The Carpometacarpal Joint of the Thumb: MR Appearance in Asymptomatic Volunteers

Total Page:16

File Type:pdf, Size:1020Kb

The Carpometacarpal Joint of the Thumb: MR Appearance in Asymptomatic Volunteers Skeletal Radiol (2013) 42:1105–1112 DOI 10.1007/s00256-013-1633-4 SCIENTIFIC ARTICLE The carpometacarpal joint of the thumb: MR appearance in asymptomatic volunteers Anna Hirschmann & Reto Sutter & Andreas Schweizer & Christian W. A. Pfirrmann Received: 23 January 2013 /Revised: 1 April 2013 /Accepted: 21 April 2013 /Published online: 15 May 2013 # ISS 2013 Abstract subjects. The AOL showed a variable SI (36 %/42 % low, Purpose To prospectively characterize the MR appearance 27 %/27 % increased, 36 %/30 % striated). The IML was the of the carpometacarpal (CMC) joint of the thumb in asymp- thickest ligament with a mean of 2.9 mm/3.1 mm and the tomatic volunteers. DRL the thinnest (1.2 mm/1.4 mm). There was a mean Materials and methods Thirty-four asymptomatic volun- dorsal subluxation of 1.8 mm/2.0 mm and radial subluxation teers (17 women, 17 men, mean age, 33.9±9.2 years) of 2.8 mm/3.4 mm of the metacarpal base. The AOL was underwent MR imaging of the thumb after approval by the significantly thicker in men (1.7 mm) than in women local ethical committee. Two musculoskeletal radiologists (1.2 mm; p=0.02). Radial subluxation was significantly independently classified visibility and signal intensity (SI) larger in men (3.4 mm) than in women (2.2 mm; p=0.02). characteristics of the anterior oblique (AOL/beak ligament), No subluxation in palmar or ulnar direction was seen. the posterior oblique (POL), the intermetacarpal (IML), and Conclusions Radial and dorsal subluxation of the CMC the dorsoradial ligaments (DRL) on a three-point Likert joint can be a normal finding in a resting position at MR scale. The thickness of all ligaments, cartilage integrity, imaging. The CMC ligaments showed a considerable vari- and presence of joint fluid were assessed. The alignment ability of signal intensity with a typically striated IML; of the first metacarpal base with the trapezium was quanti- thickness of the AOL is typically less than 2.2 mm, of the fied on sagittal and coronal planes. POL typically less than 2.9 mm. Results The ligaments of the CMC joint were constantly visible in all volunteers for the POL and IML, and in all Keywords Carpometacarpal joint . Thumb . Magnetic but one for the AOL and DRL. On intermediate-weighted resonance imaging fat-saturated images the POL (65 %/74 % reader 1/reader 2) and DRL (58 %/64 %) were commonly of increased SI, while the IML had a striated appearance in 91 %/76 % of Introduction The carpometacarpal (CMC) joint of the thumb is a A. Hirschmann (*) : R. Sutter : C. W. A. Pfirrmann saddle joint with a biconcave-convex shape. The trape- Department of Radiology, Orthopedic University Hospital zium articulates with the first and second metacarpal Balgrist, University of Zurich, Forchstrasse 340, base distally [1]. This unique morphology leads to a 8008 Zurich, Switzerland – e-mail: [email protected] wide range of motion [2 4]. Stability is given by a ligament complex, which consists of five main compo- R. Sutter e-mail: [email protected] nents (Fig. 1): the anterior oblique ligament (AOL/beak ligament), the posterior oblique ligament (POL), the C. W. A. Pfirrmann e-mail: [email protected] dorsoradial ligament (DRL), the intermetacarpal liga- ment (IML) and the ulnar collateral ligament (UCL) [2, 3, A. Schweizer 5, 6]. Due to the exceptional anatomy of the joint, it is Department of Orthopedic Surgery, Orthopedic University lax and incongruent in the resting thumb position while Hospital Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland it is stable and tightly congruent in the final phase of e-mail: [email protected] thumb opposition [4, 6, 7]. 1106 Skeletal Radiol (2013) 42:1105–1112 Fig. 1 3D reconstructions show the volar view (a), the dorsal view (b), POL=posterior oblique ligament, DRL=dorsoradial ligament, IML= and the radial view (c) of the carpometacarpal (CMC) ligament complex intermetacarpal ligament, 1st MC=first metacarpal bone, 2nd of the thumb. The dark (AOL) and white (POL) stripes demonstrate MC=second metacarpal bone, T=trapezium the ligament orientation. AOL=anterior oblique ligament/beak, Isolated dislocation of the CMC joint is uncommon and evaluated as well as the handedness. This study was ap- occurs in less than 1 % of all hand injuries [6, 8]. It is more proved by the local ethics committee and informed consent often combined with a fracture of the first metacarpal base was obtained from each volunteer. [7, 9]. A pure dislocation of the CMC joint typically leads to a rupture of the DRL and POL [6–8]. Magnetic resonance MR imaging protocol (MR) imaging can be used to accurately evaluate