinidae 73 Coleophoridae 76 Cosmopterygidae 77 3. Crambinae (pt Pyralidae) 77 4. Elachistidae 79 5. Geometridae 89 Hyponomeutidae 115 6. Nepticulidae 115 7. Noctuidae 117 8. Oecophoridae 131 9. Psychidae 137 10. Pterophoridae 145 11. Tineidae... 148 12. Tortricidae 156 References 169 Note 172 Abstract: This paper deals with all Lepidoptera, excluding the non-crambine Pyralidae, of Auckland, Campbell, Antipodes and Snares Is. The native resident fauna of these islands consists of 42 species of which 21 (50%) are endemic, in 27 genera, of which 3 (11%) are endemic, in 12 families. The endemic fauna is characterised by brachyptery (66%), body size under 10 mm (72%) and concealed, or strictly ground- dwelling larval life. All species can be related to mainland forms; there is a distinctive pre-Pleistocene element as well as some instances of possible Pleistocene introductions, as suggested by the presence of pairs of species, one member of which is endemic but fully winged. A graph and tables are given showing the composition of the fauna, its distribution, habits, and presumed derivations. Host plants or host niches are discussed. An additional 7 species are considered to be non-resident waifs. The taxonomic part includes keys to families (applicable only to the subantarctic fauna), and to genera and species.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Additions, Deletions and Corrections to An
    Bulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe.
    [Show full text]
  • Contribution to the Biosystematics of Celtis L. (Celtidaceae) with Special Emphasis on the African Species
    Contribution to the biosystematics of Celtis L. (Celtidaceae) with special emphasis on the African species Ali Sattarian I Promotor: Prof. Dr. Ir. L.J.G. van der Maesen Hoogleraar Plantentaxonomie Wageningen Universiteit Co-promotor Dr. F.T. Bakker Universitair Docent, leerstoelgroep Biosystematiek Wageningen Universiteit Overige leden: Prof. Dr. E. Robbrecht, Universiteit van Antwerpen en Nationale Plantentuin, Meise, België Prof. Dr. E. Smets Universiteit Leiden Prof. Dr. L.H.W. van der Plas Wageningen Universiteit Prof. Dr. A.M. Cleef Wageningen Universiteit Dr. Ir. R.H.M.J. Lemmens Plant Resources of Tropical Africa, WUR Dit onderzoek is uitgevoerd binnen de onderzoekschool Biodiversiteit. II Contribution to the biosystematics of Celtis L. (Celtidaceae) with special emphasis on the African species Ali Sattarian Proefschrift ter verkrijging van de graad van doctor op gezag van rector magnificus van Wageningen Universiteit Prof. Dr. M.J. Kropff in het openbaar te verdedigen op maandag 26 juni 2006 des namiddags te 16.00 uur in de Aula III Sattarian, A. (2006) PhD thesis Wageningen University, Wageningen ISBN 90-8504-445-6 Key words: Taxonomy of Celti s, morphology, micromorphology, phylogeny, molecular systematics, Ulmaceae and Celtidaceae, revision of African Celtis This study was carried out at the NHN-Wageningen, Biosystematics Group, (Generaal Foulkesweg 37, 6700 ED Wageningen), Department of Plant Sciences, Wageningen University, the Netherlands. IV To my parents my wife (Forogh) and my children (Mohammad Reza, Mobina) V VI Contents ——————————— Chapter 1 - General Introduction ....................................................................................................... 1 Chapter 2 - Evolutionary Relationships of Celtidaceae ..................................................................... 7 R. VAN VELZEN; F.T. BAKKER; A. SATTARIAN & L.J.G. VAN DER MAESEN Chapter 3 - Phylogenetic Relationships of African Celtis (Celtidaceae) ........................................
