Vertac Dioxin Waste Disposal Options

Total Page:16

File Type:pdf, Size:1020Kb

Vertac Dioxin Waste Disposal Options VERTAC DIOXIN WASTE DISPOSAL OPTIONS Site History The Vertac Chemical Corporation, Jacksonville, Arkansas, plant has been the continuing object of EPA scrutiny since dioxin-contaminated wastes were found there in 1979. Because of the extremely toxic nature of these wastes, a suit was filed by the United States and the Arkansas Department of Pollution Control and Ecology against Vertac and its predecessor. Hercules, Incorporated, for injunctive relief to clean up the facility. One of the problems at the facility involved the disposal of approximately 4,000 drums containing 2,4,5-T wastes. These wastes were highly contaminated with tetrachlorodibenzo-p-dioxin (TCDD), one of the most toxic man-made substances known. In 1982 a Consent Decree was entered in the Vertac case. Part of this Consent Decree required Vertac to submit and implement a waste management C\J plan to dispose of the containerized waste on site. r<^ 0 Prior to entry of the Consent Decree, EPA was concerned that these wastes^ might be disposed of in an unregulated land disposal facility. As a result, a^ rule was promulgated under Section 6(a) of the Toxic Substances Control Act. This so called "Vertac Rule" prohibited off-site disposal of the 2,4,5-T waste or other dioxin contaminated waste. Vertac was required to store the waste until an acceptable disposal method could be found. The acceptable method for dioxin disposal was promulgated on January 14, 1985, as part of the new Dioxin Listing Rule, a regulation under the Resource Conservation and Recovery Act (RCRA). This rule allows disposal of some dioxin only at facilities with a RCRA permit, or by incineration or thermal treatment at facilities which have interim status under RCRA and have received, a special certification to dispose of dioxin waste from EPA. As yet, no commercial facility has received certification or a permit to dispose of dioxin. As a result of the history of the Vertac case, Vertac is now storing approximately 16,000 drums of 2,4-D waste, as well as the original 2,4,5-T waste. As mentioned above, they have submitted to EPA a waste management plan for the disposal of all the containerized waste by incineration onsite in ENSCO's mobile incinerator. Vertac has also entered into a contract with ENSCO to dispose of the waste. This plan has been incorporated into a proposed Order to be entered by the Court. So far, the Arkansas Department of Pollution Control and Ecology (ADPC&E) and EPA Region 6 have agreed to Vertac's proposal. Concurrence from EPA Headquarters and the Department of Justice is awaited. Thereafter, a public comment period will take place. Disposal Options There has been some opposition to the onsite incineration of the Vertac waste and more can be anticipated in the future. However, there are two major factors to consider regarding opposition to the Vertac proposal. First, Vertac was required by the Consent Decree to submit a plan to dispose VT9.13 4- 09130480 of the wastes. As soon as a disposal option was available, Vertac did propose a plan which not only complies with the Consent Decree but also complies with the Dioxin Listing Rule. Second, in the short term (one to two years), the only possible disposal option is incineration in a certified Incinerator or thermal treatment unit. In examining this second factor, other disposal possibilities can be considered but all appear to be unlikely or long term. The most common method of disposal in the past has been land disposal or "landfill ing." However, many substances, including dioxin waste, have been identified as candidates for being banned from land disposal facilities by November 1986. Additionally, land disposal in facilities which are not fully permitted for dioxin waste is prohibited by the Listing Rule. Thus, based on current agency views and policy, it is unlikely that any land disposal facility in would be permitted