Dinosaurios Locos.Docx

Total Page:16

File Type:pdf, Size:1020Kb

Dinosaurios Locos.Docx Albertosaurus An adult Albertosaurus weighed about 1 metric ton, they were approximately 9 meters (m) long and 3 meters (m) high. They could run about 21 kilometers per hour (Km/h) and they lived in the Cretaceous Period. 3 m 1 9 m 2 1 <http://us.123rf.com/400wm/400/400/mariobonotto/mariobonotto0909/mariobonotto090900021/5511151-silouette-of-bold-boy.jpg> Allosaurus An adult Allosaurus weighed on average* 2.3 metric tons. It had an average length of 9 meters (m) and a height of 2 meters (m). The Allosaurus is estimated to have been able to run 40 kilometers per hour (km/h). It lived in the Jurassic Period. 3 2 m 9 m 2 <http://fc03.deviantart.net/fs70/i/2012/254/b/e/albertosaurus_by_pheaston-d5eews9.jpg> 3 <http://0.tqn.com/d/dinosaurs/1/0/f/C/-/-/allosaurusNT.jpg> Ankylosaurus An adult Ankylosaurus weighed about 6 metric tons. It was about 8-9 meters (m) long and about 2 meters (m) high. The Ankylosaurus could move at about 8 kilometers per hour (km/h) and lived in the Cretaceous Period. 2 m 9 m Apatosaurus An adult Apatosaurus weighed on average 16 tons. Its length was about 23 meters (m), and its height 4-5 meters (m). This dinosaur could move at 24 kilometers per hour (km/h) and it lived in the Jurassic Period. 5 m 234 m 4 <http://0.tqn.com/d/dinosaurs/1/0/Y/C/-/-/apatosaurusSP.jpg> Argentinosaurus An adult Argentinosaurus had an average length of 30 meters (m), and a height of 16 meters (m). This huge dinosaur weighed about 80 tons and moved at a maximum speed of 10 kilometers per hour (km/h). It lived during the Cretaceous Period. 16 m 5 30 m 5 <http://0.tqn.com/d/dinosaurs/1/0/6/D/-/-/argentinoSP.jpg> Brachiosaurus An adult Brachiosaurus weighed about 28 tons. Its length was 26 meters (m) and its height, with its neck extended, could be as tall as 16 meters (m). This dinosaur could move at 18 kilometers per hour (Km/h). It lived in the Jurassic Period. 16 m 6 26 m 6 <http://0.tqn.com/d/dinosaurs/1/0/R/C/-/-/brachiosaurusVN.jpg> Compsognathus An adult Compsognathus weighed close to 3 kilograms. Its length was only 1 meter (m) and its height about 30 centimeters (cm). This dinosaur could move at 40 kilometers per hour (Km/h) and it lived in both the Triassic and Jurassic Periods. 30 cm 7 1 m 7 <http://www.nhm.ac.uk/resources/nature-online/life/dinosaurs/dinosaur-directory/images/%5Creconstruction/small/Compsognathus.jpg> Euoplocephalus An adult Euoplocephalus weighed about 2 tons. Its length was 6 meters (m) and it’s height was about 2 meters (m). This dinosaur could move at 8 kilometers per hour (Km/h), which is about as fast as a person can jog. Euoplocephalus lived during the Cretaceous Period. 2 m 6 m 8 8 <http://upload.wikimedia.org/wikipedia/commons/0/0a/Euoplocephalus_BW.jpg> Gallimimus An adult Gallimimus weighed about 120 kilograms (kg), it had a length of approximately* 8 meters (m) and a height of 2-3 meters (m). The Gallimimus is known for its agility and speed. It could reach up to 70 kilometers per hour (Km/h). The Gallimimus lived during the Cretaceous Period. 3 m 8 m 9 9 <http://upload.wikimedia.org/wikipedia/commons/1/13/Gallimimus_Steveoc86.jpg> Iguanodon The Iguanodon weighed approximately 4-5 tons. It measured 10-13 meters (m) in length and had a height of 3 meters (m). It could move at its fastest at 24 kilometers per hour (km/h). The Iguanodon lived in the Cretaceous Period. 2 m 6 m 10 10 <http://www.redorbit.com/media/uploads/2004/10/66_6ecac158b04c3612220377b31d4e4d44.jpg> Kentrosaurus The adult Kentrosaurus measured approximately 5 meters (m) in length and 2 meters (m) in height. The dinosaur weighed about 2 tons when fully grown. The Kentrosaurus could not move very quickly and most likely only moved about 8 kilometers per hour (Km/h). Kentrosaurus lived during the Jurassic Period. 