Emergency Carcass Management Desk Reference Guide (DRG)

Total Page:16

File Type:pdf, Size:1020Kb

Emergency Carcass Management Desk Reference Guide (DRG) EMERGENCY CARCASS MANAGEMENT DESK REFERENCE GUIDE JUNE 2017 Contents Applicability Statement ..................................................................................................................................................I Acknowledgements .........................................................................................................................................................II USDA Response Process ................................................................................................................................................III SECTION 1: RESPONSE PROCESS Operations Procedures .............................................................................................................................................1-1 SECTION 2: DECISION TOOL Information Needed for Carcass Management Decisions ..............................................................................2-1 Definitions ...................................................................................................................................................................2-2 HPAI Carcass Management Decision Tool..........................................................................................................2-4 Carcass Management Decision Cycle ..................................................................................................................2-7 Carcass Management Options Checklist ............................................................................................................2-8 SECTION 3: IN-HOUSE COMPOSTING Overview of In-House Composting Process .......................................................................................................3-1 Carcass Management: In-house Composting Checklist .................................................................................3-2 Job Aid: Overview of the HPAI Composting Process .......................................................................................3-3 Finding Carbon Source: What to Say When Calling Potential Vendors .......................................................3-5 Carbon Sources for Windrow Construction ........................................................................................................3-7 Pre-Compost Windrows for Avian Influenza Infected Flocks .........................................................................3-8 Windrow Construction Protocol for Avian Influenza Infected Flocks ..........................................................3-9 Compost Windrow Construction Approval Checklistfor Avian Influenza Infected Flocks .....................3-11 Temperature Monitoring Protocol of Avian Influenza Infected Flocks .........................................................3-13 Calibration of Analog Thermometers ...................................................................................................................3-15 Phase 1 Windrow Evaluation Checklist Days 1–14 for Avian Influenza Infected Flocks ...........................3-17 Phase 2 Windrow Evaluation Checklist Days 14–28 for Avian Influenza Infected Flocks .......................3-19 Planning for In-house Poultry Composting .........................................................................................................3-21 Operations for In-house or Outdoor Poultry Composting ..............................................................................3-22 Procedures for In-House Composting of AI-Infected Poultry Carcasses ....................................................3-24 SECTION 4: OUTDOOR COMPOSTING Carcass Management: Outdoor Composting Checklist ..................................................................................4-1 Planning for Outdoor Composting for Livestock Other than Poultry ...........................................................4-3 Operations for Outdoor Composting for Livestock other than Poultry .......................................................4-4 Procedures for Outdoor Composting of AI-Infected Poultry Carcasses .....................................................4-7 SECTION 5: OPEN BURNING Carcass Management: Open Air Burning Checklist .........................................................................................5-1 Procedure for Open Air Burning of AI Infected Poultry Carcasses ...............................................................5-2 SOP: Open Air Burning .............................................................................................................................................5-3 SECTION 6: BURIAL Carcass Management: On-Site Burial Checklist ................................................................................................6-1 Burial Effect on Environment ...................................................................................................................................6-2 Land Area or Excavation Volume Required for Trench Burial .........................................................................6-3 SOP: Unlined Burial ...................................................................................................................................................6-5 SECTION 7: MOBILE TREATMENT Carcass Management: Mobile Treatment Checklist ........................................................................................7-1 Overview of Mobile Treatment Technologies .....................................................................................................7-2 SECTION 8: LANDFILLS Carcass Management: Off-Site Permitted Landfill Checklist .........................................................................8-1 Landfill Disposal Guidance—Recommended Waste Acceptance Practices for Landfills .......................8-2 CDC Interim Guidance for Landfill Workers in the United States Disposing of Poultry Carcasses During Outbreaks of Highly Pathogenic Avian Influenza ................................................................................8-6 SOP: Landfilling ..........................................................................................................................................................8-10 SECTION 9: RENDERING Carcass Management: Rendering Checklist .......................................................................................................9-1 SOP: Rendering ...........................................................................................................................................................9-2 SOP: Transport ............................................................................................................................................................9-4 Example Rendering Plant Biosecurity Protocol ..................................................................................................9-6 SECTION 10: INCINERATORS Carcass Management: Off-Site Incineration Checklist ....................................................................................10-1 SOP: Fixed Incineration.............................................................................................................................................10-2 