    [Show full text]
  • Michael Fibiger 1945 - 2011
    Esperiana Band 16: 7-38 Schwanfeld, 06. Dezember 2011 ISBN 978-3-938249-01-7 Michael FIBIGER 1945 - 2011 Our dear friend and colleague, Michael FIBIGER, died on 16 February, 2011, peacefully and in the presence of the closest members of his family. For close on 18 months he had battled heroically and with characteristic determination against a particularly unpleasant form of cancer, and continued with his writing and research until close to the end. Michael was born on 29 June, 1945, in Hellerup, a suburb of Copenhagen, and began catching moths at the age of nine, particularly in the vicinity of the summer house where they stayed on the north coast of Zealand. By the time he was 11, he wanted to join the Danish Lepidoptera Society but was told he was too young and must wait “a couple of years”. So, exactly two years later he applied again and was accepted – as the youngest-ever Member of the Society. Michael always knew he wanted to be a teacher, and between 1965 and 1970 he attended training college at Hel- lerup Seminarium. Having graduated, he taught Danish, Biology and Special Education at Gentofte School until 1973. In the meantime, he studied Clinical Psychology at the University of Copenhagen from 1970 to 1976, and from 1973 to 1981 he became School Psychologist for elementary schools and high schools in the municipality of Gentofte, work which involved investigation and testing of children with psychiatric problems, counselling, supervi- sion and therapy. He was also an instructor in drug prevention for the Ministry of Education.
    [Show full text]
  • Tribe Species Secretory Structure Compounds Organ References Incerteae Sedis Alphitonia Sp. Epidermis, Idioblasts, Cavities
    Table S1. List of secretory structures found in Rhamanaceae (excluding the nectaries), showing the compounds and organ of occurrence. Data extracted from the literature and from the present study (species in bold). * The mucilaginous ducts, when present in the leaves, always occur in the collenchyma of the veins, except in Maesopsis, where they also occur in the phloem. Tribe Species Secretory structure Compounds Organ References Epidermis, idioblasts, Alphitonia sp. Mucilage Leaf (blade, petiole) 12, 13 cavities, ducts Epidermis, ducts, Alphitonia excelsa Mucilage, terpenes Flower, leaf (blade) 10, 24 osmophores Glandular leaf-teeth, Flower, leaf (blade, Ceanothus sp. Epidermis, hypodermis, Mucilage, tannins 12, 13, 46, 73 petiole) idioblasts, colleters Ceanothus americanus Idioblasts Mucilage Leaf (blade, petiole), stem 74 Ceanothus buxifolius Epidermis, idioblasts Mucilage, tannins Leaf (blade) 10 Ceanothus caeruleus Idioblasts Tannins Leaf (blade) 10 Incerteae sedis Ceanothus cordulatus Epidermis, idioblasts Mucilage, tannins Leaf (blade) 10 Ceanothus crassifolius Epidermis; hypodermis Mucilage, tannins Leaf (blade) 10, 12 Ceanothus cuneatus Epidermis Mucilage Leaf (blade) 10 Glandular leaf-teeth Ceanothus dentatus Lipids, flavonoids Leaf (blade) (trichomes) 60 Glandular leaf-teeth Ceanothus foliosus Lipids, flavonoids Leaf (blade) (trichomes) 60 Glandular leaf-teeth Ceanothus hearstiorum Lipids, flavonoids Leaf (blade) (trichomes) 60 Ceanothus herbaceus Idioblasts Mucilage Leaf (blade, petiole), stem 74 Glandular leaf-teeth Ceanothus
    [Show full text]
  • “Behavior of Sarcocornia Fruticosa Under Salt Stress.”