2 m 11 5 m 11 <http://c417456.r56.cf3.rackcdn.com/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/s/a/safari_kentrosaurus2.jpg> Lambeosaurus The adult Lambeosaurus weighed about 6 tons. It had a length of 15 meters (m) and a height of 2 meters (m). This dinosaur could move at a speed of 10 kilometers per hour (km/h). It lived during the late Cretaceous period. 2 m 15 m Oviraptor The Oviraptor was a small dinosaur that was only 2 meters (m) long and 1 meter (m) high. It weighed only 36 kilograms. The oviraptor could run up to 70 kilometers per hour (km/h). It lived in the Cretaceous Period. 1 m 2 m Parasaurolophus Parasaurolophus grew to be about 12 meters (m) in length and 2.8 meters (m) in height at their hips. The adults weighed about 2 tons. It walked at about 5 kilometers per hour (Km/h) but it could run up to 40 kilometers per hour (Km/h). Parasaurolophus lived during the Cretaceous Period. 3 m 12 12 <http://fc07.deviantart.net/fs70/i/2010/238/c/a/Parasaurolophus_walkeri_by_T_PEKC.jpg> 12 m Spinosaurus The Spinosaurus weighed about 7 tons as an adult. It had a length of 15 meters (m) and a height of about 4.5 meters (m). This dinosaur could run up to 24 kilometers per hour (km/h). It lived during the Cretaceous Period. 7 m 15 m Stegosaurus An adult Stegosaurus was 9 meters (m) in length and measured 4 meters (m) in height. The Stegosaurus weighed 3 tons as an adult. They could reach a maximum speed of 7 kilometers per hour (Km/h). The Stegosaurus lived during the Jurassic Period. 4 m 13 9 m 13 <http://www.paleo.cc/ce/stegosaurus.gif> Triceratops The Triceratops adult weighed about 9 tons. It measured about 8 meters (m) long and had a height of about 3 meters (m). The Triceratops could run up to 30 kilometers per hour (km/h) and lived in the Cretaceous Period. 14 3 m 8 m 14 <http://0.tqn.com/d/dinosaurs/1/0/x/Q/-/-/triceratops-prorsus.jpg> Troodon An adult troodon weighed about 50 kilograms (kg). The Troodon was on average 2.5 meters (m) long and 1 meter (m) tall. The Troodon could run up to 60 kilometers per hour (km/h). The Troodon lived in the Cretaceous Period. 15 1 m 2.5 m 15 <http://www.thedinosaurs.org/dinosaurs/images/troodon_large.jpg> Tyrannosaurus Rex The Tyrannosaurus Rex was a huge powerful dinosaur that weighed up to 7 tons. This dinosaur had a length of 13 meters (m), and a height of 6 meters (m). The T-Rex could run at 40 kilometers per hour (km/h). It lived during the Cretaceous Period. 16 6 m 13 m 16 <http://fc06.deviantart.net/fs47/f/2009/181/d/2/Tyrannosaurus_rex__side_view_by_T_PEKC.jpg> Ultrasaurus The Ultrasaurus weighed up to 40 tons, and had an average length of 30 meters (m) and a height of 18 meters (m). The dinosaur could run up to 50 kilometers per hour (km/h) and it lived during the Jurassic Period. 18 m 17 30 m 17 <http://1.bp.blogspot.com/_GHnh3ILnSo4/S7o0YvM-8ZI/AAAAAAAAC1o/3FOSy8Vz2Gs/s400/ultrasaurus..jpg> Velociraptor The Velociraptor weighed up to 15 kilograms (kg). It had a length of 2 meters (m) and a height of 2 meters (m). This dinosaur could run up to 64 kilometers per hour (km/h) and lived during the Cretaceous Period. 2 m 18 2 m 18 <http://images.wikia.com/jurassicpark/images/8/8e/Velociraptor_macho.jpg> Glossary Average; The average of many numbers is the number in the middle. Example; if you have a 1 year old and a 10 year old their average age is 5 years old (because 5 is right in the middle). Approximately; Approximately means “not exactly.” If a backpack weighs 4.5 kilograms, you can say that it weighs approximately 5 kilograms. .
