Parablastomonas Arctica Gen. Nov., Sp. Nov., Isolated from High Arctic Glacial Till

Total Page:16

File Type:pdf, Size:1020Kb

Parablastomonas Arctica Gen. Nov., Sp. Nov., Isolated from High Arctic Glacial Till International Journal of Systematic and Evolutionary Microbiology (2015), 65, 260–266 DOI 10.1099/ijs.0.067231-0 Parablastomonas arctica gen. nov., sp. nov., isolated from high Arctic glacial till Lvzhi Ren,1 Xulu Chang,1 Fan Jiang,1 Wenjing Kan,1 Zhihao Qu,1 Xia Qiu,1 Chengxiang Fang1 and Fang Peng1,2 Correspondence 1China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Fang Peng Wuhan 430072, PR China [email protected] 2Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan 430072, PR China A pale yellow, aerobic bacterium, strain M0-2T, was isolated from a till sample. Its taxonomic position was investigated by using a polyphasic approach. Cells were Gram-stain-negative, rod- shaped and motile. Cells reproduced by budding or asymmetrical cell division. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain M0-2T belonged to the family Sphingomonadaceae and was closely related to species of the genera Novosphingobium (96.4– 92.0 %) and Blastomonas (94.6 %), Sphingopyxis witflariensis W-50T (94.0 %), Sphingosinicella soli KSL-125T (93.6 %) and Sphingomonas astaxanthinifaciens TDMA-17T (93.5 %). Ubiquinone-10 (Q-10) was the predominant respiratory quinone. The major fatty acids were summed feature 8 (comprising C18 : 1v7c and/or C18 : 1v6c, 31.9 %), summed feature 3 (comprising C16 : 1v7c and/or C16 : 1v6c, 19.8 %) and C14 : 0 2-OH (8.9 %). Sphingoglycolipid, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine were the major polar lipids. Spermidine was the major polyamine observed in the cell. The genomic DNA G+C content was 47.5 mol%. On the basis of phylogenetic relationships and the low DNA G+C content compared with most other genera of the family Sphingomonadaceae, combined with phenotypic and chemotaxonomic data, strain M0-2T is considered to represent a novel species in a new genus in the family Sphingomonadaceae for which the name Parablastomonas arctica gen. nov., sp. nov. is proposed. The type strain of Parablastomonas arctica gen. nov., sp. nov. is M0-2T (5CCTCC AB 2012968T5NRRL B-59110T). The family Sphingomonadaceae was established by Kosako Sandarakinorhabdus (Gich & Overmann, 2006), Stakelama et al. (2000) based on the results of 16S rRNA gene (Chen et al., 2010), Sphingomicrobium (Ka¨mpfer et al., sequence and cellular lipid analyses. It was further divided 2012), Parasphingopyxis (Uchida et al., 2012) and Sphingor- into the families Sphingomonadaceae and Erythrobac- habdus (Jogler et al., 2013). All species in the family teraceae by Lee et al. (2005). Members of the family Sphingomonadaceae have been confirmed to possess sphin- Sphingomonadaceae have been isolated from a wide range goglycolipid (SGL). Furthermore, they possess ubiquinone- of environments, including water, the rhizosphere, plant 10 (Q-10) as the major respiratory quinone system. The surfaces, human wounds, and pristine and contaminated major fatty acids of cellular lipids are octadecenoic acid soil (Gich et al., 2005). At the time of writing, the family (C18 : 1) and 2-hydroxymyristic acid (C14 : 0 2-OH) (with the Sphingomonadaceae accommodates 13 genera with validly exception of two subspecies of Zymomonas mobilis). The published names including Zymomonas (De Ley & Swings, G+C content of the DNA ranges from 47.5 to 67.0 mol% 1976), Sphingomonas (Yabuuchi et al., 1990, 1999), Blasto- (Kosako et al., 2000). In this paper, the characterization monas (Sly & Cahill, 1997), Sandaracinobacter (Yurkov and classification of a strain that represents a novel genus- et al., 1997), Sphingobium, Novosphingobium, Sphingopyxis level group of the family Sphingomonadaceae is reported on (Takeuchi, 2001), Sphingosinicella (Maruyama et al., 2006), the basis of comparative physiological and chemotaxo- nomic analysis. Abbreviation: BChl, bacteriochlorophyll. A novel bacterium, designated strain M0-2T, was isolated The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene from a till sample collected from the foreland of a high Arctic sequence of strain M0-2T is KC759680. glacier, Midtre Love´nbreen (78u 53.7049 N12u 05.2629 E), Three supplementary figures