for dioxin wastes and very likely that these wastes will (^J be banned from land disposal entirely. ^ Deep well injection is a disposal method used to place liquid hazardous ° wastes in geological formations which contain them underground. This 0 practice also constitutes land disposal and may be prohibited. Additionally, o this method can only be used for liquids, and the Vertac wastes consist of a large amount of solids. This leaves incineration and thermal treatment as disposal options. Such facilities must either have interim status to operate and be certified ^ES^ or be fully permitted under RCRA. At this time, there are no facilities with the required approvals. However, there are a number of incineration facilities with interim status to burn hazardous waste and which may be able to meet the requirements to be certified. Although some of the requirements for certification are somewhat less than a full permit, the operating requirements are even more stringent than for a RCRA hazardous waste (non dioxin) incinerator, the main difference being that a unit used to dispose of dioxin wastes must demonstrate an ability to destroy 99.9999% of the dioxin, while other hazardous wastes must only achieve a 99.99% destruction efficiency. Based on the foregoing, it is clear that incineration (including other thermal treatment) is the only truly viable alternative. Proceeding from this conclusion, types and locations of incinerators can be examined and compared. Incinerators consist of basically two types - stationary and mobile. Only one stationary incinerator applied to burn dioxin waste in this Region. However, additional information was needed and has not been received by EPA. ENSCO, through Vertac, has applied for certification for its mobile incinerator to be used at the Vertac Jacksonville plant site. All certifications are site specific and thus, the application only applies to the Vertac site. No other applications have been received to certify any mobile incinerators in this Region. The only other major issue concerning incineration is whether to do it onsite at the Vertac plant or elsewhere. Time, safety, and economics all dictate that the incineration take place onsite. As stated above, the only 09130481 complete certification application received has been for the Vertac plant site. At a minimum, if another site were chosen, another application would have to be prepared and filed. The person making such an application would have to be the site owner. Therefore, Vertac would have to acquire the property, or the property owner would have to be willing to apply for certification, which seems unlikely. If the proposed incineration were to tane place ai. d location tnat does not currently have interim status to operate under RCRA, a full permit would be required, which would take the better part of two years, in comparison, the certification process should take considerably less than one year. Assuming that the incinerator would operate efficiently no matter where it was placed, the problem of transporting and handling 20,000 drums poses risks of its own. Disposal onsite allows much less handling of the drums, thus minimizing the risk of spills and releases. Plus, if spills do occur, they are isolated to the Vertac site. Hundreds of truck loads ^o of wastes wuuia nave 10 oe transported on mghways and through towns on their way to a disposal site, posing a risk of spills and traffic accidents, potentially causing widespread contamination. l\p^ 0 Finally, onsite incineration makes the most sense economically. The o factors described above: time delays, the cost of preparing applications, Q transportation costs, and potential liability for spills, make offsite disposal mucn more cosny ana less attractive from an economic viewpoint. Conclusion The current Vertac proposal for onsite incineration is fully in. compliance with all environmental requirements, meets the Consent Decree requirements, and is the safest, most timely, and cost effective way of dealing with their wastes. 