SOP: Air-Curtain Incineration .................................................................................................................................10-4 SECTION 11: SECURE TRANSPORT Loading Procedures ...................................................................................................................................................11-1 Permit Requirements ................................................................................................................................................11-4 Overview of the Eight Steps in Interstate Permitted Movement ...................................................................11-5 Transport Methods in Order of Risk and Containment Types and Risk .......................................................11-6 SECTION 12: BIOSECURITY Safety, Health & Environmental Protection .........................................................................................................12-1 Personal Protective Equipment ..............................................................................................................................12-3 PPE Requirements ......................................................................................................................................................12-4 Go-Bag Checklist .......................................................................................................................................................12-5 Temporary Vehicle Wash Station Draft Standard Operating Procedure .....................................................12-7 Work Zones and Control Areas ..............................................................................................................................12-9 Ready Reference Guide—Overview of Zones .....................................................................................................12-12 SECTION 13: REFERENCES HPAI—A Guide To Help You Understand the Response Process ..................................................................13-1 FEMA Recovery Division Factsheet—Debris Removal Authorities of Federal Agencies ........................13-4 National Veterinary Stockpile: Ready for Animal Disease Emergencies .....................................................13-11 The National Veterinary Stockpile and the 24 Hour Push Pack .....................................................................13-13
Recommended publications
  • Processing (Composting) Facility Guidance and Checklists for Tier II and Tier III Processing Facilities
    Processing (Composting) Facility Guidance and Checklists for Tier II and Tier III Processing Facilities State of Idaho Department of Environmental Quality July 2013 Printed on recycled paper, DEQ June 2013, PID 9170, CA 87067. Costs associated with this publication are available from the State of Idaho Department of Environmental Quality in accordance with Section 60-202, Idaho Code. Processing Facility Guidance and Checklists Contents 1 Introduction .............................................................................................................................. 1 2 Composting Process................................................................................................................. 1 2.1 Windrow Composting ...................................................................................................... 1 2.2 Aerated Static Piles ........................................................................................................... 2 2.3 In-Vessel Composting ...................................................................................................... 3 3 Applicable Regulations ............................................................................................................ 3 3.1 Idaho’s Solid Waste Management Rules and Facility Classifications ............................. 4 Below Regulatory Concern ...................................................................................................... 4 Tier I Composting Facility ......................................................................................................
    [Show full text]
  • Review on the Current Composting Practices and the Potential Of
    1051 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright © 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8; ISSN 2283-9216 DOI: 10.3303/CET1761173 Review on the Current Composting Practices and the Potential of Improvement using Two-Stage Composting Li Yee Lima, Cassendra Phun Chien Bonga, Chew Tin Leea,*, Jiří Jaromír Klemešb, c a Mohamad Roji Sarmidi , Jeng Shiun Lim aFaculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Johor, Malaysia. bSustainable Process Integration Laboratory – SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, - VUT Brno, Tachnická 2896/2, 616 00 Brno, Czech Republic. cInnovation Centre in Agritechnology for Advanced Bioprocessing, Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Johor, Malaysia. [email protected] Composting is one of the applicable technologies to recycle organic waste into a value-added product. It allows the transformation and stabilisation of the organic waste into bio-fertiliser that can be applied to land and crops safely. The composting systems come in different modes but the three commonly used are windrow, aerated static pile and in-vessel composting. The three practices vary in cost, manpower, energy, greenhouse gases emission and composting time. It is well-known that among the three, windrow is the least expensive but most time consuming where in-vessel offers short composting period but at the high expense of energy and cost. Composting is conventionally carried out by either one of the methods.
    [Show full text]
  • Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques
    sustainability Article Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques Aisha Al-Rumaihi 1, Gordon McKay 1, Hamish R. Mackey 1 and Tareq Al-Ansari 1,2,* 1 Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; [email protected] (A.A.-R.); [email protected] (C.M.); [email protected] (H.R.M.) 2 Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar * Correspondence: [email protected] Received: 18 December 2019; Accepted: 27 January 2020; Published: 20 February 2020 Abstract: Food waste is a significant contributor to greenhouse gas emissions (GHG) and therefore global warming. As such, the management of food waste can play a fundamental role in the reduction of preventable emissions associated with food waste. In this study, life cycle assessment (LCA) has been used to evaluate and compare the environmental impact associated with two composting techniques for treating food waste using SimaPro software; windrow composting and the hybrid anaerobic digestion (AD) method. The study, based on a 1 tonne of food waste as a functional unit for a case study in the State of Qatar, concludes that anaerobic digestion combined composting presents a smaller environmental burden than windrow composting. The majority of the emissions generated are due to the use of fossil fuels during transportation, which correspond to approximately 60% of the total impact, followed by the impact of composting with 40% of the impact especially in terms of global warming potential.