are available with the online Supple- near the settlement Ny-Alesund in the Svalbard Archipelago, mentary Material. Norway, in July 2012. The sample was subjected to the 260 067231 G 2015 IUMS Printed in Great Britain Parablastomonas arctica gen. nov., sp. nov. standard spread-plate method using R2A agar (Becton 7 days. Hydrolysis of chitin was tested as described by Dickinson; BD) at 4 uC. After incubation, colonies of strains Rodriguez-Kabana et al. (1983). Phenylalanine deaminase were isolated, purified and preserved by lyophilization. Strain was detected on a medium containing (l21) 3 g yeast extract T M0-2 was deposited to the Agricultural Research Service (OXOID), 5 g NaCl, 1 g Na2HPO4,2gDL-phenylalanine or T Culture Collection (NRRL B-59110 ) and the China Center 1g L-phenylalanine, 12 g agar (BIOSHARP), pH 7.0, by T for Type Culture Collection (CCTCC AB 2012968 ). using 10 % (w/v) FeCl3. Susceptibility to antibiotics was tested on R2A plates using antibiotic discs containing the Amplification by PCR and sequencing of the 16S rRNA following: ampicillin (10 mg), chloramphenicol (30 mg), gene of strain M0-2T were carried out as described streptomycin (10 mg), tetracycline (30 mg), polymyxin B previously (Chen et al., 2001). Universal bacterial primer (300 IU), rifampicin (5 mg), vancomycin (30 mg), gentami- pair 27F (59-AGAGTTTGATCCTGGCTCAG-39) and 1540R cin (10 mg), nalidixic acid (30 mg), trimethoprim (300 mg), (59-AAGGAGGTGATCCAGCC-39) were used for amp- penicillin G (10 U), kanamycin (30 mg), ciprofloxacin lification and the purified PCR products were sequenced (5 mg), amikacin (30 mg) or amoxicillin (10 mg). Suscep- by GenScript (Nanjing, China). The 16S rRNA gene tibility to the antibiotic was confirmed after incubation at sequences of related taxa were obtained from the GenBank 22 uC for 3–5 days. and EzTaxon servers (Kim et al., 2012). Multiple alignments were performed by using the CLUSTAL W program (Larkin Respiratory quinones were extracted and identified by et al., 2007). Phylogenetic analysis was performed by using HPLC (UltiMate 3000; Dionex) as described by Xie & the software package MEGA version 5.0 (Tamura et al., 2011) Yokota (2003). For cellular fatty acids analysis, strain and phylogenetic trees were reconstructed by using the M0-2T and reference strains were grown on R2A plates at neighbour-joining (Saitou & Nei, 1987) and maximum- 22 uC. Biomass was collected in the late exponential phase parsimony (Fitch, 1971) methods. Tree topologies were of growth and analysed by GC (6890N; Agilent) evaluated by bootstrap analysis with 1000 replications according to the standard protocol of the Sherlock (Felsenstein, 1985). Microbial Identification System (Sherlock version 6.0, MIDI database TSBA6; MIDI) (Sasser, 1990). Polar lipids Growth of strain M0-2T was evaluated at 22 uC on R2A of M0-2T and Blastomonas natatoria DSM 3183T were agar, tryptic soy agar (TSA; BD), nutrient agar (NA; BD), extracted using the procedures described by Minnikin LB (10 g peptone, 5 g yeast extract, 10 g NaCl, 1000 ml et al. (1984) and identified using two-dimensional TLC as distilled water, pH 7.0) and peptone-yeast extract (PYE) described by Tindall (1990). Sphingolipids in strain medium (l21: 10 g peptone, 2 g yeast extract, 1 g MgSO .7 4 M0-2T were extracted and detected using the method H O, pH 7.0). Growth at various temperatures (4, 10, 18, 2 described by Kato et al. (1995). Polyamines were 22, 25, 28, 37, 42 uC) was measured in R2A broth. Growth extracted and analysed as described by Busse & Auling at pH 4.0–11.0 (in increments of 1 pH unit) was measured (1988) and Busse et al. (1997). The DNA G+Ccontent in R2A broth after 7 days of incubation. Salt tolerance was was determined by HPLC following the method of tested in R2A broth supplemented with 0–9 % (w/v) Mesbah et al. (1989). NaCl (at intervals of 1 %) after 7 days of incu- bation. Gram staining of cells was carried out according The 16S rRNA gene sequence of strain M0-2T determined to the classical Gram-stain procedure described by Doetsch in this study was 1397 bp. A sequence similarity calculation (1981). Gliding motility was investigated as described by using the EzTaxon server (http://eztaxon-e.ezbiocloud.net/) Bowman (2000). Cell morphology was examined by phase- indicated that