03130462 VERTAC CHEMICAL CORPORATION JACKSONVILLE/ ARKANSAS DIOXIN CERTIFICATION 0 THE DIOXIN CERTIFICATION PROCESS FOR THE ENSCO MOBILE INCINERATOR IS EXPECTED TO PROCEED AS SCHEDULED. 0 PUBLIC OPPOSITION TO ON-SITE DIOXIN INCINERATION IS EXPECTED TO BE WELL-ORGANIZED AND VOCAL. r- 0 ADVERSE HEALTH EFFECTS HAVE BEEN WIDELY REPORTED IN THE LOCAL PRESS CM DESPITE REPORTS FROM CDC THAT DATA INDICATE NO CURRENT HEALTH HAZARD, m 0 0 MANY JACKSONVILLE CITIZENS FAVOR OFF-SITE INCINERATION. HOWEVER/ ° THERE ARE SEVERAL DISADVANTAGES: o - PRESENTLY NO OFF-SITE FACILITIES PERMITTED TO COMMERICIALLY TREAT OR DISPOSE OF DIOXIN WASTE. - PRESENTLY NO CERTIFICATIONS THAT ALLOW INTERIM STATUS FACILITIES TO COMMERCIALLY INCINERATE OR THERMALLY TREAT DIOXIN WASTE. - ADDITIONAL HANDLING AND TRANSPORTATION OF DRUMS PRESENTS A POTENTIALLY GREATER RISK OF EXPOSURE TO THE PUBLIC. HUNDREDS OF TRUCKLOADS OF WASTES WOULD HAVE TO BE TRANSPORTED ON HIGHWAYS AND THROUGH TOWNS EN ROUTE TO A DISPOSAL SITE. - PUBLIC OPPOSITION JUST AS LIKELY AT ANY ALTERNATE SITE. 0 ADVANTAGES OF ON-SITE DIOXIN INCINERATION; - THE ENSCO INCINERATOR WILL BE ON-LINE AND AVAILABLE FOR INCINERATTION BEFORE ANY OTHER TREATMENT OR DISPOSAL ALTERNATIVE. - ON-SITE MANAGEMENT OF THE DRUMMED WASTE REQUIRES MUCH LESS HANDLING THAN OFF-SITE TRANSPORTATION AND TREATMENT. - RELATIVE COSTS OF ON-SITE INCINERATION ARE MUCH LESS THAN FOR OFF-SITE BECAUSE OF VERY HIGH TRANSPORTATION COSTS. Vertac Chemical Corporation Jacksonville, Arkansas DIOXIN CERTIFICATION 0 The Dioxin Certification process for the ENSCO mobile incinerator is expected to proceed as schediuled. 0 However, public opposition to on-site dioxin incineration in Jacksonville is expected to be well-organized and vocal. 0 Adverse health effects have been widely reported in the local press despite reports from CDC that their evaluations of enviornmental Q-, data indicate no current health hazard. 0 Although many Jacksonville citizens apparently favor off-site incineration^ there are several disadvantages: 0 0 - There are presently no off-site facilities with a permit to Q commericially treat or dispose of dioxin waste.
Recommended publications
  • Disinfection and Disposal WHO 2015.Docx.Docx
    Disinfection and Disposal fact sheet Pre-cleaning equipment Disinfectants will not work effectively if equipment has organic materials stuck to it (e.g. mud, fecal material, dried blood, feathers, hair). Therefore, it is important to pre-clean all equipment to remove organic materials. This can be done with a stiff brush and liquid detergent or (because some disinfectants are inactivated by detergents), pre-cleaning may be done with the same agent that will be used in the disinfection step. Check the label of the disinfectant you plan to use for guidance on pre-cleaning. Disinfecting equipment The appropriate disinfectant to use when cleaning equipment is determined by the biological agent potentially involved. Below are a few examples: 1. Influenza A viruses (e.g. Highly pathogenic avian influenza – HPAI) a. Liquid detergent, 10% bleach solution, Virkon®, Roccal D Plus® b. http://www.epa.gov/pesticides/factsheets/avian_flu_products.htm c. http://www.aphis.usda.gov/animal_health/emergency_management/downloads/fad_epa_disinfectants.pdf 2. Prion diseases (e.g. Chronic wasting disease – CWD) a. Few effective decontamination techniques have been published, and no disinfectants or sterilants are registered by EPA for reducing the infectivity of prions. However, EPA has issued quarantine exemptions to several states for use of Environ™ LpH™ (a mixture of three phenolic active ingredients) for treatment of surfaces in commercial, government, and veterinary laboratories to reduce the infectivity of prions. Surfaces should be treated for more than 1 hour at 20°C (68°F). Overnight disinfection is recommended for equipment. http://www.cfsph.iastate.edu/pdf/fad-prep-nahems-guidelines-cleaning-and-disinfection see page 31.
