V700 Cygni, a Dynamically Active Binary II

Total Page:16

File Type:pdf, Size:1020Kb

V700 Cygni, a Dynamically Active Binary II Research Paper J. Astron. Space Sci. 29(2), 151-161 (2012) http://dx.doi.org/10.5140/JASS.2012.29.2.151 Stars,Technical Companions, Paper and their Interactions: A Memorial to Robert H. Koch J. Astron. Space Sci. 28(4), 345-354 (2011) V700http://dx.doi.org/10.5140/JASS.2011.28.4.345 Cygni: A Dynamically Active W UMa-type Binary Star II † Chun-HweyImplementation Kim1,2 and and Jang Validation Hae Jeong1,2 of Earth Acquisition Algorithm for 1Department of Astronomy and Space Science, Chungbuk National University, Cheongju 361-763, Korea 2Communication,Chungbuk National University Ocean Observatory, and Chungbuk Meteorological National University, Satellite Cheongju 361-763, Korea Sang-wook Park1, Young-ran Lee1, Byoung-Sun Lee2, Yoola Hwang2, and Un-seob Lee1† An1Ground intensive Systems analysis Division, of 148 Satrec timings Initiative, of V700 Daejeon Cyg 305-811,was performed, Korea including our new timings and 59 timings calculated from2Satellite the System super Researchwide angle Team, search Electronics for planets and Telecommunications (SWASP) observations, Research and Institute, the dynamical Daejeon evidence305-700, Korea of the W UMa W subtype binary was examined. It was found that the orbital period of the system has varied over approximately 66y in two complicated cyclical components superposed on a weak upward parabolic path. The orbital period secularly increasedEarth acquisition at a rate is to ofsolve +8.7 when (±3.4) earth × can10-9 be day/year, visible from which satellite is one after order Sun acquisition of magnitude during lower launch than and earlythose opera obtained- by previoustion period investigators. or on-station The satellite small anomaly. secular Inperiod this paper, increase the isalgorithm interpreted and testas a result combination of the Communication, of both angular Ocean momentum lossand Meteorological(due to magnetic Satellite braking) (COMS) and Earth mass-transfer acquisition from are presented the less massivein case of component on-station satellite to the moreanomaly massive status. component. The Onealgorithms cyclical for componentthe calculation had of a Earth-pointing 20.y3 period withattitude an controlamplitude parameters of 0.d0037, including and thethose other attitude had directiona 62.y8 period vector, with an amplituderotation matrix, of 0. andd0258. maneuver The components time and duration had an are approximate based on COMS 1:3 relation configuration between (Eurostar their periods3000 bus). and The a coordinate1:7 ratio between theirsystem amplitudes. uses the reference Two plausible initial frame. mechanisms The constraint (i.e., calculatingthe light-time available effects time-slot [LTEs] tocaused perform by thethe earth presence acquisition of additional bodiesconsiders and eclipse, the Applegate angular separation, model) solarwere local considered time, and as infra-red possible earth explanations sensor blinding for conditions.the cyclical The components. results of Elec Based- on tronics and Telecommunications Research Institute (ETRI) are compared with that of the Astrium software to validate the the LTE interpretation, the minimum masses of 0.29 M⊙ for the shorter period and 0.50 M⊙ for the longer one were calculated.implemented The ETRI total software. light contributions were within 5%, which was in agreement with the 3% third-light obtained from the light curve synthesis performed by Yang & Dai (2009). The Applegate model parameters show that the root meanKeywords: square Earth luminosity acquisition, variations attitude control (relative parameter, to the luminosities time-slot, communication, of the eclipsing ocean components) and meteorological are 3 times satellite smaller than the nominal value (∆L/Lp,s ≈ 0.1), indicating that the variations are hardly detectable from the light curves. Presently, the LTE interpretation (due to the third and fourth stars) is preferred as the possible cause of the two cycling period changes.1. INTRODUCTION A possible evolutionary implication for the V700 Cygsun acquisitionsystem is discussed. is completed, the position of the earth is kept in the vision of the satellite by adjusting the three- KeCommunication,ywords: W UMa-type Ocean star, and V700 Meteorological Cyg, period change, Satellite light-time axis effects,attitude ofmagnetic the satellite activities with reference to the relative (COMS, Chollian) was launched on July 26, 2010 and is position of the sun and the satellite. When the initial at- now in operation successfully (Lee et al. 2011). COMS titude of the satellite is stabilized, the normal attitude is Satellite Ground Control System (SGCS) is developed by kept by obtaining the field of view (FOV) toward the earth 1. INTRODUCTION star is 374K cooler than the less massive 0.60 M⊙ star with a Electronics and Telecommunications Research Institute by means of the earth observation sensor. temperature of 5770 K. The fill-out factor is approximately (ETRI), and the algorithm of parameters and events for This paper