the closest relatives of strain M0-2T were contrast (BX51; Olympus) and transmission electron species of the genera Novosphingobium (96.4–92.0 %) and microscopy (H-8100; Hitachi) using cells grown for 3 days Blastomonas (94.6 %), Sphingopyxis witflariensis W-50T at 22 uC on R2A agar. Anaerobic growth was evaluated (94.0 %), Sphingosinicella soli KSL-125T (93.6 %) and Sphin- after incubation in a GasPak (OXOID) jar on R2A agar gomonas astaxanthinifaciens TDMA-17T (93.5 %). The phylo- supplemented with 0.1 % (w/v) potassium nitrate. Catalase genetic tree based on the neighbour-joining method showed activity was determined by assessing bubble production in that strain M0-2T belonged to the family Sphingomonadaceae. T T 3 % (v/v) H2O2, and oxidase activity was determined using Strain M0-2 , B. natatoria DSM 3183 and Blastomonas 1 % (w/v) tetramethyl-p-phenylenediamine (Cappuccino & ursincola KR-99T formed a monophyletic group with a high Sherman, 2002). The carotenoid pigment absorption bootstrap value, which was supported by both neighbour-
Recommended publications
  • Emendation of the Genus Sphingomonas Yabuuchi Et Al
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 1485–1496 DOI: 10.1099/ijs.0.01868-0 Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola 1 Department of Eiko Yabuuchi,1 Yoshimasa Kosako,2 Nagatoshi Fujiwara,3 Microbiology, Gifu 3,4 5 5 University School of Takashi Naka, Isamu Matsunaga, Hisashi Ogura and Medicine, Tsukasa-machi Kazuo Kobayashi3 40, Gifu 500-8705, Japan 2 Japan Collection of Microorganisms, Institute Author for correspondence: Kazuo Kobayashi. Tel: j81 6 6645 3745. Fax: j81 6 6646 3662. of Physical and Chemical e-mail: kobayak!med.osaka-cu.ac.jp Research (RIKEN), Wako- shi, Saitama 351-0198, Japan The 16S rDNA sequence similarities between the type strains of Sphingomonas 3 Department of Host paucimobilis and 32 other Sphingomonas species range from 902to996%. It Defense, Osaka City might be possible to divide the genus into several new genera according to a University Graduate School dendrogram drawn from 16S rDNA sequence similarity. However, the of Medicine, 1-4-3 Asahi- machi, Abeno-ku, Osaka phenotypic and biochemical information needed to define clusters of strains 545-8585, Japan representing distinct genera within this group of organisms was not 4 Institute of Skin Sciences, previously available. Although the cellular lipids of type strains of all 28 Club Cosmetics Co. Ltd, Sphingomonas species tested contained glucuronosyl-(1 ! 1)-ceramide Ikoma-shi, Nara 630-0222, together with 2-hydroxymyristic acid, other molecular species of Japan sphingoglycolipids were distributed randomly.
    [Show full text]
  • Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas Sp
    microorganisms Article Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5 Karel Kopejtka 1 , Yonghui Zeng 1,2, David Kaftan 1,3 , Vadim Selyanin 1, Zdenko Gardian 3,4 , Jürgen Tomasch 5,† , Ruben Sommaruga 6 and Michal Koblížek 1,* 1 Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81 Tˇreboˇn,Czech Republic; [email protected] (K.K.); [email protected] (Y.Z.); [email protected] (D.K.); [email protected] (V.S.) 2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark 3 Faculty of Science, University of South Bohemia, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 4 Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 Ceskˇ é Budˇejovice,Czech Republic 5 Research Group Microbial Communication, Technical University of Braunschweig, 38106 Braunschweig, Germany; [email protected] 6 Laboratory of Aquatic Photobiology and Plankton Ecology, Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected] † Present Address: Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, 38106 Braunschweig, Germany. Abstract: An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 Citation: Kopejtka, K.; Zeng, Y.; (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Ty- Kaftan, D.; Selyanin, V.; Gardian, Z.; rolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic Tomasch, J.; Sommaruga, R.; Koblížek, analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas M. Characterization of the Aerobic and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Anoxygenic Phototrophic Bacterium Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%).
