Controls on Animal Carcase Incinerators

Total Page:16

File Type:pdf, Size:1020Kb

Controls on Animal Carcase Incinerators REGULATION (EC) No 1774/2002 laying down health rules concerning animal by-products not intended for human consumption. & The Animal By-Products (England) Regulations 2005. S.I.2005/2347 CONTROLS ON LOW CAPACITY ANIMAL CARCASE INCINERATION PLANTS – Version 2.2 These notes are intended as guidance for Defra and State Veterinary Service officials and for incinerator operators. They are likely to be subject to some revision in the light of experience gained. Please note the version number at the top of the page. The most recent version of the guidance will be available from the Defra Animal By-Products website (http://www.defra.gov.uk/animalh/by-prods/default.htm) Please note: The information contained herein is to assist with the understanding of the above legislation. It is not a definitive interpretation of the law which only the courts can provide. If you have any questions/comments on this Guidance Note, please email us on [email protected]. Background 1. Article 12 of the "Animal By Products Regulation” (Regulation (EC) No 1774/2002) provides for the approval of incinerator plants burning only animal by-products (i.e. animal carcases/ parts of carcases) and which are exempt from the more onerous controls of the Waste Incineration Directive, 2000/76/EC (WID). This applies to most incinerators on farms, at hunt kennels and knackers’ yards, and at pet crematoria. Those incinerator plants which burn “processed products” (e.g. meat and bone meal, tallow), catering waste or material other than animal carcases/parts of carcases must be approved under the WID, even if they burn animal by-products as well. 2. Regulation (EC) No 1774/2002 permits high capacity (>50kg/hour) incinerator plants to burn Specified Risk Material and ruminant carcases. Furthermore, Commission Regulation 808/2003 of 12 May 2003 amended Regulation 1774/2002 to permit the incineration of Specified Risk Material (SRM) or ruminant carcases containing SRM in low capacity (<50kg/hour) incinerator plants. Specific measures with which these low capacity incinerators must comply are now included in Annex IV, Chapter VII, of the amended Regulation. These additional SRM controls will not apply to the majority of existing low capacity incinerator plants that only incinerate pig and poultry carcases. 1 3. Regulation 1774/2002 is enforced in England by the Animal By- Products Regulations 2005 ((SI 2005/2347) ABPR). In particular, regulation 14 covers incinerator approvals, regulation 35 covers record keeping, and Schedule 3 (Part VI) covers transitional measures for low capacity incinerators. Similar legislation has been introduced in the rest of GB. 4. Under the ABPR, the State Veterinary Service is responsible for inspecting and approving incinerator plants in accordance with Regulation 1774/2002. The controls with which operators must comply are explained in Appendix 1. These apply in addition to the environmental controls summarised in Appendix 2 which are the responsibility of the Environment Agency or the Local Authority, depending on the size of the incinerator. 5. Low capacity incinerators burning animal by-products that are waste, other than carcases from agricultural premises, are controlled by the waste management provisions under Part II of the Environmental Protection Act 1990. These premises are regulated by the Environment Agency and are required to either: (a) be controlled by a waste management licence e.g. Pet crematoria; or (b) operate within the exemption from licensing provided by paragraph 29 of Schedule 3 of the Waste Management Licensing Regulations 1994 (WMLR). This is subject to a number of restrictions and applies only if the waste is incinerated at the site of production by the person producing it, and there is no risk to human health or the environment. Therefore, although a plant may be approved under the ABPR it may also require licensing under the WMLR e.g. a pet crematorium burning non- agricultural waste. 6. The provisions of Regulation 1774/2002 applied in full: from 1 May 2003 for low capacity (less than 50 kg/hour) incinerator plants which commenced operation after 1 November 2002 or which incinerate SRM or ruminant carcases from which the SRM has not been removed; and from 1 January 2005 for non-SRM low capacity incinerator plants which commenced operation on or before 1 November 2002. 7. Low capacity incinerator plants are incinerator plants with a throughput of less than 50 kg of animal by-products per hour. This category of incinerator is deemed to be exempt from the requirements of Part B Local Authority Air Pollution Control. In order to validate whether a particular incinerator is exempt from these controls, you should contact your Local Authority. 