Technical Document on Municipal Solid Waste Organics Processing Technical Document on Municipal Solid Waste Organics Processing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Energy from Waste
Guideline: Energy from waste Publication 1559.1* July 2017. *This publication replaces 1559 released December 2013. Introduction As outlined in Getting Full Value: the Victorian Waste and Resource Recovery Policy, (‘Getting Full Value Policy’) the Victorian Government is committed to an integrated, statewide waste and resource recovery system that protects the environment and public health, maximises the productive value of resources, and minimises the long-term costs to households, industry and government. The Victorian Government also outlined that it welcomes investments in energy from waste and other alternative technology that can convert waste into useful products, if it can be demonstrated that investment will deliver strong environmental, public health and economic outcomes. This guideline outlines how the Environment Protection Act 1970 (‘the Act’) and associated statutory policies and regulations are applied to the assessment of proposals that recover energy from waste. The document provides high- level guidance for industry, government and the community on EPA Victoria’s (EPA) expectations and requirements for the siting, design, construction and operation of such facilities. Efficient recovery of energy from the thermal or biological processing of waste is considered a resource recovery as opposed to a waste disposal option. Recovery of energy should not compete with avoidance, reuse or recycling. Legal status of this guideline This guideline provides a summary of the Act’s key principles and environment protection requirements as well as subordinate legislation. The technical details in this guideline describe measures to assist in meeting these requirements. The guideline does not represent a comprehensive statement of the law as it applies to either particular problems or individuals or serves as a substitute for legal advice. -
The Landfill Disposal Rates of Waste-To-Energy Communities
The Landfill Disposal Rates of Waste-to-Energy Communities Photo Courtesy of Miami-Dade County Resource Recovery Facility - Ash Disposal DECEMBER 2010 CH SEAR FO E UN R D D A IE T L IO P P N A A N P P O I L T I E A SOLID WASTE ASSOCIATION D D of North America R N E U S O E F A R H C www.swana.org The Landfill Disposal Rates of Waste-to-Energy Communities Ash Disposal – Miami-Dade County Resource Recovery Facility Prepared for: SWANA Applied Research Foundation FY2010 Waste-to-Energy Group Subscribers December 2010 © Solid Waste Association of North America 2010 The Landfill Disposal Rates of Waste-to-Energy Communities TABLE OF CONTENTS SECTION PAGE 1.0 INTRODUCTION ......................................................................................................... 1 2.0 THE LANDFILL DISPOSAL INDEX (LDI) ................................................................... 2 3.0 THE LANDFILL DISPOSAL INDICES OF WTE COMMUNITIES ............................... 3 4.0 LANDFILL DISPOSAL INDICES FOR ZERO WASTE COMMUNITIES ..................... 5 5.0 SHORTCOMINGS OF THE MSW DIVERSION RATE METRIC .................................. 5 6.0 THE BIODEGRADABLE MSW-LDI ............................................................................ 7 7.0 CONCLUSIONS .......................................................................................................... 8 LIST OF TABLES TABLE TITLE PAGE 1 SWANA ARF FY2010 WTE Group.............................................................................................................................2 -
GHOST GEAR: the ABANDONED FISHING NETS HAUNTING OUR OCEANS Sea Turtle Entangled in Fishing Gear in the Mediterranean Sea © Marco Care/Greenpeace CONTENTS
GHOST GEAR: THE ABANDONED FISHING NETS HAUNTING OUR OCEANS Sea turtle entangled in fishing gear in the Mediterranean Sea © Marco Care/Greenpeace CONTENTS 4 Zusammenfassung 5 Executive summary 6 Introduction 8 Main types of fishing – Nets – Lines – Traps & pots – FADs 11 Ghost gear impacts – Killing ocean creatures – Damaging habitats – Economic and other impacts 13 Current regulations – International agreements and recommendations – Other programmes and resolutions – A cross-sector approach – The need for a Global Ocean Treaty 16 References 2019 / 10 Published by Greenpeace Germany November 2019 Stand Greenpeace e. V., Hongkongstraße 10, 20457 Hamburg, Tel. 040/3 06 18 - 0, [email protected] , www . greenpeace . de Authors Karli Thomas, Dr. Cat Dorey and Farah Obaidullah Responsible for content Helena Spiritus Layout Klasse 3b, Hamburg S 0264 1 Contents 3 DEUTSCHE ZUSAMMENFASSUNG DER STUDIE GHOST GEAR: THE ABANDONED FISHING NETS HAUNTING OUR OCEANS → Rund 640.000 Tonnen altes Fischereigerät inklusive Geisternetzen, Bojen, Leinen, Fallen und Körbe landen jährlich als Fischereimüll in den Ozeanen. → Weltweit trägt altes Fischereigerät zu etwa zehn Prozent zum Plastikeintrag in die Meere bei. → 45 Prozent aller Arten auf der Roten IUCN-Liste hatten bereits Kontakt mit Plastik im Meer. → Sechs Prozent aller eingesetzten Netze, neun Prozent aller Fallen und 29 Prozent aller Langleinen gehen jährlich auf den Ozeanen verloren und enden als Meeresmüll. → Treibnetze, Fallen und Fischsammler (Fish Aggregating Devices, FADs) gehen weltweit am häufigsten als Müll auf den Ozeanen verloren und bergen die meisten Risiken für Meereslebewesen. → Durch FADs sterben 2,8 bis 6,7 Mal mehr Tiere - darunter bedrohte Arten wie Haie – als Beifang als die Zielarten, für die sie eingesetzt werden. -