    [Show full text]
  • Proposal of Sphingomonadaceae Fam. Nov., Consisting of Sphingomonas Yabuuchi Et Al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov Et Al
    Microbiol. Immunol., 44(7), 563-575, 2000 Proposal of Sphingomonadaceae Fam. Nov., Consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the Type Genus Sphingomonas Yabuuchi et al. 1990 Yoshimasa Kosako*°', Eiko Yabuuchi2, Takashi Naka3,4, Nagatoshi Fujiwara3, and Kazuo Kobayashi3 'JapanCollection of Microorganis ms,RIKEN (Institute of Physical and ChemicalResearch), Wako, Saitama 351-0198, Japan, 2Departmentof Microbiologyand Immunology , AichiMedical University, Aichi 480-1101, Japan, 'Departmentof Host Defense,Osaka City University, Graduate School of Medicine,Osaka, Osaka 545-8585, Japan, and Instituteof SkinSciences, ClubCosmetics Co., Ltd., Osaka,Osaka 550-0005, Japan ReceivedJanuary 25, 2000; in revisedform, April 11, 2000. Accepted April 14, 2000 Abstract:Based on the results of phylogeneticanalysis of the 16SrDNA sequences and the presence of N- 2'-hydroxymyristoyldihydrosphingosine 1-glucuronic acid (SGL-1)and 2-hydroxymyristicacid (non- hydroxymyristicacid in Zymomonas)in cellular lipids,a new family,Sphingomonadaceae, for Group 4 of the alpha-subclassof the classProteobacteria is hereinproposed and a descriptionof the familyis given.The familyconsists of six genera, Sphingomonas,Erythrobacter, Erythromicrobium, Porphyrobacter, Sandara- cinobacterand Zymomonas.Thus, all the validlypublished and currently known genera in Group 4 of the alpha-subclassof
    [Show full text]
  • Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera
    Microbiol. Cult. Coll. June 2003. p. 13 ─ 21 Vol. 19, No. 1 Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera Koei Hamana1)*,Azusa Sakamoto1),Satomi Tachiyanagi1), Eri Terauchi1)and Mariko Takeuchi2) 1)Department of Laboratory Sciences, School of Health Sciences, Faculty of Medicine, Gunma University, 39 ─ 15 Showa-machi 3 ─ chome, Maebashi, Gunma 371 ─ 8514, Japan 2)Institute for Fermentation, Osaka, 17 ─ 85, Juso-honmachi 2 ─ chome, Yodogawa-ku, Osaka, 532 ─ 8686, Japan Cellular polyamines of 41 newly validated or reclassified alpha proteobacteria belonging to 20 genera were analyzed by HPLC. Acetic acid bacteria belonging to the new genus Asaia and the genera Gluconobacter, Gluconacetobacter, Acetobacter and Acidomonas of the alpha ─ 1 sub- group ubiquitously contained spermidine as the major polyamine. Aerobic bacteriochlorophyll a ─ containing Acidisphaera, Craurococcus and Paracraurococcus(alpha ─ 1)and Roseibium (alpha-2)contained spermidine and lacked homospermidine. New Rhizobium species, including some species transferred from the genera Agrobacterium and Allorhizobium, and new Sinorhizobium and Mesorhizobium species of the alpha ─ 2 subgroup contained homospermidine as a major polyamine. Homospermidine was the major polyamine in the genera Oligotropha, Carbophilus, Zavarzinia, Blastobacter, Starkeya and Rhodoblastus of the alpha ─ 2 subgroup. Rhodobaca bogoriensis of the alpha ─ 3 subgroup contained spermidine. Within the alpha ─ 4 sub- group, the genus Sphingomonas has been divided into four clusters, and species of the emended Sphingomonas(cluster I)contained homospermidine whereas those of the three newly described genera Sphingobium, Novosphingobium and Sphingopyxis(corresponding to clusters II, III and IV of the former Sphingomonas)ubiquitously contained spermidine.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Characterization of Bacterial Communities Associated
    www.nature.com/scientificreports OPEN Characterization of bacterial communities associated with blood‑fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis Li Lim & Abdul Hafz Ab Majid* With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well‑studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood‑fed and starved tropical bed bugs were analysed and characterized by amplifying the v3‑v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha‑proteobacterium Wolbachia and gamma‑proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood‑fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood‑fed bed bugs. Cimex hemipterus Fabricus (Hemiptera), also known as tropical bed bugs, is an obligate blood-feeding insect throughout their entire developmental cycle, has made a recent resurgence probably due to increased worldwide travel, climate change, and resistance to insecticides1–3. Distribution of tropical bed bugs is inclined to tropical regions, and infestation usually occurs in human dwellings such as dormitories and hotels 1,2. Bed bugs are a nuisance pest to humans as people that are bitten by this insect may experience allergic reactions, iron defciency, and secondary bacterial infection from bite sores4,5.