    [Show full text]
  • Disinfection and Disposal WHO 2015.Docx.Docx
    Disinfection and Disposal fact sheet Pre-cleaning equipment Disinfectants will not work effectively if equipment has organic materials stuck to it (e.g. mud, fecal material, dried blood, feathers, hair). Therefore, it is important to pre-clean all equipment to remove organic materials. This can be done with a stiff brush and liquid detergent or (because some disinfectants are inactivated by detergents), pre-cleaning may be done with the same agent that will be used in the disinfection step. Check the label of the disinfectant you plan to use for guidance on pre-cleaning. Disinfecting equipment The appropriate disinfectant to use when cleaning equipment is determined by the biological agent potentially involved. Below are a few examples: 1. Influenza A viruses (e.g. Highly pathogenic avian influenza – HPAI) a. Liquid detergent, 10% bleach solution, Virkon®, Roccal D Plus® b. http://www.epa.gov/pesticides/factsheets/avian_flu_products.htm c. http://www.aphis.usda.gov/animal_health/emergency_management/downloads/fad_epa_disinfectants.pdf 2. Prion diseases (e.g. Chronic wasting disease – CWD) a. Few effective decontamination techniques have been published, and no disinfectants or sterilants are registered by EPA for reducing the infectivity of prions. However, EPA has issued quarantine exemptions to several states for use of Environ™ LpH™ (a mixture of three phenolic active ingredients) for treatment of surfaces in commercial, government, and veterinary laboratories to reduce the infectivity of prions. Surfaces should be treated for more than 1 hour at 20°C (68°F). Overnight disinfection is recommended for equipment. http://www.cfsph.iastate.edu/pdf/fad-prep-nahems-guidelines-cleaning-and-disinfection see page 31.
    [Show full text]
  • I8-M15 Medical Incinerator the I8-M15 Is Our Smallest , Plug and Play Medical Incinerator
    i8-M15 Medical Incinerator The i8-M15 is our smallest , plug and play medical incinerator. Developed for use in smaller health clinics, laboratories and regional hospitals. It is well suited for use as a mobile incinerator due to its small footprint and simple setup. 3mm 850°C EASY SETUP CORETEX TEMP PLUG ‘N’ PLAY IN 5 SMIN INSULATION GAUGESTEEL AS STANDARD 2 SECOND RETENTION Plug ’n’ Play Setup & Operation Industry Leading Insulation Long Lasting Construction Designed to excel This model boasts the quickest Coretex© insulation is a specially The i8-M15 internal frame is Each of our incinerators has been setup time of any of our models. formulated substrate containing constructed from British made tested to exacting standards Simply remove from packaging, various levels of material that high quality 3mm mild steel ensuring they meet our strict connect electricity and add some ensure almost all of the heat plate. They are fully welded for guidelines. fuel to the tank - Making this generated within our incinerators maximum strength by our time- an ideal model to have trailer stays inside them - increasing served coded welders and now This machine can reach in mounted so you can relocate your performance and efficiency to fully clad in steel. Meaning you get excess of 850°C in the secondary incinerator to where it is needed another level. years of trouble-free operation. chamber and also retains the most week by week. gases for the 2 seconds required. Designed to burn Type I - IV pathological waste and infectious and contaminated “red bag,” surgical dressings, plastic test devices and other wastes.
    [Show full text]
  • Agricultural Composting and Water Quality L
    Agricultural Composting and Water Quality L. Brewer, N. Andrews, D. Sullivan, and W. Gehr EM 9053 • June 2013 omposting, a controlled process for stabilization of organic matter, can turn waste into a valuable soil amendment. Creating compost from waste materials Cprovides an opportunity to return nutrients and organic matter to the soil, a proven practice for soil quality enhancement. Compost can improve crop growth and provide environmental benefits by improving soil tilth and its capacity to absorb and hold water and plant nutrients. A properly managed composting process can destroy weed seeds, plant pathogens, and human pathogens. This publication is designed to assist farmers in conducting efficient, cost-effective, on-farm composting that presents reduced risk to surface and groundwater quality. It was written for operators of small to medium-size on-farm composting enterprises who handle about 100 to 5,000 tons of raw organic material per year. Most on-farm com- posting enterprises are now required to operate under some form of permit. The type of permit, and the details specified in it, vary depending upon the situation. Before you begin composting, understand the regula- tions that apply to your activities. The Oregon Department of Environmental Quality (DEQ) revised its com- posting regulations in 2009. This publication is intended to assist University State © Oregon Dan Sullivan, by Photo farmers who are regu- Compost can improve soil quality and plant growth. Sunflowers in compost-amended soil (right) vs. no compost (left). lated by DEQ rules to Linda Brewer, Nick Andrews, Dan Sullivan, all of Oregon State University; and Will Gehr, Organic Recycling Systems, Portland, OR.