2 NB: To ascertain ‘throughput’ it is necessary to know the capacity of the plant. For the purpose of approving animal carcase incinerators, we interpret ‘throughput’ as meaning the ‘sum of the incineration capacities of the furnaces of which an incineration plant is composed, as specified by the manufacturer and confirmed by the operator, with due account taken, in particular, of the calorific value, expressed as the quantity of waste incinerated per hour’. This is the definition of ‘nominal capacity’ in Article 3(7) of Directive 2000/76/EC’ (Waste Incineration Directive). Operators of a multi-incinerator plant must contact their local authority, who may require further information, to ascertain whether or not the plant is indeed operating at under 50kg/hour. Provided the local authority is content that the plant is operating at under 50kg/hour, we should consider it as being a ‘low capacity’ plant for the purpose of approving the premise under the ABPR. 8. SVS Inspections and Approvals 8.1 When the Animal By-Products Regulations 2003 came into force on the 1 July 2003, we issued general approvals to premises which had previously been handling animal by-products e.g. on-farm non-SRM incinerators. The purpose of the general approvals was to allow sufficient time for operators to apply for approval, and for the State Veterinary Service (SVS) to undertake the necessary inspection visits and grant or refuse an individual approval. 8.2 These general approvals have now expired and operators must obtain and complete an application form (ref: abpr 2) for individual approval from their local animal health office.] 8.3 Failure to obtain an individual approval will mean that the incinerator is operating illegally and continued use of them to dispose of animal by-products is a criminal offence. NB: Approval may be withdrawn at any time if the operator does not comply with the basic transitional requirements in paragraph 9 above and, if so, will not be re-instated until the incinerator complies with the full requirements of Regulation 1774/2002. 9. WID Approved Incinerators 9.1 Although, the SVS are not responsible for the approval of WID incinerator plants, veterinary officials will inspect these plants to ensure compliance with the other provisions of the ABPR e.g. record keeping requirements, pest control, transportation and collection of animal by- products. 3 10. Validating Incinerators: 10.1 We have agreed that manufacturers can seek Type Approval from Defra for their various models of low capacity incinerator. The reason for this is twofold; (i) Type Approval will demonstrate that the “residence time” of gases can be achieved in accordance with the Regulation in that particular model (i.e. The gases resulting from the combustion process must reside in the combustion chamber for at least 2 seconds at 850°C); and (ii) The issuing of Type Approvals will assist incinerator operators/manufacturers in demonstrating that the incinerators comply with the requirements of the Regulation without the need to seek independent verification of the residence time for each individual incinerator. However, if, at anytime, the approving authority (SVS/Defra) are not content that the “residence time” requirements are being met, they can ask for additional independent verification, at the operators/manufacturers expense (as appropriate), and approval may be subsequently withdrawn if that verification cannot be given. Additionally, the competent authority must be seen to be verifying the data on which we have based out Type Approvals. Therefore, we propose that, during 2005 we will require independent verification at the manufacturers expense of the technical data on which Type Approval was based. Initially this would be for 1 model per manufacturer, on a specific model chosen by Defra. 10.2 A suggested methodology that manufacturers can use is at Appendix 3, but alternative methods may be used provided they take account of operation according to the manufacturers’ standards, the flow of the main (and usually secondary) chamber, and demonstrated flow rate through the stack. Where such alternative methods are used, Defra may require that the methodology is independently verified at the manufacturers expense. NB: The Type Approval Methodology, as set out in Appendix 3, is only applicable to incineration plants which have both a primary and secondary chamber fitted. Manufacturers/operators of single chamber incinerators must obtain independent verification of the residence time prior to seeking approval. 10.3 Prior to the inspection visit for approval, operators should check with either their incinerator manufacturer or with their local Defra Animal Health Office as to whether or not their incinerator is either; a) a fully Type Approved Incinerator i.e. Defra is satisfied that, on the basis of the information submitted by the manufacturer, the incinerator model complies with the “residence time” requirements; or b) are currently undergoing Defra verification of the Type Approval Declaration information submitted by the manufacturer. 4 10.4 Any incinerators, which do not have Defra Type Approval, must be certified independently to the same standard (i.e. The gases resulting from the combustion process must reside in the combustion chamber for at least 2 seconds at 850°C) at the operator's expense from a [suitably qualified person].