Recommended publications
  • Jurassic Park" Have Come to Pass
    JURASSIC WORLD and INDOMINUS REX 0. JURASSIC WORLD and INDOMINUS REX - Story Preface 1. EARLY DINOSAUR DISCOVERIES 2. THE JURASSIC PERIOD 3. JURASSIC-ERA DINOSAURS 4. FOSSILIZED AMBER 5. THE SOLNHOFEN LIMESTONE 6. TYRANNOSAURUS REX 7. T-REX - SUE 8. PTERANODON 9. TRICERATOPS 10. VELOCIRAPTOR 11. SPINOSAURUS 12. DINOSAUR TRACKS AND DISPUTES 13. NEW DINOSAUR DISCOVERIES 14. JURASSIC WORLD and INDOMINUS REX What do you do when you want to boost visitor attendance to your dinosaur-dominated, Jurassic World theme park? Use DNA, from four different dinosaurs, and “in the Hammond lab” create something entirely new and fearsome. Then ... give the new creature a name which signifies its awesome power: Indominus rex. At least ... that’s how the story theme works in the 2015 film “Jurassic World.” So ... let’s travel back in time, to the age of the dinosaurs, and meet the four interesting creatures whose DNA led to this new and ferocious predator: Rugops; Carnotaurus; Giganotosaurus; Majungasaurus. If—contrary to plan—Indominus rex becomes a killing machine, we have to ask: Did she “inherit” that trait from her “ancestors?” Let’s examine the question, starting with Rugops (ROO-gops). What we know about this theropod, from a physical standpoint, comes from a single, nearly complete and fossilized skull. With its weak but gaping jaw and skull, Rugops—which means “wrinkle face”—is not a predator like the Cretaceous-Period Spinosaurus. Instead, Rugops is a natural-born scavenger, likely waiting in the wings for what’s left of a Spinosaurus-caught, Cretaceous-era fish known as Onchopristis. Living off the scraps of meals, killed by another creature, could be enough for a Rugops.
    [Show full text]
  • A New Troodontid Theropod, Talos Sampsoni Gen. Et Sp. Nov., from the Upper Cretaceous Western Interior Basin of North America
    A New Troodontid Theropod, Talos sampsoni gen. et sp. nov., from the Upper Cretaceous Western Interior Basin of North America Lindsay E. Zanno1,2*, David J. Varricchio3, Patrick M. O’Connor4,5, Alan L. Titus6, Michael J. Knell3 1 Field Museum of Natural History, Chicago, Illinois, United States of America, 2 Biological Sciences Department, University of Wisconsin-Parkside, Kenosha, Wisconsin, United States of America, 3 Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America, 4 Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio, United States of America, 5 Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America, 6 Grand Staircase-Escalante National Monument, Bureau of Land Management, Kanab, Utah, United States of America Abstract Background: Troodontids are a predominantly small-bodied group of feathered theropod dinosaurs notable for their close evolutionary relationship with Avialae. Despite a diverse Asian representation with remarkable growth in recent years, the North American record of the clade remains poor, with only one controversial species—Troodon formosus—presently known from substantial skeletal remains. Methodology/Principal Findings: Here we report a gracile new troodontid theropod—Talos sampsoni gen. et sp. nov.— from the Upper Cretaceous Kaiparowits Formation, Utah, USA, representing one of the most complete troodontid skeletons described from North America to date. Histological assessment of the holotype specimen indicates that the adult body size of Talos was notably smaller than that of the contemporary genus Troodon. Phylogenetic analysis recovers Talos as a member of a derived, latest Cretaceous subclade, minimally containing Troodon, Saurornithoides, and Zanabazar.
