Trapeziometacarpal Joint Osteoarthritis

Total Page:16

File Type:pdf, Size:1020Kb

Trapeziometacarpal Joint Osteoarthritis Trapeziometacarpal Joint Osteoarthritis Diagnosis and Treatment Simona Odella 123 Trapeziometacarpal Joint Osteoarthritis Simona Odella Trapeziometacarpal Joint Osteoarthritis Diagnosis and Treatment Simona Odella Istituto Ortopedico Gaetano Pini Milan Italy ISBN 978-3-319-44334-8 ISBN 978-3-319-44336-2 (eBook) https://doi.org/10.1007/978-3-319-44336-2 Library of Congress Control Number: 2018940446 © Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface Trapeziometacarpal arthritis is a common disease in female population over 50 years old. Thirty-two percent of people over the age of 50 years have radiological evi- dence of trapeziometacarpal joint osteoarthritis. In a population aged over 80 years, radiographic evidence of trapeziometacarpal osteoarthritis is as high as 91%, but despite a very high prevalence of radiographic osteoarthritis, particularly in the elderly population, the presence of radiological findings does not correlate well with symptoms. Often radiological advanced arthritis does not correlate with an important pain and functional limitation; instead initial radiological stages can be painful causing weakness and impairment in daily activities. It can happen that two persons with the same radiological findings may experience a high degree of pain and disability. As a result, trapeziometacarpal osteoarthritis is frequently treated based on symptoms rather than radiological investigation. Conservative therapy is always the first choice. Only in case of failure and per- sistence of pain and dysfunction at the base of the thumb, surgery could be consid- ered as a possible solution. There are many different surgical procedures to treat thumb osteoarthritis: some of these are trapeziectomy with ligament reconstruction and tendon interposition (LRTI), trapeziectomy, trapeziectomy with ligament reconstruction, trapeziectomy with interpositional arthroplasty (IA), Artelon joint resurfacing, arthrodesis and Swanson joint replacement, partial trapeziectomy, partial trapeziectomy with pyro- carbon or PLDLA bioabsorbable interposition spacer, metacarpal osteotomy, and other different techniques. In literature a systematic review has failed to identify any additional benefit in terms of pain, physical function, patient global assessment, strength, and adverse events of any procedure over another. There is no evidence that the shortening of the thumb, after simple trapezium excision, can cause pain or worse functional results [1]. The aim of this book is to give an overview of the anatomy of the thumb, the possible reasons that lead to the trapeziometacarpal joint degeneration and of the possible solution in case of thumb osteoarthritis, considering conservative treat- ments and surgical options; in both cases the aim is to decrease pain, increase strength, and improve physical function. There is no evidence that a technique can give better results than another, and many different options have to be considered in any single case to give the correct v vi Preface indication. It is important to evaluate anatomical condition (trapezium bone stock, trapezium ipoplasia, joint instability), radiological stage, age of the patient, and functional demand before choosing the surgical technique. Milan, Italy Simona Odella Reference 1. Wajon A, Vinycomb T, Carr E, Edmunds I, Ada L (2015) Surgery for thumb (trapezio- metacarpal joint) osteoarthritis. Cochrane Database Syst Rev (2):CD004631. https://doi. org/10.1002/14651858.CD004631.pub4 Contents 1 Anatomy of the Trapeziometacarpal Joint ���������������������������������������������� 1 1.1 Dorsoradial Ligament (DRL) �������������������������������������������������������������� 4 1.2 Posterior Oblique Ligament (POL) . 4 1.3 Superficial Anterior Oblique Ligament (sAOL) . 4 1.4 Deep Anterior Oblique Ligament (dAOL) ������������������������������������������ 5 1.5 Ulnar Collateral Ligament (UCL) . 5 1.6 Intermetacarpal Ligaments ������������������������������������������������������������������ 6 1.7 The Flexor Carpi Radialis and the Flexor Carpi Radialis Groove . 6 References ���������������������������������������������������������������������������������������������������� 7 2 Physical and Radiological Evaluation ������������������������������������������������������ 9 2.1 Physical Evaluation . 9 2.2 Radiographic Evaluation . 10 References ���������������������������������������������������������������������������������������������������� 14 3 Etiopathology. 15 References ���������������������������������������������������������������������������������������������������� 20 4 Non-surgical Treatment . 23 4.1 Pharmacological Therapy . 24 4.1.1 Drug Treatment in the Early Stages ���������������������������������������� 25 4.1.2 Intra-articular Injection . 26 4.2 TMC Infiltration Technique ���������������������������������������������������������������� 26 4.2.1 Non-pharmacologic Treatments ���������������������������������������������� 30 4.3 Orthoses ���������������������������������������������������������������������������������������������� 31 4.4 Physical Therapy . 