    [Show full text]
  • Technical Document on Municipal Solid Waste Organics Processing Technical Document on Municipal Solid Waste Organics Processing
    Technical Document on Municipal Solid Waste Organics Processing Technical Document on Municipal Solid Waste Organics Processing. Cat. No.: En14-83/2013E ISBN: 978-1-100-21707-9 Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: Exercise due diligence in ensuring the accuracy of the materials reproduced; Indicate both the complete title of the materials reproduced, as well as the author organization; and Indicate that the reproduction is a copy of an official work that is published by the Government of Canada and that the reproduction has not been produced in affiliation with or with the endorsement of the Government of Canada. Commercial reproduction and distribution is prohibited except with written permission from the Government of Canada’s copyright administrator, Public Works and Government Services of Canada (PWGSC). For more information, please contact PWGSC at 613-996-6886 or at [email protected]. © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2013 Aussi disponible en français sous le titre : Document technique sur la gestion des matières organiques municipales Preface Solid waste management is unquestionably an essential service that local governments provide their citizens. They have an important responsibility to make decisions regarding collection services, disposal infrastructure, waste diversion and recycling programs that are cost-effective and respond to their communities’ needs. Even in communities with long-established programs and infrastructure, the management of waste continues to evolve and require informed decisions that take into consideration a complex set of environmental, social, technological, and financial factors.
    [Show full text]
  • Code of Practice for Small Incinerators
    Code of Practice for Small Incinerators September 2005 made under the Environmental Protection and Enhancement Act © Published by Alberta Queen’s Printer Queen’s Printer Bookstore 5th Floor, Park Plaza 10611-98 Avenue Edmonton, AB T5K 2P7 Phone: 780-427-4952 Fax: 780-452-0668 Email: [email protected] Shop on-line at www.qp.alberta.ca 1 ALBERTA ENVIRONMENT CODE OF PRACTICE FOR SMALL INCINERATORS (made under the Environmental Protection and Enhancement Act, RSA 2000, c.E-12, as amended and Waste Control Regulation (AR 192/96), as amended) Table of Contents 1. Definitions 2. General Requirements 3. Analytical Requirements 4. Registration Application/Administration Requirements 5. Design Requirements 6. Operational and Emission Requirements 7. Monitoring Requirements 8. Closure Requirements 9. Reporting Requirements 10. Record Keeping Requirements 11. Code of Practice Administration Schedule 1 Registration Information for Small Incinerators 2 Section 1: Definitions 1.1 All definitions in the Act and the regulations under the Act apply except where expressly defined in this Code of Practice. 1.2 In this Code of Practice: (a) “Act” means the Environmental Protection and Enhancement Act, RSA 2000, c.E-12, as amended; (b) “auxiliary burner” means a burner that fires auxiliary fuel in a small incinerator for the purpose of: (i) preheating, (ii) drying and igniting solid waste, or (iii) maintaining adequate operating temperatures; (c) “ISO 17025” means the international standard, developed and published by International Organization for Standardization
    [Show full text]
  • Open Air Windrow Composting
    Breaking it down Open Air Windrow Composting Freephone Helpline 0808 100 2040 zerowastescotland.org.uk Overview Open Air Windrow Composting (OAW) uses naturally occurring microbes which feed on organic material (garden waste) and require oxygen. By feeding on the garden waste, the microbes break down the material and turn it into compost. Garden waste is often collected by Councils through kerbside collections (sometimes for part of the year only, between March & November) or at recycling centres. OAW is not suitable for food waste. This is because the process needed to deal with food waste has to be performed in an enclosed vessel and not in the open air. The Animal By-products regulations control this and were brought in to protect animal and human health. As a result any food waste, even vegetable scrapings from households, cannot be put through OAW. What goes in? Garden waste Organic garden waste materials such as twigs, leaves, grass clippings and prunings are suitable for OAW. Larger items such as branches, tree stumps etc. are too large to fully break down in OAW and should be shredded or cut into smaller pieces first. What happens? Material is delivered, sorted to remove incorrect materials (contamination) and shredded. The shredded materials are piled into long rows known as windrows, in the open air. Naturally occurring microbes feed on the materials. This creates heat and windrows will often give off steam. Rows are regularly turned to make sure there is enough oxygen for the microbes to work. At the end of the process, usually 12-16 weeks, the compost is checked to make sure it meets the necessary quality standard.