    [Show full text]
  • I8-M15 Medical Incinerator the I8-M15 Is Our Smallest , Plug and Play Medical Incinerator
    i8-M15 Medical Incinerator The i8-M15 is our smallest , plug and play medical incinerator. Developed for use in smaller health clinics, laboratories and regional hospitals. It is well suited for use as a mobile incinerator due to its small footprint and simple setup. 3mm 850°C EASY SETUP CORETEX TEMP PLUG ‘N’ PLAY IN 5 SMIN INSULATION GAUGESTEEL AS STANDARD 2 SECOND RETENTION Plug ’n’ Play Setup & Operation Industry Leading Insulation Long Lasting Construction Designed to excel This model boasts the quickest Coretex© insulation is a specially The i8-M15 internal frame is Each of our incinerators has been setup time of any of our models. formulated substrate containing constructed from British made tested to exacting standards Simply remove from packaging, various levels of material that high quality 3mm mild steel ensuring they meet our strict connect electricity and add some ensure almost all of the heat plate. They are fully welded for guidelines. fuel to the tank - Making this generated within our incinerators maximum strength by our time- an ideal model to have trailer stays inside them - increasing served coded welders and now This machine can reach in mounted so you can relocate your performance and efficiency to fully clad in steel. Meaning you get excess of 850°C in the secondary incinerator to where it is needed another level. years of trouble-free operation. chamber and also retains the most week by week. gases for the 2 seconds required. Designed to burn Type I - IV pathological waste and infectious and contaminated “red bag,” surgical dressings, plastic test devices and other wastes.
    [Show full text]
  • Code of Practice for Small Incinerators
    Code of Practice for Small Incinerators September 2005 made under the Environmental Protection and Enhancement Act © Published by Alberta Queen’s Printer Queen’s Printer Bookstore 5th Floor, Park Plaza 10611-98 Avenue Edmonton, AB T5K 2P7 Phone: 780-427-4952 Fax: 780-452-0668 Email: [email protected] Shop on-line at www.qp.alberta.ca 1 ALBERTA ENVIRONMENT CODE OF PRACTICE FOR SMALL INCINERATORS (made under the Environmental Protection and Enhancement Act, RSA 2000, c.E-12, as amended and Waste Control Regulation (AR 192/96), as amended) Table of Contents 1. Definitions 2. General Requirements 3. Analytical Requirements 4. Registration Application/Administration Requirements 5. Design Requirements 6. Operational and Emission Requirements 7. Monitoring Requirements 8. Closure Requirements 9. Reporting Requirements 10. Record Keeping Requirements 11. Code of Practice Administration Schedule 1 Registration Information for Small Incinerators 2 Section 1: Definitions 1.1 All definitions in the Act and the regulations under the Act apply except where expressly defined in this Code of Practice. 1.2 In this Code of Practice: (a) “Act” means the Environmental Protection and Enhancement Act, RSA 2000, c.E-12, as amended; (b) “auxiliary burner” means a burner that fires auxiliary fuel in a small incinerator for the purpose of: (i) preheating, (ii) drying and igniting solid waste, or (iii) maintaining adequate operating temperatures; (c) “ISO 17025” means the international standard, developed and published by International Organization for Standardization
    [Show full text]
  • Ocean Incineration: Its Role in Managing Hazardous Waste (Part 9
    Chapter 7 Comparison of Land-Based and Ocean Incineration Technologies Contents Page Composition of Incineration Products . .. ....119 Plume Gases . ...119 Residual Parent Compounds and Products of Incomplete Combustion (PICs) . ........119 Metals and Particulate. .1’20 Solid Residues . ............121 Comparison of ’Technical and Regulatory Requirements. ........122 Waste Analysis and Waste Limitations. ..122 Performance Standards . , . .......123 Operating Conditions . , . 125 Air Pollution Control Technology . ..............127 Sampling and Monitoring Requirements and Procedures . .. ...128 .Additional Provisions Not Required of Land-Based Incineration . ..129 Chapter 7 References . ..129 Table Table No. Page 12. Performance Standards Applicable to Land-Based and Ocean Incineration. .124 Chapter 7 Comparison of Land-Based and Ocean Incineration Technologies Although liquid organic wastes are currently This chapter describes the nature of the combus- managed in various ways, ocean incineration’s pri- tion products arising from both land-based and mary competition and closest analog is land-based ocean incineration and compares and contrasts their incineration. Therefore, it is important to compare respective technical and regulatory requirements. and contrast their technical features, the nature and extent of their regulation, and their relative risks of environmental release and adverse impacts. COMPOSITION OF INCINERATION PRODUCTS The products resulting from incineration of haz- waste incineration may contribute significantly to ardous waste, whether on land or at sea, can re- the risks posed by hazardous air pollutants. sult from complete or partial thermal oxidation of waste components. The products can be grouped Residual Parent Compounds and Products as follows: plume gases, residual parent com- pounds, products of incomplete combustion (PICs), of Incomplete Combustion (PICs) metals and particulate, and solid residues.