describes mainly the earth acquisition pro- The eclipsing nature of V700 Cyg (OV 26, 2MASS 27% in moderate contact with one another. The O-C COMS satellite configuration is developed according cess after the sun acquisition in case that the status of J20310525 + 3847006, CCDM J20311 + 3847A, WDS J20311 diagram with the light elements (C = HJD 2445163.4896 + to the document provided from Astrium to ETRI (Laine COMS changes from on-station to abnormal. Based on + 3847A) was discovered by Whitney (1952) who classified 0.d340045602 E) by Niarchos et al. (1997) showed a short- 2006). the orbit information for the COMS earth acquisition, the d it asIn athe W launchUMa-type and binaryearly operation star with period a period (LEOP) of 0. or340048. in articleterm describes period instability.the method A closeto search physical the propercompanion time that was m Thethe situation first photoelectric where the attitudeBV light ofcurves a satellite with isan not O ’Connellnor- periodsapproximately considering 1.4 the fainter constraints in the forV bandpass calculating than the V700 Cyg effectmal, the (Max satellite II fainter attitude than is notMax known I) were and secured thus it byshould Niarchos appropriatewas noted time by when Eggen the (1967). earth acquisitionV700 Cyg was can later be per catalogued- etbe al.fixed (1997) to a specific who studied direction global in order photometric to acquire properties the nor- of formedas CCDMfollowing J20311+3847A the sun acquisition. (Dommanget In case of & perform Nys 2002)- and themal systemattitude. through The position light curve of the synthesis sun is used as wellas the as ref period- ing theWDS earth J20311+3847A acquisition for(Mason COMS et at al. the 2001). selected The one earlier of history study.erences According to fix the satellite to those attitude authors, in aV700 specific Cyg direction. is a W UMa the calculatedwas well summarized time period, by the Niarchos algorithm et andal. (1997). simulation W-subtypeThe sun acquisition binary star refers with to thethe process spectral to type fix the of satelG5V- and result forIn attituderecent years, maneuver V700 process, Cyg was maneuver revisited time by Qian and (2003), lite attitude with reference to the solar position. Once the duration is verified. The actually realized earth acquisi- an orbital inclination of 79.9°. The more massive 0.92 M⊙ Molik & Wolf (2004), Xiang et al. (2009) and Yang & Dai This isis anan Open open Access Access article article distributed distributed under under the termsthe terms of the of the ReceivedReceived Nov 15, May 2011 20, Revised 2012 Revised Nov 23, May 2011 26, Accepted 2012 Accepted Nov 25, 2011May 28, 2012 Creative Commons Commons Attribution Attribution Non-Commercial Non-Commercial License License (http://cre (http://- †Corresponding†Corresponding Author Author creativecommons.org/licenses/by-nc/3.0/)ativecommons.org/licenses/by-nc/3.0/) which which permits premits unrestricted unrestricted non-commercial use, use, distribution, distribution, and and reproduction reproduction in any in medium,any medium, E-mail:E-mail: [email protected] [email protected] provided thethe originaloriginal work work is is properly properly cited. cited. Tel: +82-42-365-7919Tel: +82-43-261-3139 Fax: +82-42-365-7500 Fax: +82-43-274-2312 Copyright © The Korean Space Science Society 345 http://janss.kr pISSN: 2093-5587 eISSN: 2093-1409 Copyright © The Korean Space Science Society 151 http://janss.kr plSSN: 2093-5587 elSSN: 2093-1409 J. Astron. Space Sci. 29(2), 151-161 (2012) (2009). Qian (2003) obtained new light elements (C = HJD is a discussion of the implications of existing working 2449999.3003 + 0.d29063148 E) and noted that the short- hypotheses. term period instability detected by Niarchos et al. (1997) is not real but is caused by the use of an incorrect longer period. They also suggested that the orbital period varied 2. OBSERVATIONS AND TIMES OF MINIMA in a cyclical manner with a period of 40y and an amplitude of 0.d0095, which was superposed on a secular period The CCD photometric observations of V700 Cyg for the increasing at a rate of +8.41 × 10-8 d/yr. Molik & Wolf (2004) purpose of timing determination were made on the nights independently analyzed the times of minima that were of November 4 and 12 in 2008 with the 35 cm campus available to them and found only a cyclic period change station reflector at the Chungbuk National University of 46y without any secular change. Yang & Dai (2009) Observatory in Korea. The telescope was equipped with confirmed the result of Qian’s (2003) period study and an SBIG ST-8 CCD imaging system and electrically cooled obtained a cyclic period of 54y, with an amplitude of 0.d0212 with a 19' × 12'field of view. No filters were used in our longer than those identified by Qian (2003) and Molik observations. GSC 3152-527 and GSC 3153-193 were & Wolf (2004). Yang & Dai (2009) derived the rate of the chosen as the comparison and check stars, respectively. secular period increase as +2.89 × 10-8 d/yr, 3 times smaller The instrumentation used and reduction method for the than that of Qian (2003).