33 4.4.1 Physiotherapy Treatment �������������������������������������������������������� 33 4.4.2 Education Programme . 35 References ���������������������������������������������������������������������������������������������������� 37 5 Portals in the Arthroscopy of the Wrist and of the Small Joints . 41 5.1 Dorsal Portals �������������������������������������������������������������������������������������� 46 5.1.1 Portal 1/2 . 46 5.1.2 Portal 3/4 . 46 5.1.3 Portal 4/5 . 47 vii viii Contents 5.1.4 Portal 6R . 47 5.1.5 Portal 6U . 47 5.2 Medio-carpal Radial (MCR) Portal ���������������������������������������������������� 48 5.2.1 Midcarpal Ulnar Portal (MCU) . 48 5.2.2 Anterior Portals . 49 5.2.3 Volar Radial Portal (VR) . 49 5.2.4 Ulnar Volar Portal (VU) ���������������������������������������������������������� 49 5.3 Portals to STT . 51 5.3.1 STT Portal . 51 5.4 Trapezium-Metacarpal Portals ������������������������������������������������������������ 51 5.4.1 Trapezium-Metacarpal Radial Portal (TMR, Also Called 1R) . 51 5.4.2 Trapezoidal-Metacarpal-Ulnar Portal (TMU, Also Called 1U) ���������������������������������������������������������� 51 5.5 Radio-ulnar Distal (RUD) Articulation Portals . 52 5.5.1 Radio-ulnar Distal Lower (RUDL) Portal . 52 5.5.2 Proximal Lower Radio-ulnar Portal (PLRUP) ������������������������ 52 References ���������������������������������������������������������������������������������������������������� 52 6 Trapeziometacarpal Joint Arthrosis: Arthroscopic Treatment . 55 6.1 The Trapeziometacarpal Joint Arthrosis . 55 6.2 Anatomy of the Trapeziometacarpal Joint ������������������������������������������ 55 6.3 Classification . 57 6.4 Surgical Technique Brief . 58 6.5 Errors and Complications . 61 Conclusions �������������������������������������������������������������������������������������������������� 62 References ���������������������������������������������������������������������������������������������������� 62 7 Surgical Approaches and Techniques . 65 7.1 Algorithm of Treatment ���������������������������������������������������������������������� 69 7.2 Technique Description ������������������������������������������������������������������������ 70 7.3 Surgical Approaches and Techniques: Interposition Implants and TM Joint Fusion ������������������������������������������������������������ 70 7.3.1 Prosthesis Design �������������������������������������������������������������������� 72 7.3.2 Surgical Technique ������������������������������������������������������������������ 72 7.3.3 Surgical Technique ������������������������������������������������������������������ 76 7.3.4 Surgical Technique ������������������������������������������������������������������ 90 7.3.5 Open Surgical Technique �������������������������������������������������������� 90 7.4 Surgical Approaches: Arthroplasty Without Interposition Implants . 92 References ������������������������������������������������������������������������������������������������������
Recommended publications
  • The Proximal Interphalangeal Joint: Arthritis and Deformity
    4.1800EOR0010.1302/2058-5241.4.180042 research-article2019 EOR | volume 4 | June 2019 DOI: 10.1302/2058-5241.4.180042 Instructional Lecture: Hand & Wrist www.efortopenreviews.org The proximal interphalangeal joint: arthritis and deformity Daniel Herren Finger joints are of the most common site of osteoarthritis Most authors, especially in the rheumatology and arthritis and include the DIP, PIP and the thumb saddle joint. literature, use a modification of the Kellgren and Lawrence 1 Joint arthroplasty provides the best functional outcome scale, initially described for patellofemoral arthritis, for for painful destroyed PIP joints, including the index finger. radiographic classification: Adequate bone stock and functional tendons are required for a successful PIP joint replacement Grade 1: doubtful narrowing of joint space and pos- sible osteophytic lipping Fixed swan-neck and boutonnière deformity are better served with PIP arthrodesis rather than arthroplasty. Grade 2: definite osteophytes, definite narrowing of joint space Silicone implants are the gold standard in terms of implant choice. Newer two-component joints may have potential Grade 3: moderate multiple osteophytes, definite nar- to correct lateral deformities and improve lateral stability. rowing of joint space, some sclerosis and possible deformation of bone contour Different surgical approaches are used for PIP joint implant arthroplasty according to the needs and the experience of Grade 4: large osteophytes, marked narrowing of joint the surgeon. space, severe sclerosis and definite deformation of bone contour Post-operative rehabilitation is as critical as the surgical procedure. Early protected motion is a treatment goal. Revision and exchange PIP arthroplasty may successfully Treatment be used to treat chronic pain, but will not correct defor- mity.