Municipal Solid Waste Landfill Operation and Management Workbook
MUNICIPAL SOLID WASTE LANDFILL OPERATION AND MANAGEMENT WORKBOOK Revised April 2018 Preface In many ways, constructing, operating and maintaining a municipal solid waste landfill is similar to constructing, operating, and maintaining a highway, dam, canal, bridge, or other engineered structure. The most important similarity is that landfills, like other engineered structures, must be constructed and operated in a manner that will provide safe, long-term, and reliable service to the communities they serve. Proper design, construction, operation, monitoring, closure and post-closure care are critical because after disposal the waste can be a threat to human health and the environment for decades to centuries. This workbook is intended to provide municipal landfill operators and managers in Wyoming with the fundamental knowledge and technical background necessary to ensure that landfills are operated efficiently, effectively, and in a manner that is protective of human health and the environment. This workbook contains information regarding basic construction and operation activities that are encountered on a routine basis at most landfills. The basic procedures and fundamental elements of landfill permitting, construction management, monitoring, closure, post-closure care, and financial assurance are also addressed. The workbook includes informative tips and information that landfill operators and managers can use to conserve landfill space, minimize the potential for pollution, reduce operating costs, and comply with applicable rules and regulations. In addition to this workbook, operators and managers need to become familiar with the Wyoming Solid Waste Rules and Regulations applicable to municipal solid waste. The DEQ also provides numerous guidelines that may help understand regulatory requirements in more detail. -
Section 5.21: Solid Waste
General Plan Update Section 5.21: Solid Waste This section analyzes the potential solid waste impacts associated with the implementation of the proposed General Plan 2035. Specifically, this section compares the solid waste generation of the proposed General Plan 2035 with the capacity of the existing landfills that accept solid waste from the City of Murrieta. The California Integrated Waste Management Act of 1989 (AB 939) requires every city and county in the state to prepare a Source Reduction and Recycling Element (SRRE) to its Solid Waste Management Plan, that identifies how each jurisdiction will meet the mandatory state waste diversion goal of 50 percent by and after the year 2000. Subsequent legislation changed the reporting requirements and threshold, but restated source reduction as a priority. The purpose of AB 939 is to “reduce, recycle, and re-use solid waste generated in the state to the maximum extent feasible.” The term “integrated waste management” refers to the use of a variety of waste management practices to safely and effectively handle the municipal solid waste stream with the least adverse impact on human health and the environment. AB 939 established a waste management hierarchy as follows: . Source Reduction; . Recycling; . Composting; . Transformation; and . Disposal. Local governments have an ongoing obligation to meet a 50 percent diversion goal, as mandated by AB 939. While Murrieta’s recycling program is voluntary, residents and businesses are strongly encouraged to make full use of these services. Recycling and reuse of materials extends the life of landfills, results in less use of natural resources and improves the environment. -
The Potential of Digestate and the Liquid Fraction of Digestate As Chemical Fertiliser Substitutes Under the RENURE Criteria
agronomy Article The Potential of Digestate and the Liquid Fraction of Digestate as Chemical Fertiliser Substitutes under the RENURE Criteria Gregory Reuland 1,2,* , Ivona Sigurnjak 1 , Harmen Dekker 2, Evi Michels 1 and Erik Meers 1 1 Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium; [email protected] (I.S.); [email protected] (E.M.); [email protected] (E.M.) 2 European Biogas Association, Rue d’Arlon 65, 1050 Brussels, Belgium; [email protected] * Correspondence: [email protected] Abstract: This study assessed how digestate and the liquid fraction (LF) of digestate would perform as candidate RENURE fertilisers (recovered nitrogen from manure) in nitrate vulnerable zones under the proposed criteria of the Joint Research Centre, namely, (i) a mineral nitrogen to total nitrogen ratio ≥ 90% (Nmin:TN ≥ 90%) or a total organic carbon to TN ratio ≤ 3 (TOC:TN ≤ 3); (ii) limits of ≤300 copper (Cu) mg kg−1 and ≤800 Zinc (Zn) mg kg−1. These criteria were applied to unpublished data (n = 2622) on digestate compositional properties, further amended with data from the literature (n = 180); digestate analysis from seven full-scale biogas facilities (n = 14); and biogas industry stakeholders (n = 23). The results showed that Cu and Zn mostly met the criteria, with compliance rates of 94.7% (of 1035 entries) and 95.0% (of 1038 entries), respectively. Just above 5% (of 1856 entries) met the Nmin/TN ≥ 90% criterion, while 36% (of 1583 entries) met the TOC/TN ≤ 3 criterion, while total compliance was 32% (of 1893 entries). -