Recommended publications
  • Správa O Činnosti Organizácie SAV Za Rok 2017
    Astronomický ústav SAV Správa o činnosti organizácie SAV za rok 2017 Tatranská Lomnica január 2018 Obsah osnovy Správy o činnosti organizácie SAV za rok 2017 1. Základné údaje o organizácii 2. Vedecká činnosť 3. Doktorandské štúdium, iná pedagogická činnosť a budovanie ľudských zdrojov pre vedu a techniku 4. Medzinárodná vedecká spolupráca 5. Vedná politika 6. Spolupráca s VŠ a inými subjektmi v oblasti vedy a techniky 7. Spolupráca s aplikačnou a hospodárskou sférou 8. Aktivity pre Národnú radu SR, vládu SR, ústredné orgány štátnej správy SR a iné organizácie 9. Vedecko-organizačné a popularizačné aktivity 10. Činnosť knižnično-informačného pracoviska 11. Aktivity v orgánoch SAV 12. Hospodárenie organizácie 13. Nadácie a fondy pri organizácii SAV 14. Iné významné činnosti organizácie SAV 15. Vyznamenania, ocenenia a ceny udelené organizácii a pracovníkom organizácie SAV 16. Poskytovanie informácií v súlade so zákonom o slobodnom prístupe k informáciám 17. Problémy a podnety pre činnosť SAV PRÍLOHY A Zoznam zamestnancov a doktorandov organizácie k 31.12.2017 B Projekty riešené v organizácii C Publikačná činnosť organizácie D Údaje o pedagogickej činnosti organizácie E Medzinárodná mobilita organizácie F Vedecko-popularizačná činnosť pracovníkov organizácie SAV Správa o činnosti organizácie SAV 1. Základné údaje o organizácii 1.1. Kontaktné údaje Názov: Astronomický ústav SAV Riaditeľ: Mgr. Martin Vaňko, PhD. Zástupca riaditeľa: Mgr. Peter Gömöry, PhD. Vedecký tajomník: Mgr. Marián Jakubík, PhD. Predseda vedeckej rady: RNDr. Luboš Neslušan, CSc. Člen snemu SAV: Mgr. Marián Jakubík, PhD. Adresa: Astronomický ústav SAV, 059 60 Tatranská Lomnica http://www.ta3.sk Tel.: 052/7879111 Fax: 052/4467656 E-mail: [email protected] Názvy a adresy detašovaných pracovísk: Astronomický ústav - Oddelenie medziplanetárnej hmoty Dúbravská cesta 9, 845 04 Bratislava Vedúci detašovaných pracovísk: Astronomický ústav - Oddelenie medziplanetárnej hmoty prof.