    [Show full text]
  • Defining the Morphometrics of the First Metacarpal for the Development of an Osseointegrated Prosthesis
    Defining the Morphometrics of the First Metacarpal for the Development of an Osseointegrated Prosthesis Authors: JJ Vaux OMS-IV1, RR Hugate, M.D.2, JW Hills3, RF Grzybowski, D.O.4, CK Funk. Ph.D.1 Affiliations: 1Rocky Vista University College of Osteopathic Medicine, 2Colorado Limb Consultants, 3Dept of Materials and Mechanical Engineering, Denver University, 4Diversified Radiology Objective: Amputation of the thumb presents a serious insult to the hand and can result in up to a 22% loss of functionality in that limb (2,3). To date, several different techniques have been explored for reconstruction of the thumb, however none seem to be incredibly successful (1,4). We believe the answer lies in an osseointegrated prosthesis within the first metacarpal. In order to successfully create an osseointegrated prosthesis, the morphometrics of the first metacarpal are needed. The aim of this study was to define the geometry of the first metacarpal in order to help create a standardized set of stems and prostheses to treat patients who have suffered amputation of the thumb at the level of the first metacarpal phalangeal joint (MCPJ). Methods: A total of eighty first metacarpals from forty-one cadavers were studied. All soft tissues were removed and the first metacarpals were imaged by computed tomography (CT). Three-dimensional models were constructed using cuts from the coronal, sagittal, and axial planes. Using a HyperMesh software, the individual first metacarpals were analyzed and measurements were taken for overall length, radius of curvature, medullary canal diameter, cortical thickness, and distance from the distal end to the center of the isthmus.
    [Show full text]
  • Module 6 : Anatomy of the Joints
    Module 6 : Anatomy of the Joints In this module you will learn: About the classification of joints What synovial joints are and how they work Where the hinge joints are located and their functions Examples of gliding joints and how they work About the saddle joint and its function 6.1 Introduction The body has a need for strength and movement, which is why we are rigid. If our bodies were not made this way, then movement would be impossible. We are designed to grow with bones, tendons, ligaments, and joints that all play a part in natural movements known as articulations – these strong connections join up bones, teeth, and cartilage. Each joint in our body makes these links possible and each joint performs a specific job – many of them differ in shape and structure, but all control a range of motion between the body parts that they connect. 6.2 Classifying Joints Joints that do not allow movement are known as synarthrosis joints. Examples of synarthroses are sutures of the skull, and the gomphoses which connect our teeth to the skull. Amphiarthrosis joints allow a small range of movement, an example of this is your intervertebral discs attached to the spine. Another example is the pubic symphysis in your hip region. The freely moving joints are classified as diarthrosis joints. These have a higher range of motion than any other type of joint, they include knees, elbows, shoulders, and wrists. Joints can also be classified depending on the kind of material each one is structurally made up of. A fibrous joint is made up of tough collagen fiber, examples of this are previously mentioned sutures of the skull or the syndesmosis joint, which holds the ulna and radius of your forearm in place.