    [Show full text]
  • Evolutionary Genomics of an Ancient Prophage of the Order Sphingomonadales
    GBE Evolutionary Genomics of an Ancient Prophage of the Order Sphingomonadales Vandana Viswanathan1,2, Anushree Narjala1, Aravind Ravichandran1, Suvratha Jayaprasad1,and Shivakumara Siddaramappa1,* 1Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bengaluru, Karnataka, India 2Manipal University, Manipal, Karnataka, India *Corresponding author: E-mail: [email protected]. Accepted: February 10, 2017 Data deposition: Genome sequences were downloaded from GenBank, and their accession numbers are provided in table 1. Abstract The order Sphingomonadales, containing the families Erythrobacteraceae and Sphingomonadaceae, is a relatively less well-studied phylogenetic branch within the class Alphaproteobacteria. Prophage elements are present in most bacterial genomes and are important determinants of adaptive evolution. An “intact” prophage was predicted within the genome of Sphingomonas hengshuiensis strain WHSC-8 and was designated Prophage IWHSC-8. Loci homologous to the region containing the first 22 open reading frames (ORFs) of Prophage IWHSC-8 were discovered among the genomes of numerous Sphingomonadales.In17genomes, the homologous loci were co-located with an ORF encoding a putative superoxide dismutase. Several other lines of molecular evidence implied that these homologous loci represent an ancient temperate bacteriophage integration, and this horizontal transfer event pre-dated niche-based speciation within the order Sphingomonadales. The “stabilization” of prophages in the genomes of their hosts is an indicator of “fitness” conferred by these elements and natural selection. Among the various ORFs predicted within the conserved prophages, an ORF encoding a putative proline-rich outer membrane protein A was consistently present among the genomes of many Sphingomonadales. Furthermore, the conserved prophages in six Sphingomonas sp. contained an ORF encoding a putative spermidine synthase.
    [Show full text]
  • Short-Term Rhizosphere Effect on Available Carbon Sources
    Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil François Thomas, Aurélie Cebron To cite this version: François Thomas, Aurélie Cebron. Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil. Fron- tiers in Microbiology, Frontiers Media, 2016, 7, pp.92. 10.3389/fmicb.2016.00092. hal-01780413 HAL Id: hal-01780413 https://hal.univ-lorraine.fr/hal-01780413 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ORIGINAL RESEARCH published: 05 February 2016 doi: 10.3389/fmicb.2016.00092 Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil François Thomas 1, 2 † and Aurélie Cébron 1, 2* 1 CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, Vandoeuvre-lés-Nancy, France, 2 Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, Vandoeuvre-lés-Nancy, France Edited by: Dimitrios Georgios Karpouzas, Over the last decades, understanding of the effects of plants on soil microbiomes has University of Thessaly, Greece greatly advanced. However, knowledge on the assembly of rhizospheric communities in Reviewed by: Antonis Chatzinotas, aged-contaminated industrial soils is still limited, especially with regard to transcriptionally Helmholtz Centre for Environmental active microbiomes and their link to the quality or quantity of carbon sources.
    [Show full text]
  • A Primary Assessment of the Endophytic Bacterial Community in a Xerophilous Moss (Grimmia Montana) Using Molecular Method and Cultivated Isolates
    Brazilian Journal of Microbiology 45, 1, 163-173 (2014) Copyright © 2014, Sociedade Brasileira de Microbiologia ISSN 1678-4405 www.sbmicrobiologia.org.br Research Paper A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates Xiao Lei Liu, Su Lin Liu, Min Liu, Bi He Kong, Lei Liu, Yan Hong Li College of Life Science, Capital Normal University, Haidian District, Beijing, China. Submitted: December 27, 2012; Approved: April 1, 2013. Abstract Investigating the endophytic bacterial community in special moss species is fundamental to under- standing the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were esti- mated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteo- bacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G.