    [Show full text]
  • Disposal of Bulk Quantities of Obsolete Pesticides in Developing Countries 1
    The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechani- cal, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. © FAO 1996 iii Foreword These guidelines have been prepared jointly by the Food and Agriculture Organiza- tion of the United Nations (FAO), the United Nations Environment Programme (UNEP) and the World Health Organization (WHO). The technical information and recommendations presented in these guidelines have been approved by a panel of experts nominated by the three organizations. The guidelines are published by FAO under project GCP/INT/572/NET: “Prevention and Disposal of Unwanted Pesticide Stocks in Africa and the Near East”, funded by the government of the Netherlands. The guidelines are considered generally applicable and of interest to many countries, aid agencies and the pesticide industry. New disposal methods are continually being developed. The intention is to revise these guidelines or to issue addenda when important new disposal methods become available that can be used safely in developing countries and are cost-effective.
    [Show full text]
  • INCINER8 Waste Incineration Mobile Incinerators
    INCINER8 Waste Incineration Mobile Incinerators Animal & Waste Incinerators We can now offer our range of incinerators exclusively throughout Europe and the rest of the world through our dealer network. Our range of units are fully CE certified, ensuring that we meet the highest standards in safety and construction. The mobile incinerator range of are ideal for shared facilities or remote places. Mobile Incinerators Our latest range of mobile units lend themselves to a variety of uses, whether it is for shared facilities, camps, farms or even for disease control (Avian Influenza) in remote areas. One of the unique features of this range is the natural secondary burn characteristics of the primary chamber. The design of this model ensures extra air is drawn into the main chamber aiding primary combustion to ensure the efficient disposal of waste or carcasses at minimum cost. These units are the highest standards for waste disposal, and benefit from being extremely durable for a long working life. Mobile A850 KEY FEATURES Ease of Use • Galvanised twin axle trailer with ramp Auto ignition. No pilots to light. Set the • Integral fuel tank timer and walk away. • Diesel generator set Built-in skid facilitates placement • Low running and maintenance costs • Fully Automatic and simple to operate Fuel Efficiency control panel Rapid incineration means low fuel • Incineration Temperatures in Excess of consumption. 1300 degrees C Higher burn rate than smaller models. • Dense Refractory Concrete Lining Rated Thick refractory lining in main chamber to 1600 degrees C retains heat, increasing efficiency. • Solid Hearth to Allow Maximum Burnout • Top Opening Lid For Easy Loading Quality Built to Last • Stainless Steel Flue as standard Heat resistant 5mm steel.
    [Show full text]
  • What's in Our Gasoline Is Killing Us Mobile Source Air Toxics (Msats)
    ETHYLBENZENE What’s in our gasoline is killing us Mobile Source Air Toxics (MSATs) and the Threat to Public Health A Fact Book from In cooperation with DEAR READER: Today’s gasoline additives share the same storyline and shameless history of deceit with lead (i.e., a now banned additive to gasoline1), tobacco and #Dieselgate. This Fact Book, What’s in Our Gasoline is Killing Us: Mobile Source Air Toxics (MSATs) and the Threat to Public Health, is intended to educate and inform the reader that the public has been victim to 25 years of exposure to mobile source air toxics (MSATs) since the phase out of lead in gasoline, only to be replaced by even more dangerous additives. We cannot allow the tobacco/lead/gasoline history to continue without toxic and carcinogenic aromatic compounds being properly regulated. Popular petroleum-based additives used to increase octane include benzene, toluene, xylene and several derivatives of benzene referred to as BTX or BTEX. These comprise almost half the aromatic compounds in gasoline and are classified as known, probable or possible carcinogens. These various forms of benzene are present both in volume in the fuels as well as being created through the combustion of all aromatics. We believe there is a demonstrated history of private interest manipulating government responsibility to protect the public interest–with personal health left hanging in the balance. The American Petroleum Institute (API) stated in 1948 that “it is generally “There is no safe exposure level to considered that the only absolutely safe concentration for benzene is zero.”3 benzene; even tiny amounts can Despite the clear and present danger of benzene, it was not until the 1990 Clean Air Act cause harm.