    [Show full text]
  • Isolated Trapezoid Fractures a Case Report with Compilation of the Literature
    Bulletin of the NYU Hospital for Joint Diseases 2008;66(1):57-60 57 Isolated Trapezoid Fractures A Case Report with Compilation of the Literature Konrad I. Gruson, M.D., Kevin M. Kaplan, M.D., and Nader Paksima, D.O., M.P.H. Abstract as an axial load5,6 or bending stress7 transmitted indirectly Isolated fractures of the trapezoid bone have been rarely to the trapezoid through the second metacarpal. We present reported in the literature, the mechanism of injury being a case of an acute, isolated trapezoid fracture that resulted an axial or bending load transmitted through the second from direct trauma to the distal carpus and that was treated metacarpal. We report a case of an isolated, nondisplaced nonoperatively. Additionally, strategies for diagnosis and trapezoid fracture that was sustained by direct trauma treatment, as well as a synthesis of the published results and subsequently treated successfully in a short-arm cast. for both isolated and concomitant trapezoid fractures, are Diagnostic and treatment strategies for isolated fractures presented. of the trapezoid bone are reviewed as well as the results of operative and nonoperative treatment. Case Report A 25-year-old right-hand dominant male presented to the ractures of the carpus most commonly involve the emergency room (ER) complaining of isolated right-wrist scaphoid,1 with typical physical examination findings pain and swelling of 1 day’s duration. The patient stated Fof “snuffbox” tenderness. This presentation is fre- that a heavy metal door at work had closed onto the back quently the result of the patient falling onto an outstretched of his wrist causing an immediate onset of swelling and hand.
    [Show full text]
  • Joints Classification of Joints
    Joints Classification of Joints . Functional classification (Focuses on amount of movement) . Synarthroses (immovable joints) . Amphiarthroses (slightly movable joints) . Diarthroses (freely movable joints) . Structural classification (Based on the material binding them and presence or absence of a joint cavity) . Fibrous mostly synarthroses . Cartilagenous mostly amphiarthroses . Synovial diarthroses Table of Joint Types Functional across Synarthroses Amphiarthroses Diarthroses (immovable joints) (some movement) (freely movable) Structural down Bony Fusion Synostosis (frontal=metopic suture; epiphyseal lines) Fibrous Suture (skull only) Syndesmoses Syndesmoses -fibrous tissue is -ligaments only -ligament longer continuous with between bones; here, (example: radioulnar periosteum short so some but not interosseous a lot of movement membrane) (example: tib-fib Gomphoses (teeth) ligament) -ligament is periodontal ligament Cartilagenous Synchondroses Sympheses (bone united by -hyaline cartilage -fibrocartilage cartilage only) (examples: (examples: between manubrium-C1, discs, pubic epiphyseal plates) symphesis Synovial Are all diarthrotic Fibrous joints . Bones connected by fibrous tissue: dense regular connective tissue . No joint cavity . Slightly immovable or not at all . Types . Sutures . Syndesmoses . Gomphoses Sutures . Only between bones of skull . Fibrous tissue continuous with periosteum . Ossify and fuse in middle age: now technically called “synostoses”= bony junctions Syndesmoses . In Greek: “ligament” . Bones connected by ligaments only . Amount of movement depends on length of the fibers: longer than in sutures Gomphoses . Is a “peg-in-socket” . Only example is tooth with its socket . Ligament is a short periodontal ligament Cartilagenous joints . Articulating bones united by cartilage . Lack a joint cavity . Not highly movable . Two types . Synchondroses (singular: synchondrosis) . Sympheses (singular: symphesis) Synchondroses . Literally: “junction of cartilage” . Hyaline cartilage unites the bones . Immovable (synarthroses) .
    [Show full text]
  • 38.3 Joints and Skeletal Movement.Pdf
    1198 Chapter 38 | The Musculoskeletal System Decalcification of Bones Question: What effect does the removal of calcium and collagen have on bone structure? Background: Conduct a literature search on the role of calcium and collagen in maintaining bone structure. Conduct a literature search on diseases in which bone structure is compromised. Hypothesis: Develop a hypothesis that states predictions of the flexibility, strength, and mass of bones that have had the calcium and collagen components removed. Develop a hypothesis regarding the attempt to add calcium back to decalcified bones. Test the hypothesis: Test the prediction by removing calcium from chicken bones by placing them in a jar of vinegar for seven days. Test the hypothesis regarding adding calcium back to decalcified bone by placing the decalcified chicken bones into a jar of water with calcium supplements added. Test the prediction by denaturing the collagen from the bones by baking them at 250°C for three hours. Analyze the data: Create a table showing the changes in bone flexibility, strength, and mass in the three different environments. Report the results: Under which conditions was the bone most flexible? Under which conditions was the bone the strongest? Draw a conclusion: Did the results support or refute the hypothesis? How do the results observed in this experiment correspond to diseases that destroy bone tissue? 38.3 | Joints and Skeletal Movement By the end of this section, you will be able to do the following: • Classify the different types of joints on the basis of structure • Explain the role of joints in skeletal movement The point at which two or more bones meet is called a joint, or articulation.