    [Show full text]
  • CPY Document
    v^ Official Journal of the Biology Unit of the American Topical Association 10 Vol. 40(4) DINOSAURS ON STAMPS by Michael K. Brett-Surman Ph.D. Dinosaurs are the most popular animals of all time, and the most misunderstood. Dinosaurs did not fly in the air and did not live in the oceans, nor on lake bottoms. Not all large "prehistoric monsters" are dinosaurs. The most famous NON-dinosaurs are plesiosaurs, moso- saurs, pelycosaurs, pterodactyls and ichthyosaurs. Any name ending in 'saurus' is not automatically a dinosaur, for' example, Mastodonto- saurus is neither a mastodon nor a dinosaur - it is an amphibian! Dinosaurs are defined by a combination of skeletal features that cannot readily be seen when the animal is fully restored in a flesh reconstruction. Because of the confusion, this compilation is offered as a checklist for the collector. This topical list compiles all the dinosaurs on stamps where the actual bones are pictured or whole restorations are used. It excludes footprints (as used in the Lesotho stamps), cartoons (as in the 1984 issue from Gambia), silhouettes (Ascension Island # 305) and unoffi- cial issues such as the famous Sinclair Dinosaur stamps. The name "Brontosaurus", which appears on many stamps, is used with quotation marks to denote it as a popular name in contrast to its correct scientific name, Apatosaurus. For those interested in a detailed encyclopedic work about all fossils on stamps, the reader is referred to the forthcoming book, 'Paleontology - a Guide to the Postal Materials Depicting Prehistoric Lifeforms' by Fran Adams et. al. The best book currently in print is a book titled 'Dinosaur Stamps of the World' by Baldwin & Halstead.
    [Show full text]
  • Two New Stegosaur Specimens from the Upper Jurassic Morrison Formation of Montana, USA
    Editors' choice Two new stegosaur specimens from the Upper Jurassic Morrison Formation of Montana, USA D. CARY WOODRUFF, DAVID TREXLER, and SUSANNAH C.R. MAIDMENT Woodruff, D.C., Trexler, D., and Maidment, S.C.R. 2019. Two new stegosaur specimens from the Upper Jurassic Morrison Formation of Montana, USA. Acta Palaeontologica Polonica 64 (3): 461–480. Two partial skeletons from Montana represent the northernmost occurrences of Stegosauria within North America. One of these specimens represents the northernmost dinosaur fossil ever recovered from the Morrison Formation. Consisting of fragmentary cranial and postcranial remains, these specimens are contributing to our knowledge of the record and distribution of dinosaurs within the Morrison Formation from Montana. While the stegosaurs of the Morrison Formation consist of Alcovasaurus, Hesperosaurus, and Stegosaurus, the only positively identified stegosaur from Montana thus far is Hesperosaurus. Unfortunately, neither of these new specimens exhibit diagnostic autapomorphies. Nonetheless, these specimens are important data points due to their geographic significance, and some aspects of their morphologies are striking. In one specimen, the teeth express a high degree of wear usually unobserved within this clade—potentially illuminating the progression of the chewing motion in derived stegosaurs. Other morphologies, though not histologically examined in this analysis, have the potential to be important indicators for maturational inferences. In suite with other specimens from the northern extent of the formation, these specimens contribute to the ongoing discussion that body size may be latitudinally significant for stegosaurs—an intriguing geographical hypothesis which further emphasizes that size is not an undeviating proxy for maturity in dinosaurs. Key words: Dinosauria, Thyreophora, Stegosauria, Jurassic, Morrison Formation, USA, Montana.
    [Show full text]
  • Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
    Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated.
    [Show full text]
  • The-Smartest-Dinosaur.Pdf
    BY “DINO” DON LESSEM ILLUSTRATIONS BY JOHN BINDON a LERNER PUBLICATIONS COMPANY / MINNEAPOLIS To Emily Lessem, my favorite niece Text copyright © 2005 by Dino Don, Inc. Illustrations copyright © 2005 by John Bindon Photographs courtesy of: Dino Don, Inc., p. 12; Dr. Philip Currie, Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta, Canada, p. 13; Photographed by Robert Fillion. Reproduced with permission of the Canadian Museum of Nature, Ottawa, Canada, p. 30; Animals, Animals © OSF/BARTLETT, D&J, p. 31. All rights reserved. International copyright secured. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of Lerner Publications Company, except for the inclusion of brief quotations in an acknowledged review. This book is available in two editions: Library binding by Lerner Publications Company, a division of Lerner Publishing Group Soft cover by First Avenue Editions, an imprint of Lerner Publishing Group 241 First Avenue North Minneapolis, MN 55401 U.S.A. Website address: www.lernerbooks.com Library of Congress Cataloging-in-Publication-Data Lessem, Don. The smartest dinosaurs / by Don Lessem ; illustrations by John Bindon. p. cm. — (Meet the dinosaurs) Includes index. eISBN: 0–8225–3285–9 1. Dinosaurs—Juvenile literature. I. Bindon, John, ill. II. Title. III. Series: Lessem, Don. Meet the dinosaurs. QE861.5.L477 2005 567.9—dc22 2004011152 Manufactured in the United States of America 1 2 3 4 5 6 – DP – 10 09 08 07 06 05 MEET THE SMARTEST DINOSAURS . 4 HOW SMART WERE DINOSAURS? .