these ligament injuries [5]. MR imaging was performed with a 1.5-T extremity The ligamentous anatomy of the CMC joint has been scanner (Optima MR 430 s, GE Healthcare, Waukesha, extensively studied in cadaveric dissections [1, 10–18]. WI, USA). All subjects were examined in the static Normal CMC ligament appearance on MR images is often resting position of the thumb in a dedicated 100-mm described as low signal intensity (SI) with a thin linear shape coil. The patient was sitting next to the extremity scan- in all sequences [3, 5], although there are reports of variable ner, the arm was placed in the neutral position, the SI in asymptomatic healthy volunteers in elbow and ankle thumb rested parallel to the second digit. Intermediate- ligaments [19, 20]. Only a few studies have addressed the weighted fat-saturated (FS) images were acquired in the complex MR anatomy of the CMC ligaments in detail [3, 5]. sagittal plane (repetition time ms/echo time ms, 2,000/24; Also, the spectrum of normal MR morphology of the CMC section thickness, 2 mm; field of view, 67 mm; acqui- joint structures in healthy volunteers is not known. The sition time, 5 min 24 s), in the coronal plane (2,039/25; purpose of this study was to prospectively characterize the section thickness, 2 mm; field of view, 135 mm; acqui- MR anatomy and variants of the CMC joint in asymptom- sition time, 5 min 29 s) and in the axial plane perpen- atic volunteers. dicular to the first metacarpal bone (2,079/22; section thickness, 2.5 mm; field of view, 60 mm; acquisition time, 5 min 48 s). T1-weighted turbo spin echo images Materials and methods were obtained in the sagittal plane (598/14; section thick- ness, 2 mm; field of view, 67 mm; acquisition time, 4 min Thirty-four asymptomatic healthy volunteers (17 women, 55 s) and in the axial plane perpendicular to the first mean age 33.5±9.8 years, range, 20–49 years; 17 men, metacarpal bone (557/13; section thickness, 2.5 mm; field mean age 34.4±8.8 years, range, 23–49 years) were pro- of view, 60 mm; acquisition time, 5 min 5 s). spectively included in this study. For each decade between 20 and 50 years, at least five women and five men were Definition of ligaments included. All volunteers completed a questionnaire to ensure that they had not undergone prior thumb and hand surgery, Anterior oblique/beak ligament (AOL) had no thumb and hand pain, had never seen a physician for thumb and hand complaints, had never injured the thumb The AOL has its origin at the palmar tubercle of the and hand and did not suffer from a systemic inflammatory trapezium and attaches at the volar beak of the first disease. Daily and labor activities of the thumb were metacarpal base (Figs. 1 and 2). The AOL runs in a Skeletal Radiol (2013) 42:1105–1112 1107 Fig. 2 a Sagittal intermediate- weighted fat-saturated image (2,000/24 ms) shows the AOL (black arrows)andthePOL (white arrows) of the right CMC joint of the thumb in a 48-year- old healthy volunteer. b Schematic drawing of the AOL and POL at the same position as a. AOL=anterior oblique ligament/beak, POL=posterior oblique ligament, 1st MC=first metacarpal bone sagittal orientation. The ligament spans volarly around Intermetacarpal ligament (IML) the CMC joint and runs in a diagonal fashion from proximal-radial to distal-ulnar. This extracapsular ligament arises from the radial base of the The AOL is composed of two layers, a superficial and a second metacarpal bone and runs transversally to the ulnar deeper intraarticular one. Most authors do not differentiate side of the first metacarpal base (Figs. 1 and 3). It is best between these two layers and term the AOL “beak ligament” visualized in coronal images. [4, 7, 10, 17, 21], while a few authors name the deep bundles “beak ligament” [3, 16]. Qualitative analysis Posterior oblique ligament (POL) MR images were analyzed independently by two fellowship- trained musculoskeletal radiologists. They were blinded to the The POL runs obliquely from the dorsal tubercle of the results of each other’s readings and to any information regard- trapezium to the dorsoulnar tubercle of the metacarpal ing the volunteers. base (Figs. 1 and 2). Best visualization is in the sagittal Visibility (no/yes) and SI (low as the normal low signal imaging plane. of ligaments and tendons/increased compared to the normal low signal of ligaments and tendons/striated) of the ligament Dorsoradial ligament (DRL) complex (AOL, POL, DRL, IML) were evaluated on fluid- sensitive intermediate-weighted FS images. The cartilage The DRL origins at the dorsoradial tubercle of the trapezium, (intact/inhomogeneous SI/presence of chondral defects) as attaches to the adjacent aspect of the metacarpal base and has a well as the presence of joint fluid (no/minor/joint distension) coronal orientation (Figs.