Recommended publications
  • Disinfection and Disposal WHO 2015.Docx.Docx
    Disinfection and Disposal fact sheet Pre-cleaning equipment Disinfectants will not work effectively if equipment has organic materials stuck to it (e.g. mud, fecal material, dried blood, feathers, hair). Therefore, it is important to pre-clean all equipment to remove organic materials. This can be done with a stiff brush and liquid detergent or (because some disinfectants are inactivated by detergents), pre-cleaning may be done with the same agent that will be used in the disinfection step. Check the label of the disinfectant you plan to use for guidance on pre-cleaning. Disinfecting equipment The appropriate disinfectant to use when cleaning equipment is determined by the biological agent potentially involved. Below are a few examples: 1. Influenza A viruses (e.g. Highly pathogenic avian influenza – HPAI) a. Liquid detergent, 10% bleach solution, Virkon®, Roccal D Plus® b. http://www.epa.gov/pesticides/factsheets/avian_flu_products.htm c. http://www.aphis.usda.gov/animal_health/emergency_management/downloads/fad_epa_disinfectants.pdf 2. Prion diseases (e.g. Chronic wasting disease – CWD) a. Few effective decontamination techniques have been published, and no disinfectants or sterilants are registered by EPA for reducing the infectivity of prions. However, EPA has issued quarantine exemptions to several states for use of Environ™ LpH™ (a mixture of three phenolic active ingredients) for treatment of surfaces in commercial, government, and veterinary laboratories to reduce the infectivity of prions. Surfaces should be treated for more than 1 hour at 20°C (68°F). Overnight disinfection is recommended for equipment. http://www.cfsph.iastate.edu/pdf/fad-prep-nahems-guidelines-cleaning-and-disinfection see page 31.
    [Show full text]
  • I8-M15 Medical Incinerator the I8-M15 Is Our Smallest , Plug and Play Medical Incinerator
    i8-M15 Medical Incinerator The i8-M15 is our smallest , plug and play medical incinerator. Developed for use in smaller health clinics, laboratories and regional hospitals. It is well suited for use as a mobile incinerator due to its small footprint and simple setup. 3mm 850°C EASY SETUP CORETEX TEMP PLUG ‘N’ PLAY IN 5 SMIN INSULATION GAUGESTEEL AS STANDARD 2 SECOND RETENTION Plug ’n’ Play Setup & Operation Industry Leading Insulation Long Lasting Construction Designed to excel This model boasts the quickest Coretex© insulation is a specially The i8-M15 internal frame is Each of our incinerators has been setup time of any of our models. formulated substrate containing constructed from British made tested to exacting standards Simply remove from packaging, various levels of material that high quality 3mm mild steel ensuring they meet our strict connect electricity and add some ensure almost all of the heat plate. They are fully welded for guidelines. fuel to the tank - Making this generated within our incinerators maximum strength by our time- an ideal model to have trailer stays inside them - increasing served coded welders and now This machine can reach in mounted so you can relocate your performance and efficiency to fully clad in steel. Meaning you get excess of 850°C in the secondary incinerator to where it is needed another level. years of trouble-free operation. chamber and also retains the most week by week. gases for the 2 seconds required. Designed to burn Type I - IV pathological waste and infectious and contaminated “red bag,” surgical dressings, plastic test devices and other wastes.