    [Show full text]
  • Re: Final Record of Decision OU1 Former Nebraska Ordnance Plant Site
    2023291 Final Record of Decision Operable Unit 1 Former Nebraska Ordnance Plant Site Mead, Nebraska U.S. Environmental Protection Agency Region VII Kansas City, Kansas Department of the Army U.S. Army Engineer District Kansas City Corps of Engineers Kansas City, Missouri oo August 1995 •-* cL i" OU 1 Record of Decision/Responsiveness Summary Fanner Nebraska Ordnance Plant TABLE OF CONTENTS Chapter Page 1.0 DECLARATION ...................................... 1 2.0 DECISION SUMMARY .................................. 5 2.1 SITE NAME, LOCATION, AND DESCRIPTION ............. 5 2.2 SITE HISTORY AND PREVIOUS INVESTIGATIONS .......... 6 2.2.1 Site History ............................... 6 2.2.2 Previous Investigations ......................... 7 2.2.3 Summary of OU 1 RI Results .................... 8 2.3 COMMUNITY PARTICIPATION ....................... 9 2.4 SCOPE AND ROLE OF OPERABLE UNIT 1 REMEDIAL ACTION WITHIN SITE STRATEGY .......................... 11 2.5 SUMMARY OF SITE CHARACTERISTICS ............... 12 2.6 REMOVAL ACTIONS ............................. 12 2.7 SUMMARY OF SITE RISKS ......................... 13 2.7.1 Potential Human Health Risks ................... 13 2.7.2 Potential Environmental Risks ................... 18 2.8 SUMMARY OF ALTERNATIVES ...................... 18 2.8.1 Alternative 1 - No Action ...................... 19 2.8.2 Alternative 2 - Biological Treatment ............... 19 2.8.3 Alternative 3 - Rotary Kiln Incineration ............. 20 2.8.4 Alternative 4 - On-Site Landfill .................. 21 2.8.5 Alternative 5 - Off-Site Landfill .................. 21 2.9 TREATABILITY STUDIES .......................... 22 2.10 SUMMARY OF COMPARATIVE ANALYSIS OF ALTERNATIVES 22 2.10.1 Introduction .............................. 22 2.10.2 Comparison of Alternatives ..................... 23 2.10.3 Summary ................................ 27 2.11 THE SELECTED REMEDIAL ACTION .................. 28 2.12 STATUTORY DETERMINATIONS ..................... 28 2.12.1 Protection of Human Health and the Environment ......
    [Show full text]
  • Numerical Investigation of a Portable Incinerator: a Parametric Study
    processes Article Numerical Investigation of a Portable Incinerator: A Parametric Study Mohsen Saffari Pour 1,2 , Ali Hakkaki-Fard 1,* and Bahar Firoozabadi 1 1 Department of Mechanical Engineering, Sharif University of Technology, Tehran 79417, Iran; [email protected] (M.S.P.); fi[email protected] (B.F.) 2 KTH Royal Institute of Technology, 114 28 Stockholm, Sweden * Correspondence: [email protected]; Tel.: +98-216-616-5525 Received: 18 June 2020; Accepted: 21 July 2020; Published: 2 August 2020 Abstract: The application of incinerators for the municipal solid waste (MSW) is growing due to the ability of such instruments to produce energy and, more specifically, reduce waste volume. In this paper, a numerical simulation of the combustion process with the help of the computational fluid dynamics (CFD) inside a portable (mobile) incinerator has been proposed. Such work is done to investigate the most critical parameters for a reliable design of a domestic portable incinerator, which is suitable for the Iranian food and waste culture. An old design of a simple incinerator has been used to apply the natural gas (NG), one of the available cheap fossil fuels in Iran. After that, the waste height, place of the primary burner, and the flow rate of the cooling air inside the incinerator, as the main parameters of the design, are investigated. A validation is also performed for the mesh quality test and the occurrence of the chemical reactions near the burner of the incinerator. Results proved that the numerical results have less than 5% error compared to the previous experimental and numerical approaches.