    [Show full text]
  • Annual Report 2016–2017 AAVSO
    AAVSO The American Association of Variable Star Observers Annual Report 2016–2017 AAVSO Annual Report 2012 –2013 The American Association of Variable Star Observers AAVSO Annual Report 2016–2017 The American Association of Variable Star Observers 49 Bay State Road Cambridge, MA 02138-1203 USA Telephone: 617-354-0484 Fax: 617-354-0665 email: [email protected] website: https://www.aavso.org Annual Report Website: https://www.aavso.org/annual-report On the cover... At the 2017 AAVSO Annual Meeting.(clockwise from upper left) Knicole Colon, Koji Mukai, Dennis Conti, Kristine Larsen, Joey Rodriguez; Rachid El Hamri, Andy Block, Jane Glanzer, Erin Aadland, Jamin Welch, Stella Kafka; and (clockwise from upper left) Joey Rodriguez, Knicole Colon, Koji Mukai, Frans-Josef “Josch” Hambsch, Chandler Barnes. Picture credits In additon to images from the AAVSO and its archives, the editors gratefully acknowledge the following for their image contributions: Glenn Chaple, Shawn Dvorak, Mary Glennon, Bill Goff, Barbara Harris, Mario Motta, NASA, Gary Poyner, Msgr. Ronald Royer, the Mary Lea Shane Archives of the Lick Observatory, Chris Stephan, and Wheatley, et al. 2003, MNRAS, 345, 49. Table of Contents 1. About the AAVSO Vision and Mission Statement 1 About the AAVSO 1 What We Do 2 What Are Variable Stars? 3 Why Observe Variable Stars? 3 The AAVSO International Database 4 Observing Variable Stars 6 Services to Astronomy 7 Education and Outreach 9 2. The Year in Review Introduction 11 The 106th AAVSO Spring Membership Meeting, Ontario, California 11 The
    [Show full text]
  • National Observatories
    Sidney C Wolff NOAO/DIR NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES Cerro Tololo Inter-American Observatory Kitt Peak National Observatory National Solar Observatory La Serena, Chile Tucson, Arizona 85726 Sunspot, New Mexico 88349 ANNUAL REPORT October 1996 - September 1997 October 30,1997 TABLE OF CONTENTS L INTRODUCTION IL AURA BOARD m. SCffiNTDJIC PROGRAM A. Cerro Tololo Inter-American Observatory (CTIO) 1. The Search for High Z Supernovae 2. Nearby Stars and Planets 2 B. Kitt Peak National Observatory (KPNO) 3 1. The History of Star Formation in Distant Galaxies 3 2. Oxygen Abundance and the Age of the Universe 4 3. The Age of Elliptical Galaxies - Is There Enough Time? 5 C. National Solar Observatory (NSO) 5 1. Results from GONG 5 2. High-Resolution Images of Solar Magnetic Fields 6 3. Active Optics Control Loop Closed at the Sac Peak Vacuum Tower Telescope 7 IV. DIVISION OPERATIONS 7 A. CTIO 7 Telescope Upgrades and Instrumentation 7 1. 4-m Upgrades 8 2. Major Instrumentation Efforts 9 3. SOAR 4-m Telescope Project 9 4. CCD Implementation and ARCON Controller Development 10 5. Existing Small General-User Telescopes on Cerro Tololo 10 6. New "Tenant" Installations and Upgrades 10 7. Other 11 B. KPNO 12 1. Image Quality Improvements 12 2. WTYN Queue Observing Experiment 12 3. WTYN 13 4. KPNO Instrumentation Improvements 14 5. Burrell-Schmidt 14 C. NSO 15 1. Kitt Peak 15 2. Sacramento Peak 17 3. Digital Library Development 21 D. USGP/ScOpe 21 E. NOAO Instrumentation 25 1. CCD Mosaic Imager 26 2.
    [Show full text]
  • Astronomy Binder
    Astronomy Binder Bloomington High School South 2011 Contents 1 Astronomical Distances 2 1.1 Geometric Methods . 2 1.2 Spectroscopic Methods . 4 1.3 Standard Candle Methods . 4 1.4 Cosmological Redshift . 5 1.5 Distances to Galaxies . 5 2 Age and Size 6 2.1 Measuring Age . 6 2.2 Measuring Size . 7 3 Variable Stars 7 3.1 Pulsating Variable Stars . 7 3.1.1 Cepheid Variables . 7 3.1.2 RR Lyrae Variables . 8 3.1.3 RV Tauri Variables . 8 3.1.4 Long Period/Semiregular Variables . 8 3.2 Binary Variables . 8 3.3 Cataclysmic Variables . 11 3.3.1 Classical Nova . 11 3.3.2 Recurrent Novae . 11 3.3.3 Dwarf Novae (U Geminorum) . 11 3.3.4 X-Ray Binary . 11 3.3.5 Polar (AM Herculis) star . 12 3.3.6 Intermediate Polar (DQ Herculis) star . 12 3.3.7 Super Soft Source (SSS) . 12 3.3.8 VY Sculptoris stars . 12 3.3.9 AM Canum Venaticorum stars . 12 3.3.10 SW Sextantis stars . 13 3.3.11 Symbiotic Stars . 13 3.3.12 Pulsating White Dwarfs . 13 4 Galaxy Classification 14 4.1 Elliptical Galaxies . 14 4.2 Spirals . 15 4.3 Classification . 16 4.4 The Milky Way Galaxy (MWG . 19 4.4.1 Scale Height . 19 4.4.2 Magellanic Clouds . 20 5 Galaxy Interactions 20 6 Interstellar Medium 21 7 Active Galactic Nuclei 22 7.1 AGN Equations . 23 1 8 Spectra 25 8.1 21 cm line . 26 9 Black Holes 26 9.1 Stellar Black Holes .