    [Show full text]
  • Code of Practice for Small Incinerators
    Code of Practice for Small Incinerators September 2005 made under the Environmental Protection and Enhancement Act © Published by Alberta Queen’s Printer Queen’s Printer Bookstore 5th Floor, Park Plaza 10611-98 Avenue Edmonton, AB T5K 2P7 Phone: 780-427-4952 Fax: 780-452-0668 Email: [email protected] Shop on-line at www.qp.alberta.ca 1 ALBERTA ENVIRONMENT CODE OF PRACTICE FOR SMALL INCINERATORS (made under the Environmental Protection and Enhancement Act, RSA 2000, c.E-12, as amended and Waste Control Regulation (AR 192/96), as amended) Table of Contents 1. Definitions 2. General Requirements 3. Analytical Requirements 4. Registration Application/Administration Requirements 5. Design Requirements 6. Operational and Emission Requirements 7. Monitoring Requirements 8. Closure Requirements 9. Reporting Requirements 10. Record Keeping Requirements 11. Code of Practice Administration Schedule 1 Registration Information for Small Incinerators 2 Section 1: Definitions 1.1 All definitions in the Act and the regulations under the Act apply except where expressly defined in this Code of Practice. 1.2 In this Code of Practice: (a) “Act” means the Environmental Protection and Enhancement Act, RSA 2000, c.E-12, as amended; (b) “auxiliary burner” means a burner that fires auxiliary fuel in a small incinerator for the purpose of: (i) preheating, (ii) drying and igniting solid waste, or (iii) maintaining adequate operating temperatures; (c) “ISO 17025” means the international standard, developed and published by International Organization for Standardization
    [Show full text]
  • Ocean Incineration: Its Role in Managing Hazardous Waste (Part 9
    Chapter 7 Comparison of Land-Based and Ocean Incineration Technologies Contents Page Composition of Incineration Products . .. ....119 Plume Gases . ...119 Residual Parent Compounds and Products of Incomplete Combustion (PICs) . ........119 Metals and Particulate. .1’20 Solid Residues . ............121 Comparison of ’Technical and Regulatory Requirements. ........122 Waste Analysis and Waste Limitations. ..122 Performance Standards . , . .......123 Operating Conditions . , . 125 Air Pollution Control Technology . ..............127 Sampling and Monitoring Requirements and Procedures . .. ...128 .Additional Provisions Not Required of Land-Based Incineration . ..129 Chapter 7 References . ..129 Table Table No. Page 12. Performance Standards Applicable to Land-Based and Ocean Incineration. .124 Chapter 7 Comparison of Land-Based and Ocean Incineration Technologies Although liquid organic wastes are currently This chapter describes the nature of the combus- managed in various ways, ocean incineration’s pri- tion products arising from both land-based and mary competition and closest analog is land-based ocean incineration and compares and contrasts their incineration. Therefore, it is important to compare respective technical and regulatory requirements. and contrast their technical features, the nature and extent of their regulation, and their relative risks of environmental release and adverse impacts. COMPOSITION OF INCINERATION PRODUCTS The products resulting from incineration of haz- waste incineration may contribute significantly to ardous waste, whether on land or at sea, can re- the risks posed by hazardous air pollutants. sult from complete or partial thermal oxidation of waste components. The products can be grouped Residual Parent Compounds and Products as follows: plume gases, residual parent com- pounds, products of incomplete combustion (PICs), of Incomplete Combustion (PICs) metals and particulate, and solid residues.