Solid Waste Management Plan Operational Services Division – Sanitation
Solid Waste Management Plan Operational Services Division – Sanitation October 2007 Table of Contents Table of Contents............................................................................................................2 Executive Summary ........................................................................................................3 Introduction .....................................................................................................................4 Solid Waste Diversion in Manitoba ..................................................................................5 Manitoba Product Stewardship Supported Recycling...................................................7 Household Hazardous Waste Generation in Manitoba.................................................9 Extended Producer Responsibility .............................................................................10 National Waste Diversion ..............................................................................................13 Avenues to Waste Diversion......................................................................................15 Trends for Manitoba ...............................................................................................22 Solid Waste Diversion as a System...............................................................................24 Solid Waste Management in Brandon ...........................................................................25 Landfill License..........................................................................................................25 -
Processing (Composting) Facility Guidance and Checklists for Tier II and Tier III Processing Facilities
Processing (Composting) Facility Guidance and Checklists for Tier II and Tier III Processing Facilities State of Idaho Department of Environmental Quality July 2013 Printed on recycled paper, DEQ June 2013, PID 9170, CA 87067. Costs associated with this publication are available from the State of Idaho Department of Environmental Quality in accordance with Section 60-202, Idaho Code. Processing Facility Guidance and Checklists Contents 1 Introduction .............................................................................................................................. 1 2 Composting Process................................................................................................................. 1 2.1 Windrow Composting ...................................................................................................... 1 2.2 Aerated Static Piles ........................................................................................................... 2 2.3 In-Vessel Composting ...................................................................................................... 3 3 Applicable Regulations ............................................................................................................ 3 3.1 Idaho’s Solid Waste Management Rules and Facility Classifications ............................. 4 Below Regulatory Concern ...................................................................................................... 4 Tier I Composting Facility ...................................................................................................... -
Upcycling Wastes with Biogas Production: an Exergy and Economic Analysis
Venice 2012, Fourth International Symposium on Energy from Biomass and Waste Upcycling wastes with biogas production: An exergy and economic analysis M. Martin*, A. Parsapour* *Environmental Technology and Management, Linköping University, 581 83, Linköping, Sweden SUMMARY: The massive consumption of finite resources creates high economical and environmental costs due to material dispersion and waste generation. In order to overcome this, by-products and wastes may be used, to avoid the use of virgin materials and benefit from the useful inherent energy of the material. By adding value to the material, economic and environmental performance can be improve, which is called upcycling. In this paper, an exergy and economic analysis of a biogas process is examined. In order to investigate if biogas production from wastes can upcycle materials, biogas production from a by- product from the brewing process is examined. From the analysis, the process is found to upcycle the by-product with an increase in exergy and economic benefit due to the generation of biomethane and biofertilizer. This analysis thus shows that by using by-products as such, the sustainability of the system may improve. 1. INTRODUCTION Given the concerns for sustainable development, the availability of energy from fossil sources and their environmental effects continues to produce problems for nations worldwide. With the current availability of alternative energy sources, our dependence on fossil sources can thus be questioned. Among these, bioenergy and biofuels have great potential for development and improvement. However, many experts have criticized the environmental performance and energy efficiency of biofuel production (Wibe, 2010; Akinci, 2008; Searchinger, 2008). -
Urbanization As a Threat to Biodiversity: Trophic Theory, Economic Geography, and Implications for Conservation Land Acquisition