    Universidad de Almería Escuela Superior de Ingeniería Máster en Producción Vegetal en Cultivos Protegidos Trabajo Fin de Máster “Behavior of Sarcocornia fruticosa under salt stress.” “Tendencias de la distribución de nutrientes en Sarcocornia fruticosa bajo un gradiente salino” Autora: Maria Dolmatova Tutora: Mª Teresa Lao Arenas Behavior of Sarcocornia fruticosa under salt stress. Autora: María Dolmatova Tutora: Mª Teresa Lao Arenas Trabajo Fin de máster: diciembre 2012 1. Abstract Soil salinity, one of the major abiotic stresses reducing agricultural productivity, affects large terrestrial areas of the world; the need to produce salt-tolerant crops is evident. Most crops in agricultural production are sensitive to salt stress. Consequently, salinity is an ever-present threat to agriculture, especially in areas where secondary salinisation has developed through irrigation or deforestation. In turn, the research on salt-tolerant plants (known as halophytes plants) may provide the solution to this problem. Halophytes have evolved to grow in saline soils, developing a wide range of adaptations. In the present work we study the behavior of Sarcocornia fruticosa under salt stress. Two trials have carried out: Trial 1 with 2 saline treatments (3,51 and 58 mM NaCl) and trial 2 with three treatments (100 mM, 200 mM and 300 mM NaCl). The results indicate that S. fruticosa is capable of tolerating very high and continued exposure to salt, levels of 300 mM of NaCl presents similar biomass related 100 mM of NaCl. Neverhteless, the branches died increase significantly under high level of salinity. 2. Keywords: Salt, NaCl, native plant. 3. Introduction Almost three quarters of the surface of the earth is covered by salt water and so it is not surprising that salts affect a significant proportion of the world’s land surface (Flowers and Flowers, 2005).
    [Show full text]
  • Taxa Names List 6-30-21
    Insects and Related Organisms Sorted by Taxa Updated 6/30/21 Order Family Scientific Name Common Name A ACARI Acaridae Acarus siro Linnaeus grain mite ACARI Acaridae Aleuroglyphus ovatus (Troupeau) brownlegged grain mite ACARI Acaridae Rhizoglyphus echinopus (Fumouze & Robin) bulb mite ACARI Acaridae Suidasia nesbitti Hughes scaly grain mite ACARI Acaridae Tyrolichus casei Oudemans cheese mite ACARI Acaridae Tyrophagus putrescentiae (Schrank) mold mite ACARI Analgidae Megninia cubitalis (Mégnin) Feather mite ACARI Argasidae Argas persicus (Oken) Fowl tick ACARI Argasidae Ornithodoros turicata (Dugès) relapsing Fever tick ACARI Argasidae Otobius megnini (Dugès) ear tick ACARI Carpoglyphidae Carpoglyphus lactis (Linnaeus) driedfruit mite ACARI Demodicidae Demodex bovis Stiles cattle Follicle mite ACARI Demodicidae Demodex brevis Bulanova lesser Follicle mite ACARI Demodicidae Demodex canis Leydig dog Follicle mite ACARI Demodicidae Demodex caprae Railliet goat Follicle mite ACARI Demodicidae Demodex cati Mégnin cat Follicle mite ACARI Demodicidae Demodex equi Railliet horse Follicle mite ACARI Demodicidae Demodex folliculorum (Simon) Follicle mite ACARI Demodicidae Demodex ovis Railliet sheep Follicle mite ACARI Demodicidae Demodex phylloides Csokor hog Follicle mite ACARI Dermanyssidae Dermanyssus gallinae (De Geer) chicken mite ACARI Eriophyidae Abacarus hystrix (Nalepa) grain rust mite ACARI Eriophyidae Acalitus essigi (Hassan) redberry mite ACARI Eriophyidae Acalitus gossypii (Banks) cotton blister mite ACARI Eriophyidae Acalitus vaccinii
    [Show full text]
  • Molekulare Systematik Der Gattung Suaeda (Chenopodiaceae) Und
    Molekulare Systematik der Gattung Suaeda (Chenopodiaceae) und Evolution des C4-Photosynthesesyndroms Inaugural-Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) im Fachbereich Naturwissenschaften der Universität Kassel vorgelegt von: Peter Wolfram Schütze aus Halle/Saale Kassel, November 2008 Betreuer: Prof. Dr. Kurt Weising, Prüfungskommission: Prof. Dr. Kurt Weising (1. Gutachter) Prof. Dr. Helmut Freitag (2. Gutachter) Prof. Dr. Ewald Langer (Beisitzer) Dr. Frank Blattner (Beisitzer) Tag der mündlichen Prüfung: 17. Februar 2009 2 Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung ........................................................................................................................................ 