    [Show full text]
  • Disposal of Bulk Quantities of Obsolete Pesticides in Developing Countries 1
    The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechani- cal, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. © FAO 1996 iii Foreword These guidelines have been prepared jointly by the Food and Agriculture Organiza- tion of the United Nations (FAO), the United Nations Environment Programme (UNEP) and the World Health Organization (WHO). The technical information and recommendations presented in these guidelines have been approved by a panel of experts nominated by the three organizations. The guidelines are published by FAO under project GCP/INT/572/NET: “Prevention and Disposal of Unwanted Pesticide Stocks in Africa and the Near East”, funded by the government of the Netherlands. The guidelines are considered generally applicable and of interest to many countries, aid agencies and the pesticide industry. New disposal methods are continually being developed. The intention is to revise these guidelines or to issue addenda when important new disposal methods become available that can be used safely in developing countries and are cost-effective.
    [Show full text]
  • INCINER8 Waste Incineration Mobile Incinerators
    INCINER8 Waste Incineration Mobile Incinerators Animal & Waste Incinerators We can now offer our range of incinerators exclusively throughout Europe and the rest of the world through our dealer network. Our range of units are fully CE certified, ensuring that we meet the highest standards in safety and construction. The mobile incinerator range of are ideal for shared facilities or remote places. Mobile Incinerators Our latest range of mobile units lend themselves to a variety of uses, whether it is for shared facilities, camps, farms or even for disease control (Avian Influenza) in remote areas. One of the unique features of this range is the natural secondary burn characteristics of the primary chamber. The design of this model ensures extra air is drawn into the main chamber aiding primary combustion to ensure the efficient disposal of waste or carcasses at minimum cost. These units are the highest standards for waste disposal, and benefit from being extremely durable for a long working life. Mobile A850 KEY FEATURES Ease of Use • Galvanised twin axle trailer with ramp Auto ignition. No pilots to light. Set the • Integral fuel tank timer and walk away. • Diesel generator set Built-in skid facilitates placement • Low running and maintenance costs • Fully Automatic and simple to operate Fuel Efficiency control panel Rapid incineration means low fuel • Incineration Temperatures in Excess of consumption. 1300 degrees C Higher burn rate than smaller models. • Dense Refractory Concrete Lining Rated Thick refractory lining in main chamber to 1600 degrees C retains heat, increasing efficiency. • Solid Hearth to Allow Maximum Burnout • Top Opening Lid For Easy Loading Quality Built to Last • Stainless Steel Flue as standard Heat resistant 5mm steel.
    [Show full text]
  • What's in Our Gasoline Is Killing Us Mobile Source Air Toxics (Msats)
    ETHYLBENZENE What’s in our gasoline is killing us Mobile Source Air Toxics (MSATs) and the Threat to Public Health A Fact Book from In cooperation with DEAR READER: Today’s gasoline additives share the same storyline and shameless history of deceit with lead (i.e., a now banned additive to gasoline1), tobacco and #Dieselgate. This Fact Book, What’s in Our Gasoline is Killing Us: Mobile Source Air Toxics (MSATs) and the Threat to Public Health, is intended to educate and inform the reader that the public has been victim to 25 years of exposure to mobile source air toxics (MSATs) since the phase out of lead in gasoline, only to be replaced by even more dangerous additives. We cannot allow the tobacco/lead/gasoline history to continue without toxic and carcinogenic aromatic compounds being properly regulated. Popular petroleum-based additives used to increase octane include benzene, toluene, xylene and several derivatives of benzene referred to as BTX or BTEX. These comprise almost half the aromatic compounds in gasoline and are classified as known, probable or possible carcinogens. These various forms of benzene are present both in volume in the fuels as well as being created through the combustion of all aromatics. We believe there is a demonstrated history of private interest manipulating government responsibility to protect the public interest–with personal health left hanging in the balance. The American Petroleum Institute (API) stated in 1948 that “it is generally “There is no safe exposure level to considered that the only absolutely safe concentration for benzene is zero.”3 benzene; even tiny amounts can Despite the clear and present danger of benzene, it was not until the 1990 Clean Air Act cause harm.