Proceedings of a Symposium at the Society for Conservation Biology 2004 Annual Meeting URBANIZATION AS A THREAT TO BIODIVERSITY: TROPHIC THEORY, ECONOMIC GEOGRAPHY, AND IMPLICATIONS FOR CONSERVATION LAND ACQUISITION Brian Czech1 ABSTRACT—Habitat loss is often cited as the primary cause of species endangerment in the United States, followed by invasive species, pollution, and direct take. Urbanization, one type of habitat loss, is the leading cause of species endangerment in the contiguous United States and entails a relatively thorough transformation from the “economy of nature” to the human economy. Principles of economic geography indicate that urbanization will continue as a function of economic growth, while principles of conservation biology indicate that the most thorough competitive exclusion occurs in urban areas. These findings suggest the need for an ecologically macroeconomic approach to conservation land acquisition strategies. “Habitat loss” is often cited as the primary cause of species these types of habitat loss are considered separate causes of endangerment in the United States, followed by invasive species endangerment, invasive species are identified as the species, pollution, disease, and direct take. However, vari- leading cause of species endangerment in the United States, ous types of habitat loss are readily identified, such as log- including Hawaii and Puerto Rico (Czech et al. 2000). On ging, mining, agriculture, and urbanization (table 1). When the mainland United States, however, urbanization is the Table 1.— Causes of endangerment for the first 877 (of the current 1,262) species in the United States and Puerto Rico classified as threatened or endangered by the United States Fish and Wildlife Service (from Czech et al. -
Solid Waste Program Landfill Diversion Update
Landfill Diversion Update County of Maui Department of Environmental Management October 14, 2013 October 14, 2013 County of Maui Landfill Diversion Update Solid Waste Program • $6.6 million of General Fund subsidy (26%) • -$100/ton landfill cost, $75/ton LF revenue • $40/mo refuse cost, $18/mo refuse revenue • Residential landfill tip fee is zero • Residential green waste tip fee is zero • Recyclable materials markets are overseas Disposal alternatives prevent self-sufficiency. October 14, 2013 2 County of Maui 6///4/ RECEIVED AT MEETING ON / 1 vi/fr&4"94.4.,.//e(a*e_WA.,,7t. /5,7 —/1 /c Xtc.-7-c,tof Landfill Diversion Update C Why divert? • Landfilling leads to fugitive methane, wasted resources, high costs, trash-filled saina • Reduce, reuse, recycle, and repurpose - Landfilling - "re-nothing" • Recycling — strive for the highest and best use of materials and preserve natural resources - Plastic4plastic, metal metal, paper paper, etc. Cost of diversion versus landfill impacts. October 14, 2013 3 County of Maui Landfill Diversion Update -,-, Maui County Solid Waste Flows County grants EKO Compost / dropboxes 155,578 tons 22% Residential 7 > 1.7% 17.3% County of Maui Landfills 53% Commercial --> 14.9% 9.0% Recyclables, Metal and 58,489 tons \ food waste, concrete metals, etc. Maui Demolition Const. & and 25% Demolition Construction 42.9% Countywide Diversion Rate Landfill (Private) Maui County total solid waste -375,000 tons/yr. October 14, 2013 4 County of Maui 2 Landfill Diversion Update 0 Maui County Landfill Diversion Food waste 1.4% Compost 0.2% C&D 9.0% Metals 7.5% Tires, etc. -
Benefits of Composting Digestate
Zero Waste Energy Turns Waste to Profit Composting of Anaerobically Digested Organics (Digestate) is the actively managed process of further decomposing the organic residuals from the Anaerobic Digestion process. A range of composting systems are designed to manage this decomposition process to yield a high quality compost product without creating negative public or environmental impacts. Benefits of Composting Digestate Characteristics Operational Savings & Benefits High moisture content Reduced water commodity charges, less water application time, lower labor cost Low odor generation Reduction in impacts to surrounding receptors Homogeneous Consistent compost pile structure Easy to blend with bulking agent Reduced loader and labor time High anaerobic microbial activity Reaches temperature quickly Reaches thermophilic temperatures swiftly Reduced resident time for more efficient use of space High weight to volume ratios Higher revenue to footprint ratios Produces higher nitrogen values in compost than Enhanced value to end user markets green waste compost Consistent residual ratios Predictable cost to manage residual The following are three composting methodologies used in North America. Historically, windrow, static pile and in-vessel composting have been viewed as the most simplistic and least costly approaches to processing municipal organics. Each has tradeoffs in terms of overall costs (e.g., a windrow system may have less upfront investment in equipment and structures. This can create higher operating and management costs to address environmental impact and public nuisance factor considerations). Therefore, each methodology must be evaluated considering the following factors: • Maximizing control of public health/nuisance factors • Optimizing throughput to yield positive project economics • Producing a high quality compost product From Waste, Nothing is Wasted.