    [Show full text]
  • The Carpometacarpal Joint of the Thumb: MR Appearance in Asymptomatic Volunteers
    Skeletal Radiol (2013) 42:1105–1112 DOI 10.1007/s00256-013-1633-4 SCIENTIFIC ARTICLE The carpometacarpal joint of the thumb: MR appearance in asymptomatic volunteers Anna Hirschmann & Reto Sutter & Andreas Schweizer & Christian W. A. Pfirrmann Received: 23 January 2013 /Revised: 1 April 2013 /Accepted: 21 April 2013 /Published online: 15 May 2013 # ISS 2013 Abstract subjects. The AOL showed a variable SI (36 %/42 % low, Purpose To prospectively characterize the MR appearance 27 %/27 % increased, 36 %/30 % striated). The IML was the of the carpometacarpal (CMC) joint of the thumb in asymp- thickest ligament with a mean of 2.9 mm/3.1 mm and the tomatic volunteers. DRL the thinnest (1.2 mm/1.4 mm). There was a mean Materials and methods Thirty-four asymptomatic volun- dorsal subluxation of 1.8 mm/2.0 mm and radial subluxation teers (17 women, 17 men, mean age, 33.9±9.2 years) of 2.8 mm/3.4 mm of the metacarpal base. The AOL was underwent MR imaging of the thumb after approval by the significantly thicker in men (1.7 mm) than in women local ethical committee. Two musculoskeletal radiologists (1.2 mm; p=0.02). Radial subluxation was significantly independently classified visibility and signal intensity (SI) larger in men (3.4 mm) than in women (2.2 mm; p=0.02). characteristics of the anterior oblique (AOL/beak ligament), No subluxation in palmar or ulnar direction was seen. the posterior oblique (POL), the intermetacarpal (IML), and Conclusions Radial and dorsal subluxation of the CMC the dorsoradial ligaments (DRL) on a three-point Likert joint can be a normal finding in a resting position at MR scale.
    [Show full text]
  • Bone Limb Upper
    Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior
    [Show full text]
  • Symptomatic Carpal Coalition: Scaphotrapezial Joint
    A Case Report & Literature Review E. Campaigniac et al Symptomatic Carpal Coalition: Scaphotrapezial Joint Erin Campaigniac, MD, Mark Eskander, MD, and Marci Jones, MD joint formation may be radiographically visible, with joint Abstract space narrowing wherein bone or fibrous material is present Carpal coalition is an uncommon congenital in place of articular cartilage.2,4 Minaar8 developed a classifi- abnormality that arises from incomplete cavita- cation system based on his observations of 12 lunotriquetral tion of the common cartilaginous precursor that coalitions and their differences in coalition: ◾ Type I, incomplete fusion resembling pseudarthrosis or syn- forms the carpal bones. When carpal coalition chondrosis is discovered, it is typically an asymptomatic ◾ Type II, proximal fusion with a distal notching incidental radiographic finding, and is often ◾ Type III, complete fusion, and bilateral. We present a case of symptomatic ◾ Type IV, complete fusion associated with other anomalies. unilateral carpal coalition of the scaphotrapezial Although these 4 types were based on lunotriquetral coali- joint, which was treated by excising the fibrous tions, this classification system is used to describe the coalition coalition and placing an interposition fat graft. of any carpal bone. This treatment was effective in alleviating the Carpal coalition is uncommon, and the reported prevalence 2,5,6,9 patient’s symptoms. is close to 0.1%. There is, however, an increase of up to 1.5% in patients of African descent, and 9.5% in the West Af- rican
    [Show full text]
  • Spline Joints for Multibody Dynamics
    To appear in the ACM SIGGRAPH conference proceedings Spline Joints for Multibody Dynamics Sung-Hee Lee∗ Demetri Terzopoulos† University of California, Los Angeles Figure 1: A spline joint can much more accurately model complex biological joints than is possible using conventional joint models. Abstract When it comes to designing practical machines, using only the lower pair joints seems reasonable, not because they are ideal Spline joints are a novel class of joints that can model general scle- choices for every mechanism, but because it is difficult to man- ronomic constraints for multibody dynamics based on the minimal- ufacture more complex types of joints. For the same reason, coordinates formulation. The main idea is to introduce spline the creation of more sophisticated joints has been largely ne- curves and surfaces in the modeling of joints: We model 1-DOF glected in multibody dynamics research. Not surprisingly, there- joints using splines on SE(3), and construct multi-DOF joints as fore, most dynamics simulators and game physics engines, such the product of exponentials of splines in Euclidean space. We as ADAMS (www.mscsoftware.com), the Open Dynamics Engine present efficient recursive algorithms to compute the derivatives of (www.ode.org), and SD/FAST (www.sdfast.com), provide only the spline joint, as well as geometric algorithms to determine op- fairly simple types of joint models limited to fixed joint axes. timal parameters in order to achieve the desired joint motion. Our spline joints can be used to create interesting new simulated mecha- By contrast, more complex joints are common in biological sys- nisms for computer animation and they can more accurately model tems.