Recommended publications
  • Defining the Morphometrics of the First Metacarpal for the Development of an Osseointegrated Prosthesis
    Defining the Morphometrics of the First Metacarpal for the Development of an Osseointegrated Prosthesis Authors: JJ Vaux OMS-IV1, RR Hugate, M.D.2, JW Hills3, RF Grzybowski, D.O.4, CK Funk. Ph.D.1 Affiliations: 1Rocky Vista University College of Osteopathic Medicine, 2Colorado Limb Consultants, 3Dept of Materials and Mechanical Engineering, Denver University, 4Diversified Radiology Objective: Amputation of the thumb presents a serious insult to the hand and can result in up to a 22% loss of functionality in that limb (2,3). To date, several different techniques have been explored for reconstruction of the thumb, however none seem to be incredibly successful (1,4). We believe the answer lies in an osseointegrated prosthesis within the first metacarpal. In order to successfully create an osseointegrated prosthesis, the morphometrics of the first metacarpal are needed. The aim of this study was to define the geometry of the first metacarpal in order to help create a standardized set of stems and prostheses to treat patients who have suffered amputation of the thumb at the level of the first metacarpal phalangeal joint (MCPJ). Methods: A total of eighty first metacarpals from forty-one cadavers were studied. All soft tissues were removed and the first metacarpals were imaged by computed tomography (CT). Three-dimensional models were constructed using cuts from the coronal, sagittal, and axial planes. Using a HyperMesh software, the individual first metacarpals were analyzed and measurements were taken for overall length, radius of curvature, medullary canal diameter, cortical thickness, and distance from the distal end to the center of the isthmus.
    [Show full text]
  • Clinical Medical Policy
    CLINICAL MEDICAL POLICY Noninvasive Electrical Bone Growth Stimulators Policy Name: (osteogenesis stimulators) Policy Number: MP-070-MD-PA Responsible Department(s): Medical Management Provider Notice Date: 12/15/2018 Issue Date: 01/15/2019 Effective Date: 01/15/2019 Annual Approval Date: 10/17/2019 Revision Date: N/A Products: Gateway Health℠ Medicaid Application: All participating hospitals and providers Page Number(s): 1 of 78 DISCLAIMER Gateway Health℠ (Gateway) medical policy is intended to serve only as a general reference resource regarding coverage for the services described. This policy does not constitute medical advice and is not intended to govern or otherwise influence medical decisions. POLICY STATEMENT Gateway Health℠ may provide coverage under the medical-surgical and DME benefits of the Company’s Medicaid products for medically necessary noninvasive electrical bone growth stimulators as treatment of nonunion long bone fractures or congenital pseudarthrosis. This policy is designed to address medical necessity guidelines that are appropriate for the majority of individuals with a particular disease, illness or condition. Each person’s unique clinical circumstances warrant individual consideration, based upon review of applicable medical records. (Current applicable Pennsylvania HealthChoices Agreement Section V. Program Requirements, B. Prior Authorization of Services, 1. General Prior Authorization Requirements.) Policy No. MP-070-MD-PA Page 1 of 78 DEFINITIONS Prior Authorization Review Panel - A panel of representatives from within the PA Department of Human Services who have been assigned organizational responsibility for the review, approval and denial of all PH-MCO Prior Authorization policies and procedures. Non-invasive (Osteogenic) Electrical Bone Growth Stimulator – A device that uses pulsed- electromagnetic fields, capacitative coupling or combined magnetic fields to generate a weak electric current through the target site.