5 1.1. Vorbemerkungen.................................................................................................................... 5 1.2. Charakteristik der Suaedoideae............................................................................................. 6 1.2.1. Systematischer Überblick.............................................................................................. 6 1.2.2. Biologie, Klassifikationsmerkmale und Verbreitung der Sippen.................................... 9 1.2.3. Besonderheiten im Photosyntheseweg....................................................................... 12 1.2.4. Evolutionäre Trends innerhalb der Suaedoideae........................................................ 14 1.2.5. Theorien zur Sippenevolution - eine Synthese
    [Show full text]
  • Research Paper Physicochemical
    Academia Journal of Medicinal Plants 4(8): 001-009, July 2016 DOI: 10.15413/ajmp.2016.0108 ISSN: 2315-7720 ©2016 Academia Publishing Research Paper Physicochemical, Phytochemical and Nutritional values determination of Suaeda fruticosa (Chenopodiaceae) Accepted 20th May, 2016 ABSTRACT A medicinal plant is any plant which, in one or more of its organs, contains substances that can be used for therapeutic purposes or which are precursors for synthesis of useful drugs. Examples of important drugs obtained from plants are digoxin from dried leaves of Digitalis lanata (Family: Scrophulariaceae), quinine and quinidine from the bark of Cinchona species (Family: Rubiaceae). Physicochemical tests on powder and phytochemical tests for determination of secondary metabolites on Suaeda fruticosa dichloromethane extract (SFD) and methanolic extract (SFM) were done. High performance liquid chromatography (HPLC) was used for the quantitative determination of flavonoids using quercetin, myricetin and kaempferol as standards. Different elements were determined by atomic absorption spectrophotometer (AAS) to evaluate the nutritive value of S. fruticosa. Physicochemical tests showed that the values of moisture contents, total ash contents, water insoluble ash, acid insoluble ash, sulphated ash, water soluble extractives and alcohol soluble extractives in S. fruticosa were 2, 74, 34, 9, 20, 46 and 16% respectively. From phytochemical studies, it is estimated that tannins and flavonoids were present in both methanolic and dichloromethane extract of S. fruticosa while saponins and terpenoids were present in methanolic extract and alkaloids and coumarins present in dichloromethane extract. Quantitative determination of flavonoids showed that quercetin, myricetin and Kaempferol present in dichloromethane extract were 19.93, 0.15 and 0.15 mg/ml respectively and in methanolic extract, quercetin and kaempferol was present in quantity of 12.40 and 0.016 mg/ml Seema Abbas, Hammad Saleem, M.
    [Show full text]
  • From Cacti to Carnivores: Improved Phylotranscriptomic Sampling And
    Article Type: Special Issue Article RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: Using and Navigating the Plant Tree of Life Short Title: Walker et al.—Phylotranscriptomic analysis of Caryophyllales From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales Joseph F. Walker1,13, Ya Yang2, Tao Feng3, Alfonso Timoneda3, Jessica Mikenas4,5, Vera Hutchison4, Caroline Edwards4, Ning Wang1, Sonia Ahluwalia1, Julia Olivieri4,6, Nathanael Walker-Hale7, Lucas C. Majure8, Raúl Puente8, Gudrun Kadereit9,10, Maximilian Lauterbach9,10, Urs Eggli11, Hilda Flores-Olvera12, Helga Ochoterena12, Samuel F. Brockington3, Michael J. Moore,4 and Stephen A. Smith1,13 Manuscript received 13 October 2017; revision accepted 4 January 2018. 1 Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048 USA 2 Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108 USA 3 Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK 4 Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH 44074-1097 USA 5 Current address: USGS Canyonlands Research Station, Southwest Biological Science Center, 2290 S West Resource Blvd, Moab, UT 84532 USA 6 Institute of Computational and Mathematical Engineering (ICME), Stanford University, 475 Author Manuscript Via Ortega, Suite B060, Stanford, CA, 94305-4042 USA This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
    [Show full text]