    [Show full text]
  • Clinical Medical Policy
    CLINICAL MEDICAL POLICY Noninvasive Electrical Bone Growth Stimulators Policy Name: (osteogenesis stimulators) Policy Number: MP-070-MD-PA Responsible Department(s): Medical Management Provider Notice Date: 12/15/2018 Issue Date: 01/15/2019 Effective Date: 01/15/2019 Annual Approval Date: 10/17/2019 Revision Date: N/A Products: Gateway Health℠ Medicaid Application: All participating hospitals and providers Page Number(s): 1 of 78 DISCLAIMER Gateway Health℠ (Gateway) medical policy is intended to serve only as a general reference resource regarding coverage for the services described. This policy does not constitute medical advice and is not intended to govern or otherwise influence medical decisions. POLICY STATEMENT Gateway Health℠ may provide coverage under the medical-surgical and DME benefits of the Company’s Medicaid products for medically necessary noninvasive electrical bone growth stimulators as treatment of nonunion long bone fractures or congenital pseudarthrosis. This policy is designed to address medical necessity guidelines that are appropriate for the majority of individuals with a particular disease, illness or condition. Each person’s unique clinical circumstances warrant individual consideration, based upon review of applicable medical records. (Current applicable Pennsylvania HealthChoices Agreement Section V. Program Requirements, B. Prior Authorization of Services, 1. General Prior Authorization Requirements.) Policy No. MP-070-MD-PA Page 1 of 78 DEFINITIONS Prior Authorization Review Panel - A panel of representatives from within the PA Department of Human Services who have been assigned organizational responsibility for the review, approval and denial of all PH-MCO Prior Authorization policies and procedures. Non-invasive (Osteogenic) Electrical Bone Growth Stimulator – A device that uses pulsed- electromagnetic fields, capacitative coupling or combined magnetic fields to generate a weak electric current through the target site.
    [Show full text]
  • Evaluation of Humeral and Glenoid Bone Deformity in Glenohumeral Arthritis 5
    Evaluation of Humeral and Glenoid Bone Deformity 1 in Glenohumeral Arthritis Brian F. Grogan and Charles M. Jobin Introduction glenoid bone wear helps the surgeon formulate a successful treatment plan and surgical goals Glenohumeral arthritis is the sequela of a vari- to address the pathoanatomy and improve the ety of pathologic shoulder processes, most durability of shoulder arthroplasty. The evalu- commonly degenerative osteoarthritis, but may ation of humeral and glenoid bone deformity also be secondary to post-traumatic conditions, in glenohumeral arthritis has profound surgical inflammatory arthritis, rotator cuff tear arthrop- implications and is fundamental to successful athy, and postsurgical conditions most com- shoulder arthroplasty. monly post-capsulorrhaphy arthritis. Patients with glenohumeral arthritis commonly demon- strate patterns of bony deformity on the glenoid Glenoid Deformity in Osteoarthritis and humerus that are caused by the etiology of the arthritis. For example, osteoarthritis com- Glenoid deformity and glenohumeral subluxation monly presents with posterior glenoid wear, are commonly seen in the setting of primary osteo- secondary glenoid retroversion, and posterior arthritis of the glenohumeral joint. The glenoid humeral head subluxation, while inflammatory wear tends to occur posteriorly and may be best arthritis routinely causes concentric glenoid viewed on axial radiographs or computed tomog- wear with central glenoid erosion. A thorough raphy (CT) axial images. Glenoid erosion, as first history and physical, as well as laboratory and characterized by Walch, is noted to be either central radiographic workup, are keys to understanding or posterior, with varying degrees of wear and pos- the etiology of arthritis and understanding the terior subluxation of the humerus [1, 2] (Fig.
    [Show full text]