    [Show full text]
  • 중수골 단독 골절에 대한 최소 관혈적 정복술 Mini-Open Reduction Of
    Arch Hand Microsurg 2019;24(4):321-329. https://doi.org/10.12790/ahm.2019.24.4.321 Archives of pISSN 2586-3290 • eISSN 2586-3533 Hand and Microsurgery Original Article 중수골 단독 골절에 대한 최소 관혈적 정복술 정연진1ㆍ오세영2ㆍ최지선2ㆍ임진수2ㆍ심형섭2 1가톨릭대학교 의과대학 은평성모병원 성형외과학교실, 2가톨릭대학교 의과대학 성빈센트병원 성형외과학교실 Mini-Open Reduction of Isolated Metacarpal Bone Fracture Yeon Jin Jeong1, Se Young Oh2, Ji Seon Choi2, Jin Soo Lim2, Hyung-Sup Shim2 1Department of Plastic and Reconstructive Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea 2Department of Plastic and Reconstructive Surgery, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea Purpose: Metacarpal bone fracture is a commonly encountered. The authors applied a minimally invasive open reduction technique that comprises only a stab incision to treat metacarpal bone fractures, thereby minimizing complications that accompany traditional open reduction methods while retaining the advantages of closed reduction techniques. Methods: A 5-year retrospective study was carried out of all patients who underwent surgical treatment performed by two separate hand surgeons. Total 37 patients were operated. Fourteen patients of conventional open reduction group and 23 patients of minimal invasive group were included in the study. Results: Mini-open reduction group had shorter operative time, comparable radiological reduction result, lower subjec- tive pain, comparable mean active range of motion of the metacarpophalangeal joint, similar complication rate and supe- rior outcome scar quality than conventional open reduction group. Conclusion: Mini-open reduction method may be an alternative to conventional open reduction in treating metacarpal fractures.
    [Show full text]
  • Anatomical Snuffbox and It Clinical Significance. a Literature Review
    Int. J. Morphol., 33(4):1355-1360, 2015. Anatomical Snuffbox and it Clinical Significance. A Literature Review La Tabaquera Anatómica y su Importancia Clínica. Una Revisión de la Literatura Aladino Cerda*,** & Mariano del Sol ***,**** CERDA, A & DEL SOL, M. Anatomical snuffbox and it clinical significance. A literature review. Int. J. Morphol., 33(4):1355-1360, 2015. SUMMARY: The anatomical snuffbox is a small triangular area situated in the radial part of the wrist, often used to perform clinical and surgical procedures. Despite the frequency with which this area is used, there is scarce information in literature about its details. The objective of this study is detailed knowledge of the anatomical snuffbox’s anatomy and its components, the reported alterations at this portion, besides the clinical uses and significance of this area. KEY WORDS: Hand; Wrist; Anatomical Snuffbox; Radial artery; Cephalic vein; Superficial branch of radial nerve; Scaphoid. INTRODUCTION The anatomical snuffbox (AS) is a depression in (Latarjet & Ruíz-Liard). This triangular structure presents a wrist’s radial part, limited by the tendons of abductor longus base formed by the distal margin of the retinaculum of ex- muscle, extensor pollicis brevis and extensor pollicis longus tensor muscles (Kahle et al., 1995), and a vertex conformed muscles (Latarjet & Ruíz-Liard, 2007). This little triangular by the attachment of the tendons of extensor pollicis longus area is often used to perform clinical procedures as the and extensor pollicis brevis muscles (Fig. 2) (Latarjet & cannulation of the cephalic vein, and surgical procedures as Ruíz-Liard). The roof is formed by the skin and superficial placing arteriovenous fistula between the radial artery and cephalic vein, among other uses.