    [Show full text]
  • The Princeton Field Guide to Dinosaurs, Second Edition
    MASS ESTIMATES - DINOSAURS ETC (largely based on models) taxon k model femur length* model volume ml x specific gravity = model mass g specimen (modeled 1st):kilograms:femur(or other long bone length)usually in decameters kg = femur(or other long bone)length(usually in decameters)3 x k k = model volume in ml x specific gravity(usually for whole model) then divided/model femur(or other long bone)length3 (in most models femur in decameters is 0.5253 = 0.145) In sauropods the neck is assigned a distinct specific gravity; in dinosaurs with large feathers their mass is added separately; in dinosaurs with flight ablity the mass of the fight muscles is calculated separately as a range of possiblities SAUROPODS k femur trunk neck tail total neck x 0.6 rest x0.9 & legs & head super titanosaur femur:~55000-60000:~25:00 Argentinosaurus ~4 PVPH-1:~55000:~24.00 Futalognkosaurus ~3.5-4 MUCPv-323:~25000:19.80 (note:downsize correction since 2nd edition) Dreadnoughtus ~3.8 “ ~520 ~75 50 ~645 0.45+.513=.558 MPM-PV 1156:~26000:19.10 Giraffatitan 3.45 .525 480 75 25 580 .045+.455=.500 HMN MB.R.2181:31500(neck 2800):~20.90 “XV2”:~45000:~23.50 Brachiosaurus ~4.15 " ~590 ~75 ~25 ~700 " +.554=~.600 FMNH P25107:~35000:20.30 Europasaurus ~3.2 “ ~465 ~39 ~23 ~527 .023+.440=~.463 composite:~760:~6.20 Camarasaurus 4.0 " 542 51 55 648 .041+.537=.578 CMNH 11393:14200(neck 1000):15.25 AMNH 5761:~23000:18.00 juv 3.5 " 486 40 55 581 .024+.487=.511 CMNH 11338:640:5.67 Chuanjiesaurus ~4.1 “ ~550 ~105 ~38 ~693 .063+.530=.593 Lfch 1001:~10700:13.75 2 M.
    [Show full text]
  • Evaluating the Ecology of Spinosaurus: Shoreline Generalist Or Aquatic Pursuit Specialist?
    Palaeontologia Electronica palaeo-electronica.org Evaluating the ecology of Spinosaurus: Shoreline generalist or aquatic pursuit specialist? David W.E. Hone and Thomas R. Holtz, Jr. ABSTRACT The giant theropod Spinosaurus was an unusual animal and highly derived in many ways, and interpretations of its ecology remain controversial. Recent papers have added considerable knowledge of the anatomy of the genus with the discovery of a new and much more complete specimen, but this has also brought new and dramatic interpretations of its ecology as a highly specialised semi-aquatic animal that actively pursued aquatic prey. Here we assess the arguments about the functional morphology of this animal and the available data on its ecology and possible habits in the light of these new finds. We conclude that based on the available data, the degree of adapta- tions for aquatic life are questionable, other interpretations for the tail fin and other fea- tures are supported (e.g., socio-sexual signalling), and the pursuit predation hypothesis for Spinosaurus as a “highly specialized aquatic predator” is not supported. In contrast, a ‘wading’ model for an animal that predominantly fished from shorelines or within shallow waters is not contradicted by any line of evidence and is well supported. Spinosaurus almost certainly fed primarily from the water and may have swum, but there is no evidence that it was a specialised aquatic pursuit predator. David W.E. Hone. Queen Mary University of London, Mile End Road, London, E1 4NS, UK. [email protected] Thomas R. Holtz, Jr. Department of Geology, University of Maryland, College Park, Maryland 20742 USA and Department of Paleobiology, National Museum of Natural History, Washington, DC 20560 USA.