    [Show full text]
  • Collection and Composting Economics for Open Windrow Operations
    Collection and Composting Economics for Open Windrow Operations Carla Castagnero AgRecycle, Inc. NERC April 2014 Why Understanding The Economics of Composting Is Essential • Approximately 87% of all composting operations in the U.S., that do not receive government subsidies fail after 5 years. EPA 2012 • Composting is the only type of recycling that creates a new virgin product and it is the success of this product in the market that will allow composting to become sustainable. • The beneficial results of well made compost are irrefutable. • Diverting organic waste from landfills is a worthwhile endeavor, but doing so without any intention of making finished products out of the materials makes organic diversion just another exercise in good citizenry with a limited and finite future. Begin with the end in mind • The details of this presentation are based on the premise that every compost facility has the purpose of making a marketable product - whether the level of product is of a coarse nature to fill an erosion deterrent sleeve, for brownfield reclamation use, the backyard gardener, or the golf course superintendent • Grinding leaves and letting them sit in a pile to decompose is not making compost. • The materials in this presentation address open air windrow composting systems. • Under cover, in vessel, and in building systems are not part of this economic modeling. • Bio-solids composting operations are not included. Cost Accounting • The imprecisions and deviations among feedstocks that are an inherent part of composting operations
    [Show full text]
  • Potential of Producing Compost from Source-Separated Municipal Organic Waste (A Case Study in Shiraz, Iran)
    sustainability Article Potential of Producing Compost from Source-Separated Municipal Organic Waste (A Case Study in Shiraz, Iran) Haniyeh Jalalipour 1,* , Neematollah Jaafarzadeh 2, Gert Morscheck 1, Satyanarayana Narra 1,3 and Michael Nelles 1,3 1 Department of Waste and Resource Management, Rostock University, 18051 Rostock, Germany; [email protected] (G.M.); [email protected] (S.N.); [email protected] (M.N.) 2 Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; [email protected] 3 The German Centre for Biomass Research, 04347 Leipzig, Germany * Correspondence: [email protected] Received: 30 September 2020; Accepted: 18 November 2020; Published: 20 November 2020 Abstract: Developing countries face serious environmental, social and economic challenges in managing different types of organic waste. Proper treatment strategies should be adopted by solid waste management systems in order to address these concerns. Among all of the treatment options for organic waste, composting is the most approved method as an effective strategy to divert solid waste from landfills. This experimental research aimed to examine the potential of producing compost from source-separated municipal organic waste in Shiraz, Iran. Market waste (fruits and vegetables) and garden waste (plant residues) were used as the raw input materials. They were subjected to the windrow pile composting method in an open site area. The process was monitored against several physical, chemical and biological parameters. In-situ measurements (temperature and moisture content) were carried out on a daily basis. Sampling and lab analyses were conducted over the period of the biological treatment.
    [Show full text]
  • Turned Windrow Composting Sizing Your Composting Pad
    Turned Windrow Composting Sizing Your Composting Pad Planning a windrow composting operation is a multistep process, which involves careful thought and consid- 5. Calculating the Number of Windrows on the eration. The following guide has been created as part Active Pad of a set of resources to help composters in Vermont 6. Determining Active Pad Work Space Needs effectively plan, develop, and manage local composting 7. Calculating Active Pad Footprint operations. The focus of this resource is to support you 8. Calculating Curing and Storage Area in determining the size of your windrow composting site. 9. Calculating Feedstock Storage Operations composting food scraps (source-separated 10. Calculating Receiving and Blending Area organics or SSO) in Vermont are the main focus of this 11. Additional Infrastructure to Consider guide, although most of the guide will apply to com- 12. Calculating Total Site Footprint posters of farm wastes and other materials as well. Each phase is explained along with the necessary cal- The guide will walk you through the following calcula- culations and an example. Cumulatively, these steps tions and considerations: will help you determine the total footprint required for your windrow composting activities. You will likely need 1. Gathering Basic Information for Sizing a Windrow to adjust the dimensions of specific features within the Composting Facility site, based on realities of the plot you are dealing with. If 2. Two Approaches to Identifying Target Scale you are familiar with using spreadsheet software such as 3. Determining Total Volume of Feedstock on Microsoft Excel or Google Sheets, these tools can Active Composting Pad be very helpful in setting up a template calcula- 4.
    [Show full text]