    [Show full text]
  • DISTAL RADIUS FRACTURES: REHABILITATIVE EVALUATION and TREATMENT PDH Academy Course #OT-1901 | 5 CE HOURS
    CONTINUING EDUCATION for Occupational Therapists DISTAL RADIUS FRACTURES: REHABILITATIVE EVALUATION AND TREATMENT PDH Academy Course #OT-1901 | 5 CE HOURS This course is offered for 0.5 CEUs (Intermediate level; Category 2 – Occupational Therapy Process: Evaluation; Category 2 – Occupational Therapy Process: Intervention; Category 2 – Occupational Therapy Process: Outcomes). The assignment of AOTA CEUs does not imply endorsement of specific course content, products, or clinical procedures by AOTA. Course Abstract This course addresses the rehabilitation of patients with distal radius fractures. It begins with a review of relevant terminology and anatomy, next speaks to medical intervention, and then examines the role of therapy as it pertains to evaluation, rehabilitation, and handling complications. It concludes with case studies. Target audience: Occupational Therapists, Occupational Therapy Assistants, Physical Therapists, Physical Therapist Assistants (no prerequisites). NOTE: Links provided within the course material are for informational purposes only. No endorsement of processes or products is intended or implied. Learning Objectives At the end of this course, learners will be able to: ❏ Differentiate between definitions and terminology pertaining to distal radius fractures ❏ Recall the normal anatomy and kinesiology of the wrist ❏ Identify elements of medical diagnosis and treatment of distal radius fractures ❏ Recognize roles of therapy as it pertains to the evaluation and rehabilitation of distal radius fractures ❏ Distinguish
    [Show full text]
  • Triphalangeal Thumb in the Typical Cleft Hand
    Cong. horn.,36: 75-81, 1996 Original Triphalangeal Thumb in the Typical Cleft Hand Takayuki MIURAl and Emiko HORI12 'Health Service Center, Chukyo University, 101 Tokodate, Kaizu-cho, Toyota-shi, Aichi 470-03, Japan, and 2Department of Orthopaedic Surgery, Branch Hospital, Nagoya University, 1-1-20, Daiko-minami, Higashi-ku, Nagoya 461, Japan. ABSTRACT Ten hands of six patients with only a single digit retained on the radial side of the cleft were observed from a group of 63 patients with typical cleft hand. All patients were bilaterally involved, and five were complicated with cleft foot. There were two types of retained thumb: a triphalangeal thumb with characteristic metacarpal bone(s), six hands of four patients; and a normal diphalangeal thumb, four hands of two patients. The meta- carpal and distal phalangeal bone(s) of the triphalangeal thumb in typical cleft hand had signs of digital ray union: double epiphysis, deltametacarpal, bifurcated or perforated dis- tal phalanx. Key words: congenital hand anomaly, cleft hand, triphalangeal thumb, delta phalanx, double epiphysis, case report In 68 of 81 hands with typical cleft hand, observed in 63 patients from 1969 to 1993 at the Branch Hospital of Nagoya University, only the long finger was missing. The index and long fingers were absent in only 10 hands of six patients. The retained thumb in cases with only a single digit on the radial side of the cleft was triphalangeal in six hands, and diphalangeal in four. In this study the clinical features of the tripha- langeal thumb were compared with the diphalangeal thumb. These were found to have characteristic and interesting features which could help determine the embryonic failures of the typical cleft hand.
    [Show full text]
  • Anatomical Variations of the Abductor Pollicis Longus: a Pilot Study P
    Folia Morphol. Vol. 79, No. 4, pp. 817–822 DOI: 10.5603/FM.a2019.0134 O R I G I N A L A R T I C L E Copyright © 2020 Via Medica ISSN 0015–5659 journals.viamedica.pl Anatomical variations of the abductor pollicis longus: a pilot study P. Karauda1, Ł. Olewnik1, M. Podgórski2, M. Polguj1, K. Ruzik1, B. Szewczyk3, M. Topol1 1Department of Normal and Clinical Anatomy, Interfaculty Chair of Anatomy and Histology, Medical University of Lodz, Poland 2Department of Diagnostic Imaging, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland 3Department of Clinical Morphology, Medical University of Lodz, Poland [Received: 12 October 2019; Accepted: 3 November 2019] Background: The abductor pollicis longus (APL) originates from the lateral part of the dorsal surface of the body of the ulna below the insertion of the anconeus muscle, from the interosseous membrane, and from the middle third of the dorsal surface of the body of the radius. However, the number of its accessory bands and their insertion vary considerably. Materials and methods: Fifty upper limbs (2 paired, 31 male, 19 female) were obtained from adult Caucasian cadavers, and fixed in 10% formalin solution before examination. Results: The APL muscle was present in all specimens. The muscles were divided into three main categories, with type II and III being dived into subtypes. Type I was characterised by a single distal attachment, with the tendon inserting to the base of the I metacarpal bone. Type II was characterised by a bifurcated distal attachment, with the main tendon inserting to the base of the first metacarpal bone; this type was divided into three subtypes (a–c).