    [Show full text]
  • The Systematic Position of the Enigmatic Thyreophoran Dinosaur Paranthodon Africanus, and the Use of Basal Exemplifiers in Phyl
    1 The systematic position of the enigmatic thyreophoran dinosaur Paranthodon africanus, 2 and the use of basal exemplifiers in phylogenetic analysis 3 4 Thomas J. Raven1,2 ,3 and Susannah C. R. Maidment2 ,3 5 61Department of Earth Science & Engineering, Imperial College London, UK 72School of Environment & Technology, University of Brighton, UK 8 3Department of Earth Sciences, Natural History Museum, London, UK 9 10Corresponding author: Thomas J. Raven 11 12Email address: [email protected] 13 14 15 16 17 18 19 20 21ABSTRACT 22 23The first African dinosaur to be discovered, Paranthodon africanus was found in 1845 in the 24Lower Cretaceous of South Africa. Taxonomically assigned to numerous groups since discovery, 25in 1981 it was described as a stegosaur, a group of armoured ornithischian dinosaurs 26characterised by bizarre plates and spines extending from the neck to the tail. This assignment 27that has been subsequently accepted. The type material consists of a premaxilla, maxilla, a nasal, 28and a vertebra, and contains no synapomorphies of Stegosauria. Several features of the maxilla 29and dentition are reminiscent of Ankylosauria, the sister-taxon to Stegosauria, and the premaxilla 30appears superficially similar to that of some ornithopods. The vertebral material has never been 31described, and since the last description of the specimen, there have been numerous discoveries 32of thyreophoran material potentially pertinent to establishing the taxonomic assignment of the 33specimen. An investigation of the taxonomic and systematic position of Paranthodon is therefore 34warranted. This study provides a detailed re-description, including the first description of the 35vertebra. Numerous phylogenetic analyses demonstrate that the systematic position of 36Paranthodon is highly labile and subject to change depending on which exemplifier for the clade 37Stegosauria is used.
    [Show full text]
  • Back Matter (PDF)
    Index Note: Page numbers in italic denote figures. Page numbers in bold denote tables. Abel, Othenio (1875–1946) Ashmolean Museum, Oxford, Robert Plot 7 arboreal theory 244 Astrodon 363, 365 Geschichte und Methode der Rekonstruktion... Atlantosaurus 365, 366 (1925) 328–329, 330 Augusta, Josef (1903–1968) 222–223, 331 Action comic 343 Aulocetus sammarinensis 80 Actualism, work of Capellini 82, 87 Azara, Don Felix de (1746–1821) 34, 40–41 Aepisaurus 363 Azhdarchidae 318, 319 Agassiz, Louis (1807–1873) 80, 81 Azhdarcho 319 Agustinia 380 Alexander, Annie Montague (1867–1950) 142–143, 143, Bakker, Robert. T. 145, 146 ‘dinosaur renaissance’ 375–376, 377 Alf, Karen (1954–2000), illustrator 139–140 Dinosaurian monophyly 93, 246 Algoasaurus 365 influence on graphic art 335, 343, 350 Allosaurus, digits 267, 271, 273 Bara Simla, dinosaur discoveries 164, 166–169 Allosaurus fragilis 85 Baryonyx walkeri Altispinax, pneumaticity 230–231 relation to Spinosaurus 175, 177–178, 178, 181, 183 Alum Shale Member, Parapsicephalus purdoni 195 work of Charig 94, 95, 102, 103 Amargasaurus 380 Beasley, Henry Charles (1836–1919) Amphicoelias 365, 366, 368, 370 Chirotherium 214–215, 219 amphisbaenians, work of Charig 95 environment 219–220 anatomy, comparative 23 Beaux, E. Cecilia (1855–1942), illustrator 138, 139, 146 Andrews, Roy Chapman (1884–1960) 69, 122 Becklespinax altispinax, pneumaticity 230–231, Andrews, Yvette 122 232, 363 Anning, Joseph (1796–1849) 14 belemnites, Oxford Clay Formation, Peterborough Anning, Mary (1799–1847) 24, 25, 113–116, 114, brick pits 53 145, 146, 147, 288 Benett, Etheldred (1776–1845) 117, 146 Dimorphodon macronyx 14, 115, 294 Bhattacharji, Durgansankar 166 Hawker’s ‘Crocodile’ 14 Birch, Lt.