    [Show full text]
  • Mapping the Diversity of Microbial Lignin Catabolism: Experiences from the Elignin Database
    Applied Microbiology and Biotechnology (2019) 103:3979–4002 https://doi.org/10.1007/s00253-019-09692-4 MINI-REVIEW Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database Daniel P. Brink1 & Krithika Ravi2 & Gunnar Lidén2 & Marie F Gorwa-Grauslund1 Received: 22 December 2018 /Revised: 6 February 2019 /Accepted: 9 February 2019 /Published online: 8 April 2019 # The Author(s) 2019 Abstract Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database (www.elignindatabase.com), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings. Keywords Lignin . Database . Aromatic metabolism . Catabolic pathways
    [Show full text]
  • Novosphingobium Pentaromativorans US6-1
    Biodegradation of Polycyclic Aromatic Hydrocarbons by Novosphingobium pentaromativorans US6-1 Yihua Lyu1,2, Wei Zheng1,2, Tianling Zheng1,2, Yun Tian1,2* 1 Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, China, 2 State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China Abstract Novosphingobium pentaromativorans US6-1, a marine bacterium isolated from muddy sediments of Ulsan Bay, Republic of Korea, was previously shown to be capable of degrading multiple polycyclic aromatic hydrocarbons (PAHs). In order to gain insight into the characteristics of PAHs degradation, a proteome analysis of N. pentaromativorans US6-1 exposed to phenanthrene, pyrene, and benzo[a]pyrene was conducted. Several enzymes associated with PAHs degradation were identified, including 4-hydroxybenzoate 3-monooxygenase, salicylaldehyde dehydrogenase, and PAH ring-hydroxylating dioxygenase alpha subunit. Reverse transcription and real-time quantitative PCR was used to compare RHDa and 4- hydroxybenzoate 3-monooxygenase gene expression, and showed that the genes involved in the production of these two enzymes were upregulated to varying degrees after exposing the bacterium to PAHs. These results suggested that N. pentaromativorans US6-1 degraded PAHs via the metabolic route initiated by ring-hydroxylating dioxygenase, and further degradation occurred via the o-phthalate pathway or salicylate pathway. Both pathways subsequently entered the tricarboxylic acid (TCA) cycle, and were mineralized to CO2. Citation: Lyu Y, Zheng W, Zheng T, Tian Y (2014) Biodegradation of Polycyclic Aromatic Hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS ONE 9(7): e101438. doi:10.1371/journal.pone.0101438 Editor: Stephen J. Johnson, University of Kansas, United States of America Received February 26, 2014; Accepted June 5, 2014; Published July 9, 2014 Copyright: ß 2014 Lyu et al.
    [Show full text]
  • Sphingomonadaceae: Protective Against Breast Cancer? Ebidor Ufoumanefe Lawani‑Luwaji* and Tolulope Alade
    Lawani‑Luwaji and Alade Bull Natl Res Cent (2020) 44:191 https://doi.org/10.1186/s42269‑020‑00447‑0 Bulletin of the National Research Centre REVIEW Open Access Sphingomonadaceae: Protective against breast cancer? Ebidor Ufoumanefe Lawani‑Luwaji* and Tolulope Alade Abstract Background: Breast cancer is the most common malignancy and one of the leading causes of cancer‑linked deaths in women. The development of the mammary gland is regulated by oestrogen whose activities have also been linked with various diseases including breast cancer. Research has shown that host–microbiota relationship plays a role in human health and disease, so we investigated the association between breast microbiota and breast cancer. A search of the literature was conducted using search tools such as Google Scholar, PubMed, EBSCO and Cochrane library with the terms breast cancer, breast microbiota, microbiome and dysbiosis. A further search included Sphingomonas, Sphingobium yanoikuyae and oestrogen. The search terms were combined in original forms to get relevant stud‑ ies related to the subject under review. All articles written in English were included and publication dates were not limited. Conclusion: Taken together, the studies show that Sphingobium yanoikuyae might have a protective role in breast cancer, especially oestrogen positive, and highlights the need for further investigation into the use of the bacteria for prevention and possibly management of breast cancer. Keywords: Breast cancer, Microbiota, Dysbiosis, Sphingomonas Background to understand oestrogen receptor signalling (Korach Breast carcinoma embraces a group of diseases with def- et al. 2019). nite clinical, molecular and histopathologic properties. Tere are two main types of breast cancer: in situ It is the most common malignancy in females and is one and invasive carcinoma.
    [Show full text]