    [Show full text]
  • WZ Cephei: a Dynamically Active W Uma-Type Binary Star
    Research Paper J. Astron. Space Sci. 28(3), 163-172 (2011) http://dx.doi.org/10.5140/JASS.2011.28.3.163 WZ Cephei: A Dynamically Active W UMa-Type Binary Star Jang Hae Jeong1, 2 and Chun-Hwey Kim1, 2† 1Department of Astronomy and Space Science, Chungbuk National University, Cheongju 361-763, Korea 2Chungbuk National University Observatory, Chungbuk National University, Cheongju 361-763, Korea An intensive analysis of 185 timings of WZ Cep, including our new three timings, was made to understand the dynami- cal picture of this active W UMa-type binary. It was found that the orbital period of the system has complexly varied in two cyclical components superposed on a secularly downward parabola over about 80y. The downward parabola, cor- responding to a secular period decrease of -9.d97 × 10-8 y-1, is most probably produced by the action of both angular mo- mentum loss (AML) due to magnetic braking and mass-transfer from the massive primary component to the secondary. The period decrease rate of -6.d72 × 10-8 y-1 due to AML contributes about 67% to the observed period decrease. The mass -8 -1 flow of about 5.16× 10 M⊙ y from the primary to the secondary results the remaining 33% period decrease. Two cycli- cal components have an 11.y8 period with amplitude of 0.d0054 and a 41.y3 period with amplitude of 0.d0178. It is very interesting that there seems to be exactly in a commensurable 7:2 relation between their mean motions. As the possible causes, two rival interpretations (i.e., light-time effects (LTE) by additional bodies and the Applegate model) were con- sidered.
    [Show full text]
  • Ghost Imaging of Space Objects
    Ghost Imaging of Space Objects Dmitry V. Strekalov, Baris I. Erkmen, Igor Kulikov, and Nan Yu Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 USA NIAC Final Report September 2014 Contents I. The proposed research 1 A. Origins and motivation of this research 1 B. Proposed approach in a nutshell 3 C. Proposed approach in the context of modern astronomy 7 D. Perceived benefits and perspectives 12 II. Phase I goals and accomplishments 18 A. Introducing the theoretical model 19 B. A Gaussian absorber 28 C. Unbalanced arms configuration 32 D. Phase I summary 34 III. Phase II goals and accomplishments 37 A. Advanced theoretical analysis 38 B. On observability of a shadow gradient 47 C. Signal-to-noise ratio 49 D. From detection to imaging 59 E. Experimental demonstration 72 F. On observation of phase objects 86 IV. Dissemination and outreach 90 V. Conclusion 92 References 95 1 I. THE PROPOSED RESEARCH The NIAC Ghost Imaging of Space Objects research program has been carried out at the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011 to September 2012) and Phase II (October 2012 to September 2014). The research team consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul Nu˜nez of Coll`ege de France & Observatoire de la Cˆote d’Azur; and technical support from Victor White and Pierre Echternach of JPL.