    [Show full text]
  • Report: 1973-06-30 (Part 2) Study Of
    Study of Abatement Methods and Meteorological Conditions for Optimum Dispersion of Particulates from Field Burning of Rice Straw Rice Straw Incinerator Evaluation ARB Project 1-102-1 University of California Davis, California Principal Investigators George E. Miller, Jr. John R. Goss June 30, 1973 Abstract The project was initiated in December, 1970, to determine the potentials of mobile incineration as a practical means of reducing particulate emissions from combustive disposal of rice field residues. Previous studies on inciner­ ators indicated improved combustion is possible under controlled conditions. Capacity, mobility, durability, economics, wild fire control and other pro­ blems existed. However, information on the state of the art was needed under California rice field conditions because of the continuing need to reduce all contributions to the statewide air pollution problem. An experimental mobile field sanitizer (incinerator} was transported from Oregon to California. Test runs and modifications were made on the unit for use on rice field residues in California in the fall of 1971 and spring of 1972. Tests were also conducted in barley fields during the spring and summer of 1972 on a mobile straw burner prototype developed by an inventor in California. Results of the tests of both units indicate that the state of the art is not sufficiently developed for use in rice field residue disposal. Projected overall costs of operation are not within the limits of economic feasibility at this time. Under reasonably good climatic conditions in California, well managed open field burns will have less particulate emissions than the incin­ erator tested. Under poor climatic conditions, the mobile incinerator cannot be operated in rice fields.
    [Show full text]
  • Emergency Carcass Management Desk Reference Guide (DRG)
    EMERGENCY CARCASS MANAGEMENT DESK REFERENCE GUIDE JUNE 2017 Contents Applicability Statement ..................................................................................................................................................I Acknowledgements .........................................................................................................................................................II USDA Response Process ................................................................................................................................................III SECTION 1: RESPONSE PROCESS Operations Procedures .............................................................................................................................................1-1 SECTION 2: DECISION TOOL Information Needed for Carcass Management Decisions ..............................................................................2-1 Definitions ...................................................................................................................................................................2-2 HPAI Carcass Management Decision Tool..........................................................................................................2-4 Carcass Management Decision Cycle ..................................................................................................................2-7 Carcass Management Options Checklist ............................................................................................................2-8
    [Show full text]
  • Standard Operating Procedures: 14. Disposal
    STANDARD OPERATING PROCEDURES: 14. DISPOSAL DRAFT JANUARY 2014 File name: FAD_Prep_Disposal_SOP_Jan2014_07202016_Fix SOP number: 14 ednumber Lead section: Preparedness and Incident Coordination Version number: Draft 2.0 Effective date: January 2014 Review date: January 2017 The Foreign Animal Disease Preparedness and Response Plan (FAD PReP) Standard Operating Procedures (SOPs) provide operational guidance for responding to an animal health emergency in the United States. These draft SOPs are under ongoing review. This document was last updated in January 2014. Please send questions or comments to: National Preparedness and Incident Coordination Veterinary Services Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 41 Riverdale, Maryland 20737 Telephone: (301) 851-3595 Fax: (301) 734-7817 E-mail: [email protected] While best efforts have been used in developing and preparing the FAD PReP SOPs, the U.S. Government, U.S. Department of Agriculture (USDA), and the Animal and Plant Health Inspection Service and other parties, such as employees and contractors contributing to this document, neither warrant nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or procedure disclosed. The primary purpose of these FAD PReP SOPs is to provide operational guidance to those government officials responding to a foreign animal disease outbreak. It is only posted for public access as a reference. The FAD PReP SOPs may refer to links to various other Federal and State agencies and private organizations. These links are maintained solely for the user's information and convenience. If you link to such site, please be aware that you are then subject to the policies of that site.
    [Show full text]