    [Show full text]
  • On the Difference in the Mode of Ossifica- Tion of the First and Other Metacarpal and Metatarsal Bones
    ON THE DIFFERENCE IN THE MODE OF OSSIFICA- TION OF THE FIRST AND OTHER METACARPAL AND METATARSAL BONES. By ALLEN THOMSON, M.D., F.R.S., Professor of Anatomy in the University of Glasgow. ALL anatomists who have given attention to the progress of ossification in childhood are aware of the fact that, at the age when the epiphyses of the long-shaped bones of the hand and foot are most obvious, viz. from ten to fifteen years, each meta- carpal and metatarsal bone, and each one of the digital pha- langes usually consists of two ossified pieces united by inter- vening cartilage and separable by maceration; one of these pieces forming the shaft and main part of the bone and ex- tending quite to one extremity, while the other smaller piece constitutes an epiphysis occupying the opposite extremity of the bone. The epiphysis occupies the proximal extremity in all the digital phalanges, while in the metacarpal and meta- tarsal bones the epiphysis is usually proximal in the first (or that of the thumb and great toe), and distal in the four re- maining bones. The fact in human anatomy now referred to has been very generally described in manuals and systematic works; and some authors have even regarded the difference between the first and remaining metacarpal and metatarsal bones as so constant and marked as to have founded upon it an argument for re- garding the first of these bones. as properly constituting one of the digital series of bones, that is, the first or proximal phalanx of the thumb or great toe'.
    [Show full text]
  • The Skeletal and Muscular Systems
    The Skeletal and Muscular Lesson 2 Systems Lesson 2 ASSIGNMENT 4: ORGANIZATION OF THE SKELETON Read in your textbook, Clinical Anatomy and Physiology for Veterinary Technicians, pages 153–160. Then read Assignment 4 in this study guide. In this section, we’ll focus on the anatomy of the skeletal system. We’ll examine the purpose of each bone, compare similar bones found in different animals, and correlate the structure of each bone with its function. The skeleton includes hundreds of bones. Fortunately for your study, many of these are duplicated within the body, and many are similar across species. Functions of Bone Stop and think about the bones in your body. What do they do? You might think they simply support the body and its organs. But your bones are much more active than that. They act as points of attachment for your muscles as well as levers for muscle action. Your skeleton is made up of your bones. Without this framework of bones, your muscles couldn’t move your body parts as efficiently or quickly. Imagine how difficult it would be to lift a heavy object without the help of your skeleton. No matter how strong your muscles may be, they don’t work well without your bones. Your bones strengthen your body against injury and protect your internal organs. For example, your brain is protected by your skull, and your heart and lungs are protected by your rib cage. Bones also have metabolic functions. Metabolic functions are processes that deal with the buildup or break- down of living cells for the purposes of providing energy and facilitating growth.
    [Show full text]
  • ﻣﺤﻤﺪ وﺳﻨﺎن د Lecture 11 Human Anatomy
    د. ﻣﺤﻤﺪ وﺳﻨﺎن Lecture 11 Human Anatomy Appendicular skeleton Shoulder (Pectoral girdle) girdles Upper extremities Pelvic girdle Lower extremities Shoulder (Pectoral girdle) girdles Clavicle 2 Scapula 2 Upper extremities Humerus 2 Radius 2 Ulna 2 Carpals 16 Metacarpals 10 Phalanges 28 Bones of the Shoulder (Pectoral girdle)girdles The shoulder girdle consists of the clavicle and the scapula, which articulate with one another at the acromioclavicular joint. Clavicle The clavicle is a long, slender bone that lies horizontally across the root of the neck just beneath the skin. It articulates with the sternum and 1st costal cartilage medially and with U the acromion process of the scapula laterally. 1 Scapula The scapula is a flat triangular bone that lies on the posterior chest wall. On its posterior surface, the spine of the scapula projects backward. The lateral end of the spine is free and forms the acromion,which articulates with the clavicle. The superolateral angle of the scapula forms the pear-shaped glenoid cavity, or fossa, which articulates with the head of the humerus atthe shoulder joint. The anterior surface of the scapula is concave and forms the shallow subscapular fossa. The posterior surface of thes capula is divided by the spine into the supraspinous fossa above and an infraspinous fossa below. Upper extremities The bones of the upper extremities is divided into: bone of the arm, bones of forearm, bones of the wrist and bones of the hand. 2 Bone of the arm Humerus The humerus articulates with the scapula at the shoulder joint and with the radius and ulna at the elbow joint.