    [Show full text]
  • Vertac Dioxin Waste Disposal Options
    VERTAC DIOXIN WASTE DISPOSAL OPTIONS Site History The Vertac Chemical Corporation, Jacksonville, Arkansas, plant has been the continuing object of EPA scrutiny since dioxin-contaminated wastes were found there in 1979. Because of the extremely toxic nature of these wastes, a suit was filed by the United States and the Arkansas Department of Pollution Control and Ecology against Vertac and its predecessor. Hercules, Incorporated, for injunctive relief to clean up the facility. One of the problems at the facility involved the disposal of approximately 4,000 drums containing 2,4,5-T wastes. These wastes were highly contaminated with tetrachlorodibenzo-p-dioxin (TCDD), one of the most toxic man-made substances known. In 1982 a Consent Decree was entered in the Vertac case. Part of this Consent Decree required Vertac to submit and implement a waste management C\J plan to dispose of the containerized waste on site. r<^ 0 Prior to entry of the Consent Decree, EPA was concerned that these wastes^ might be disposed of in an unregulated land disposal facility. As a result, a^ rule was promulgated under Section 6(a) of the Toxic Substances Control Act. This so called "Vertac Rule" prohibited off-site disposal of the 2,4,5-T waste or other dioxin contaminated waste. Vertac was required to store the waste until an acceptable disposal method could be found. The acceptable method for dioxin disposal was promulgated on January 14, 1985, as part of the new Dioxin Listing Rule, a regulation under the Resource Conservation and Recovery Act (RCRA). This rule allows disposal of some dioxin only at facilities with a RCRA permit, or by incineration or thermal treatment at facilities which have interim status under RCRA and have received, a special certification to dispose of dioxin waste from EPA.
    [Show full text]
  • Re: Final Record of Decision OU1 Former Nebraska Ordnance Plant Site
    2023291 Final Record of Decision Operable Unit 1 Former Nebraska Ordnance Plant Site Mead, Nebraska U.S. Environmental Protection Agency Region VII Kansas City, Kansas Department of the Army U.S. Army Engineer District Kansas City Corps of Engineers Kansas City, Missouri oo August 1995 •-* cL i" OU 1 Record of Decision/Responsiveness Summary Fanner Nebraska Ordnance Plant TABLE OF CONTENTS Chapter Page 1.0 DECLARATION ...................................... 1 2.0 DECISION SUMMARY .................................. 5 2.1 SITE NAME, LOCATION, AND DESCRIPTION ............. 5 2.2 SITE HISTORY AND PREVIOUS INVESTIGATIONS .......... 6 2.2.1 Site History ............................... 6 2.2.2 Previous Investigations ......................... 7 2.2.3 Summary of OU 1 RI Results .................... 8 2.3 COMMUNITY PARTICIPATION ....................... 9 2.4 SCOPE AND ROLE OF OPERABLE UNIT 1 REMEDIAL ACTION WITHIN SITE STRATEGY .......................... 11 2.5 SUMMARY OF SITE CHARACTERISTICS ............... 12 2.6 REMOVAL ACTIONS ............................. 12 2.7 SUMMARY OF SITE RISKS ......................... 13 2.7.1 Potential Human Health Risks ................... 13 2.7.2 Potential Environmental Risks ................... 18 2.8 SUMMARY OF ALTERNATIVES ...................... 18 2.8.1 Alternative 1 - No Action ...................... 19 2.8.2 Alternative 2 - Biological Treatment ............... 19 2.8.3 Alternative 3 - Rotary Kiln Incineration ............. 20 2.8.4 Alternative 4 - On-Site Landfill .................. 21 2.8.5 Alternative 5 - Off-Site Landfill .................. 21 2.9 TREATABILITY STUDIES .......................... 22 2.10 SUMMARY OF COMPARATIVE ANALYSIS OF ALTERNATIVES 22 2.10.1 Introduction .............................. 22 2.10.2 Comparison of Alternatives ..................... 23 2.10.3 Summary ................................ 27 2.11 THE SELECTED REMEDIAL ACTION .................. 28 2.12 STATUTORY DETERMINATIONS ..................... 28 2.12.1 Protection of Human Health and the Environment ......