    [Show full text]
  • Limb Design, Function and Running Performance in Ostrich-Mimics and Tyrannosaurs
    GAIA Nº 15, LISBOA/LISBON, DEZEMBRO/DECEMBER 1998, pp. 257-270 (ISSN: 0871-5424) LIMB DESIGN, FUNCTION AND RUNNING PERFORMANCE IN OSTRICH-MIMICS AND TYRANNOSAURS Gregory S. PAUL 3109 N Calvert St. Side Apt., BALTIMORE MD 21218. USA ABSTRACT: Examination of the limb morphology of small ornithomimids and large tyranno- saurids shows that they remained remarkably constant in design regardless of size. The changes that were present were consistent with maintaining limb strength and function constant with size. It is concluded that ornithomimid and tyrannosaurid legs functioned in a similar manner, and always exhibit the features normally associated with a fast running gait. This is in contrast to modern animals, in which elephants as gigantic as large tyranno- saurids have limbs that are modified for a slow walking gait. INTRODUCTION to run observed in elephants. The hypothesis can be challenged if it can be shown that at least some ex- Because they had long, gracile, bird-like legs, it tinct giants retained the skeletal adaptations for run- has long been accepted that the smaller predatory ning observed in smaller species, and in their own dinosaurs were swift runners (O [& GREG- SBORN offspring. In turn, the hypothesis that giants can run ], 1916; COLBERT, 1961; RUSSELL, 1972; ORY fast if they retain limbs similar to smaller runners can C , 1978; THULBORN, 1982; PAUL, 1988; OOMBS be challenged if it is shown that the skeleton is too H , 1994). Much more controversial has been OLTZ vulnerable to structural failure. the locomotory abilities of their giant relatives, which have been restored as no faster than elephants BODY MASSES (LAMBE, 1917; HALSTEAD &HALSTEAD, 1981; THUL- BORN, 1982; BARSBOLD, 1983), able to run at only Sources for mass data for extinct and extant ani- modest speeds (COOMBS, 1978; MOLNAR &FAR- mals include PAUL (1988, 1997), NOWAK (1991) and LOW, 1990; HORNER &LESSEM, 1993; FARLOW, MATTHEWS (1994).
    [Show full text]
  • Osteology of the Dorsal Vertebrae of the Giant Titanosaurian Sauropod Dinosaur Dreadnoughtus Schrani from the Late Cretaceous of Argentina
    Rowan University Rowan Digital Works School of Earth & Environment Faculty Scholarship School of Earth & Environment 1-1-2017 Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina Kristyn Voegele Rowan University Matt Lamanna Kenneth Lacovara Rowan University Follow this and additional works at: https://rdw.rowan.edu/see_facpub Part of the Anatomy Commons, Geology Commons, and the Paleontology Commons Recommended Citation Voegele, K.K., Lamanna, M.C., and Lacovara K.J. (2017). Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina. Acta Palaeontologica Polonica 62 (4): 667–681. This Article is brought to you for free and open access by the School of Earth & Environment at Rowan Digital Works. It has been accepted for inclusion in School of Earth & Environment Faculty Scholarship by an authorized administrator of Rowan Digital Works. Editors' choice Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina KRISTYN K. VOEGELE, MATTHEW C. LAMANNA, and KENNETH J. LACOVARA Voegele, K.K., Lamanna, M.C., and Lacovara K.J. 2017. Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina. Acta Palaeontologica Polonica 62 (4): 667–681. Many titanosaurian dinosaurs are known only from fragmentary remains, making comparisons between taxa difficult because they often lack overlapping skeletal elements. This problem is particularly pronounced for the exceptionally large-bodied members of this sauropod clade. Dreadnoughtus schrani is a well-preserved giant titanosaurian from the Upper Cretaceous (Campanian–Maastrichtian) Cerro Fortaleza Formation of southern Patagonia, Argentina.
    [Show full text]