    [Show full text]
  • Arxiv:2103.07476V1 [Astro-Ph.GA] 12 Mar 2021
    FERMILAB-PUB-21-075-AE-LDRD Draft version September 3, 2021 Typeset using LATEX twocolumn style in AASTeX63 The DECam Local Volume Exploration Survey: Overview and First Data Release A. Drlica-Wagner ,1, 2, 3 J. L. Carlin ,4 D. L. Nidever ,5, 6 P. S. Ferguson ,7, 8 N. Kuropatkin ,1 M. Adamow´ ,9, 10 W. Cerny ,2, 3 Y. Choi ,11 J. H. Esteves,12 C. E. Mart´ınez-Vazquez´ ,13 S. Mau ,14, 15 A. E. Miller,16, 17 B. Mutlu-Pakdil ,2, 3 E. H. Neilsen ,1 K. A. G. Olsen ,6 A. B. Pace ,18 A. H. Riley ,7, 8 J. D. Sakowska ,19 D. J. Sand ,20 L. Santana-Silva ,21 E. J. Tollerud ,11 D. L. Tucker ,1 A. K. Vivas ,13 E. Zaborowski,2 A. Zenteno ,13 T. M. C. Abbott ,13 S. Allam ,1 K. Bechtol ,22, 23 C. P. M. Bell ,16 E. F. Bell ,24 P. Bilaji,2, 3 C. R. Bom ,25 J. A. Carballo-Bello ,26 D. Crnojevic´ ,27 M.-R. L. Cioni ,16 A. Diaz-Ocampo,28 T. J. L. de Boer ,29 D. Erkal ,19 R. A. Gruendl ,30, 31 D. Hernandez-Lang,32, 13, 33 A. K. Hughes,20 D. J. James ,34 L. C. Johnson ,35 T. S. Li ,36, 37, 38 Y.-Y. Mao ,39, 38 D. Mart´ınez-Delgado ,40 P. Massana,19, 41 M. McNanna ,22 R. Morgan ,22 E. O. Nadler ,14, 15 N. E. D. Noel¨ ,19 A. Palmese ,1, 2 A. H. G. Peter ,42 E. S.
    [Show full text]
  • THE BUSOT OBSERVATORY: TOWARDS a ROBOTIC AUTONOMOUS TELESCOPE Revista Mexicana De Astronomía Y Astrofísica, Vol
    Revista Mexicana de Astronomía y Astrofísica ISSN: 0185-1101 [email protected] Instituto de Astronomía México García-Lozano, R.; Rodes, J.J.; Torrejón, J.M.; Bernabeú, G.; Berná, J.A. THE BUSOT OBSERVATORY: TOWARDS A ROBOTIC AUTONOMOUS TELESCOPE Revista Mexicana de Astronomía y Astrofísica, vol. 48, 2016, pp. 16-21 Instituto de Astronomía Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57150517002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative RevMexAA (Serie de Conferencias), 48, 16–21 (2016) THE BUSOT OBSERVATORY: TOWARDS A ROBOTIC AUTONOMOUS TELESCOPE R. Garc´ıa-Lozano1,2,3, J. J. Rodes1,2, J. M. Torrej´on1,2, G. Bernab´eu1,2, and J. A.´ Bern´a1,2 RESUMEN Presentamos el observatorio de Busot, nuestro proyecto de telescopio rob´otico con capacidad para trabajar aut´onomamente. Este observatorio astron´omico, que consigui´ola categor´ıa de Minor Planet Center MPC-J02 en 2009, incluye un telescopio MEADE LX200GPS de 36 cm de di´ametro, una c´upula de 2 m de altura, una c´amara CCD ST8-XME de SBIG, con un sistema de ´optica adaptativa AO-8 y una rueda de filtros equipada con un sistema UBVRI. Estamos trabajando en la instalaci´on de un espectr´ografo SGS ST-8 al telescopio mediante un haz de fibra ´optica. Actualmente, estamos involucrados en el estudio a largo plazo de fuentes variables como sistemas binarios de rayos X y estrellas variables.