    [Show full text]
  • Ipsilateral Multiple Injuries of the Upper Limb
    Bahrain Medical Bulletin, Volume 17, Number 3, September 1995 IPSILATERAL MULTIPLE INJURIES OF THE UPPER LIMB Salem M Al-Zahrani, MBBS, FRCS* We are reporting an unusual case of ipsilateral multiple injuries of the upper limb. The injuries included fracture humerus associated with radial nerve injury, fracture of both forearm bones, fracture olecranon along with dislocation of the elbow and fracture of the first metacarpal bone. The classification and the plan of management of sideswipe injury are reviewed. To the best of our knowledge this combined multiple injuries have not reported. Bahrain Med Bull 1995;17: Multiple fractures around the elbow are common in sideswipe injuries1. The outcome of these injuries is variable. It can include amputation, elbow arthrodesis, permanent stiffness, and non union2. Campbel classified sideswipe injuries according to the combination of fracture of shafts of ulna and radius, comminuted fracture of head of radius and distal humeral condyles3. Shorbe in 1941 classified it into five groups according to the severity of the condition. Group 1 include only soft tissue involvement, group 2 is the commonest and includes fracture of olecranon process, group 3 is associated with fracture of both radius and ulna, group 4 includes any humeral fracture, and in the severest group 5, there are fracture of all bones around the elbow along with severe soft tissue and neurovascular injuries4. The treatment of combined long bone fractures and dislocations of upper limb has not been thoroughly discussed like individual bone fracture5. We are reporting concomitant ipsilateral fractures of the humerus, olecranon, ulna, radius and first metacarpal bone along with dislocation of the elbow and radial nerve injury in a patient who was involved in a Road Traffic Accident (RTA) with different mechanism of injury.
    [Show full text]
  • Traumatic Injuries: Imaging of Peripheral Muskuloskeletal Injuries 2.11
    Chapter Traumatic Injuries: Imaging of Peripheral Muskuloskeletal Injuries 2.11 M.A. Müller, S. Wildermuth, K. Bohndorf Contents In past years, computed tomography (CT) has gained an important place in the emergency evaluation of fractures 2.11.1 Introduction . 251 and in planning surgery of complex injuries. Magnetic res- 2.11.2 General Part: Imaging Modalities . 251 onance imaging (MRI) and ultrasound (US) are important 2.11.2.1 Conventional Radiography imaging modalities in the evaluation of soft tissues in addi- (Projection Radiography) . 251 tion to the clinical examination. 2.11.2.2 Computed Tomography . 252 2.11.2.3 Magnetic Resonance Imaging . 252 2.11.2.4 Ultrasound . 253 2.11.3 Soft Tissue Injuries in General . 253 2.11.2 General Part: Imaging Modalities 2.11.3.1 Muscle Injuries . 253 2.11.3.2 Tendinous and Ligamentous Injuries on US . 254 2.11.2.1 Conventional radiography (Projection radiography) 2.11.4 Upper Extremity . 254 2.11.4.1 The Clavicle and its Articulations . 254 2.11.4.2. Shoulder and Proximal Humerus . 256 Two projections perpendicular to each other preceded by 2.11.4.3 Elbow . 260 clinical examination are generally the first and often the 2.11.4.4 Distal Forearm and Wrist . 265 only necessary diagnostic approach in evaluation of ex- 2.11.4.5 Metacarpals and Fingers . 271 tremity trauma. Clinical prediction rules and cost-effec- 2.11.5 Lower Extremity . 273 tiveness analyses are valuable evidence-based tools for 2.11.5.1 Hip . 273 selecting optimal imaging approaches [1]. Conventional 2.11.5.2 Knee .
    [Show full text]