    [Show full text]
  • Numerical Investigation of a Portable Incinerator: a Parametric Study
    processes Article Numerical Investigation of a Portable Incinerator: A Parametric Study Mohsen Saffari Pour 1,2 , Ali Hakkaki-Fard 1,* and Bahar Firoozabadi 1 1 Department of Mechanical Engineering, Sharif University of Technology, Tehran 79417, Iran; [email protected] (M.S.P.); fi[email protected] (B.F.) 2 KTH Royal Institute of Technology, 114 28 Stockholm, Sweden * Correspondence: [email protected]; Tel.: +98-216-616-5525 Received: 18 June 2020; Accepted: 21 July 2020; Published: 2 August 2020 Abstract: The application of incinerators for the municipal solid waste (MSW) is growing due to the ability of such instruments to produce energy and, more specifically, reduce waste volume. In this paper, a numerical simulation of the combustion process with the help of the computational fluid dynamics (CFD) inside a portable (mobile) incinerator has been proposed. Such work is done to investigate the most critical parameters for a reliable design of a domestic portable incinerator, which is suitable for the Iranian food and waste culture. An old design of a simple incinerator has been used to apply the natural gas (NG), one of the available cheap fossil fuels in Iran. After that, the waste height, place of the primary burner, and the flow rate of the cooling air inside the incinerator, as the main parameters of the design, are investigated. A validation is also performed for the mesh quality test and the occurrence of the chemical reactions near the burner of the incinerator. Results proved that the numerical results have less than 5% error compared to the previous experimental and numerical approaches.
    [Show full text]
  • Report: 1973-06-30 (Part 2) Study Of
    Study of Abatement Methods and Meteorological Conditions for Optimum Dispersion of Particulates from Field Burning of Rice Straw Rice Straw Incinerator Evaluation ARB Project 1-102-1 University of California Davis, California Principal Investigators George E. Miller, Jr. John R. Goss June 30, 1973 Abstract The project was initiated in December, 1970, to determine the potentials of mobile incineration as a practical means of reducing particulate emissions from combustive disposal of rice field residues. Previous studies on inciner­ ators indicated improved combustion is possible under controlled conditions. Capacity, mobility, durability, economics, wild fire control and other pro­ blems existed. However, information on the state of the art was needed under California rice field conditions because of the continuing need to reduce all contributions to the statewide air pollution problem. An experimental mobile field sanitizer (incinerator} was transported from Oregon to California. Test runs and modifications were made on the unit for use on rice field residues in California in the fall of 1971 and spring of 1972. Tests were also conducted in barley fields during the spring and summer of 1972 on a mobile straw burner prototype developed by an inventor in California. Results of the tests of both units indicate that the state of the art is not sufficiently developed for use in rice field residue disposal. Projected overall costs of operation are not within the limits of economic feasibility at this time. Under reasonably good climatic conditions in California, well managed open field burns will have less particulate emissions than the incin­ erator tested. Under poor climatic conditions, the mobile incinerator cannot be operated in rice fields.
    [Show full text]
  • Emergency Carcass Management Desk Reference Guide (DRG)
    EMERGENCY CARCASS MANAGEMENT DESK REFERENCE GUIDE JUNE 2017 Contents Applicability Statement ..................................................................................................................................................I Acknowledgements .........................................................................................................................................................II USDA Response Process ................................................................................................................................................III SECTION 1: RESPONSE PROCESS Operations Procedures .............................................................................................................................................1-1 SECTION 2: DECISION TOOL Information Needed for Carcass Management Decisions ..............................................................................2-1 Definitions ...................................................................................................................................................................2-2 HPAI Carcass Management Decision Tool..........................................................................................................2-4 Carcass Management Decision Cycle ..................................................................................................................2-7 Carcass Management Options Checklist ............................................................................................................2-8
    [Show full text]