    [Show full text]
  • W Ursae Majoris Contact Binary Variables As X-Ray Sources W
    The Astronomical Journal, 131:990–993, 2006 February # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. W URSAE MAJORIS CONTACT BINARY VARIABLES AS X-RAY SOURCES W. P. Chen,1,2 Kaushar Sanchawala,1 and M. C. Chiu2 Received 2005 August 24; accepted 2005 October 29 ABSTRACT We present cross-identification of archived ROSAT X-ray point sources with W UMa variable stars found in the All-Sky Automated Survey. A total of 34 W UMa stars have been found associated with X-ray emission. We compute the distances of these W UMa systems and hence their X-ray luminosities. Our data support the ‘‘supersaturation’’ phenomenon seen in these fast rotators, namely that the faster a W UMa star rotates, the weaker its X-ray luminosity. Key words: binaries: close — stars: activity — stars: general — stars: rotation — X-rays: binaries 1. W URSAE MAJORIS STARS IN THE ALL-SKY almost 1000 periodic pulsating variables, and more than 1000 AUTOMATED SURVEY DATABASE irregular stars among the 1,300,000 stars in the R:A: ¼ 0h 6h quarter of the southern sky (Pojmanski 2002). The ASAS-3 W Ursae Majoris (W UMa) variables, also called EW stars, database now includes about 4000 entries in the list of contact are contact eclipsing binaries of main-sequence component stars eclipsing binaries (called ‘‘EC’’ in the ASAS classification). with periods of 0.2–1.4 days. The component stars may have different masses but fill their Roche lobes to share a common Light curves for variables identified by ASAS-2 are available online without classification of variable types.
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]
  • Les Constellations (Part
    Les Constellations Deuxième partie Nous allons étudier aujourd’hui nos constellations circumpolaires. Nous avons vu qu’il y avait la Grande Ourse, le Dragon, la Petite Ourse, Céphée, Cassiopée et la Girafe La Grande Ourse La Grande Ourse est la troisième constellation du ciel par son étendue. Elle contient le « grand chariot » ou « grande casserole », l'un des astérismes les plus connus de l'hémisphère nord. 11/23/2016 4 Elle est circumpolaire pour les observateurs situés au-dessus de 40° de latitude Nord ; à titre indicatif New York, Rome et Pékin sont très proches de cette latitude. Pour les villes situées plus au sud, le Chariot disparaît sous l'horizon pendant l'automne. La nymphe Callisto était la fille de Lycaon, un roi d’Arcadie. Zeus l’aperçut alors qu’elle chassait en compagnie d’Artémis et il s’en éprit. Héra, jalouse, changea la jeune fille en ourse après qu’elle eut donné naissance à un fils, Arcas. L’enfant grandit, devint un homme, et un jour qu’il participait à une chasse, la déesse dirigea Callisto vers l’endroit où il se trouvait, dans l’espoir de lui voir décocher une flèche à sa mère, en toute ignorance. Mais Zeus enleva l’ourse et la plaça parmi les étoiles. Plus tard, son fils Arcas vint l’y rejoindre. Ils prirent respectivement les noms de Grande Ourse et de Petite Ourse. La Grande Ourse est à l'origine du terme « septentrional » : les Romains appelaient cette constellation septemtriones c'est-à-dire « les sept bœufs de labour » qui tournent toujours autour du nord.
    [Show full text]
  • Pulsating Components in Binary and Multiple Stellar Systems---A
    Research in Astron. & Astrophys. Vol.15 (2015) No.?, 000–000 (Last modified: — December 6, 2014; 10:26 ) Research in Astronomy and Astrophysics Pulsating Components in Binary and Multiple Stellar Systems — A Catalog of Oscillating Binaries ∗ A.-Y. Zhou National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; [email protected] Abstract We present an up-to-date catalog of pulsating binaries, i.e. the binary and multiple stellar systems containing pulsating components, along with a statistics on them. Compared to the earlier compilation by Soydugan et al.(2006a) of 25 δ Scuti-type ‘oscillating Algol-type eclipsing binaries’ (oEA), the recent col- lection of 74 oEA by Liakos et al.(2012), and the collection of Cepheids in binaries by Szabados (2003a), the numbers and types of pulsating variables in binaries are now extended. The total numbers of pulsating binary/multiple stellar systems have increased to be 515 as of 2014 October 26, among which 262+ are oscillating eclipsing binaries and the oEA containing δ Scuti componentsare updated to be 96. The catalog is intended to be a collection of various pulsating binary stars across the Hertzsprung-Russell diagram. We reviewed the open questions, advances and prospects connecting pulsation/oscillation and binarity. The observational implication of binary systems with pulsating components, to stellar evolution theories is also addressed. In addition, we have searched the Simbad database for candidate pulsating binaries. As a result, 322 candidates were extracted. Furthermore, a brief statistics on Algol-type eclipsing binaries (EA) based on the existing catalogs is given. We got 5315 EA, of which there are 904 EA with spectral types A and F.
    [Show full text]