SUBCHAPTER I—SOLID WASTES (Continued)

Total Page:16

File Type:pdf, Size:1020Kb

SUBCHAPTER I—SOLID WASTES (Continued) SUBCHAPTER IÐSOLID WASTES (Continued) PART 260ÐHAZARDOUS WASTE Subpart AÐGeneral MANAGEMENT SYSTEM: GENERAL § 260.1 Purpose, scope, and applica- bility. Subpart AÐGeneral (a) This part provides definitions of Sec. terms, general standards, and overview 260.1 Purpose, scope, and applicability. information applicable to parts 260 260.2 Availability of information; confiden- through 265 and 268 of this chapter. tiality of information. (b) In this part: (1) Section 260.2 sets 260.3 Use of number and gender. forth the rules that EPA will use in Subpart BÐDefinitions making information it receives avail- able to the public and sets forth the re- 260.10 Definitions. quirements that generators, trans- 260.11 References. porters, or owners or operators of treatment, storage, or disposal facili- Subpart CÐRulemaking Petitions ties must follow to assert claims of 260.20 General. business confidentiality with respect to 260.21 Petitions for equivalent testing or information that is submitted to EPA analytical methods. under parts 260 through 265 and 268 of 260.22 Petitions to amend part 261 to ex- this chapter. clude a waste produced at a particular fa- (2) Section 260.3 establishes rules of cility. grammatical construction for parts 260 260.23 Petitions to amend 40 CFR part 273 to through 265 and 268 of this chapter. include additional hazardous wastes. (3) Section 260.10 defines terms which 260.30 Variances from classification as a are used in parts 260 through 265 and solid waste. 268 of this chapter. 260.31 Standards and criteria for variances (4) Section 260.20 establishes proce- from classification as a solid waste. dures for petitioning EPA to amend, 260.32 Variances to be classified as a boiler. modify, or revoke any provision of 260.33 Procedures for variances from classi- parts 260 through 265 and 268 of this fication as a solid waste or to be classi- fied as a boiler. chapter and establishes procedures gov- 260.40 Additional regulation of certain haz- erning EPA's action on such petitions. ardous waste recycling activities on a (5) Section 260.21 establishes proce- case-by-case basis. dures for petitioning EPA to approve 260.41 Procedures for case-by-case regula- testing methods as equivalent to those tion of hazardous waste recycling activi- prescribed in parts 261, 264, or 265 of ties. this chapter. APPENDIX I TO PART 260ÐOVERVIEW OF SUB- (6) Section 260.22 establishes proce- TITLE C REGULATIONS dures for petitioning EPA to amend subpart D of part 261 to exclude a waste AUTHORITY: 42 U.S.C. 6905, 6912(a), 6921±6927, 6930, 6934, 6935, 6937, 6938, 6939, and 6974. from a particular facility. SOURCE: 45 FR 33073, May 19, 1980, unless [45 FR 33073, May 19, 1980, as amended at 51 otherwise noted. FR 40636, Nov. 7, 1986] EFFECTIVE DATE NOTE: The reporting or § 260.2 Availability of information; recordkeeping provisions included in the confidentiality of information. final rule published at 47 FR 32274, July 26, 1982, will be submitted for approval to the (a) Any information provided to EPA Office of Management and Budget (OMB), under parts 260 through 265 and 268 of and will not become effective until OMB ap- this chapter will be made available to proval has been obtained. EPA will publish a the public to the extent and in the notice of the effective date of the reporting manner authorized by the Freedom of and recordkeeping provisions of this rule Information Act, 5 U.S.C. section 552, after it obtains OMB approval. section 3007(b) of RCRA and EPA regu- lations implementing the Freedom of 5 VerDate 31<AUG>2000 14:46 Aug 31, 2000 Jkt 190153 PO 00000 Frm 00005 Fmt 8010 Sfmt 8010 \CFRS\BUGS\190153T.XXX APPS27 PsN: 190153T § 260.3 40 CFR Ch. I (7±1±00 Edition) Information Act and section 3007(b), cluding the tank bottom) is able to be part 2 of this chapter, as applicable. visually inspected. (b) Any person who submits informa- Act or RCRA means the Solid Waste tion to EPA in accordance with parts Disposal Act, as amended by the Re- 260 through 266 and 268 of this chapter source Conservation and Recovery Act may assert a claim of business con- of 1976, as amended, 42 U.S.C. section fidentiality covering part or all of that 6901 et seq. information by following the proce- Active life of a facility means the pe- dures set forth in § 2.203(b) of this chap- riod from the initial receipt of haz- ter. Information covered by such a ardous waste at the facility until the claim will be disclosed by EPA only to Regional Administrator receives cer- the extent, and by means of the proce- tification of final closure. dures, set forth in part 2, subpart B, of Active portion means that portion of a this chapter except that information facility where treatment, storage, or required by § 262.53(a) and § 262.83 that disposal operations are being or have is submitted in a notification of intent to export a hazardous waste will be been conducted after the effective date provided to the U.S. Department of of part 261 of this chapter and which is State and the appropriate authorities not a closed portion. (See also ``closed in the transit and receiving or import- portion'' and ``inactive portion''.) ing countries regardless of any claims Administrator means the Adminis- of confidentiality. However, if no such trator of the Environmental Protection claim accompanies the information Agency, or his designee. when it is received by EPA, it may be Ancillary equipment means any device made available to the public without including, but not limited to, such further notice to the person submitting devices as piping, fittings, flanges, it. valves, and pumps, that is used to dis- tribute, meter, or control the flow of [45 FR 33073, May 19, 1980, as amended at 51 FR 28682, Aug. 8, 1986; 51 FR 40636, Nov. 7, hazardous waste from its point of gen- 1986; 61 FR 16309, Apr. 12, 1996] eration to a storage or treatment tank(s), between hazardous waste stor- § 260.3 Use of number and gender. age and treatment tanks to a point of As used in parts 260 through 265 and disposal onsite, or to a point of ship- 268 of this chapter: ment for disposal off-site. (a) Words in the masculine gender Aquifer means a geologic formation, also include the feminine and neuter group of formations, or part of a forma- genders; and tion capable of yielding a significant (b) Words in the singular include the amount of ground water to wells or plural; and springs. (c) Words in the plural include the Authorized representative means the singular. person responsible for the overall oper- ation of a facility or an operational [45 FR 33073, May 19, 1980, as amended at 51 unit (i.e., part of a facility), e.g., the FR 40636, Nov. 7, 1986] plant manager, superintendent or per- son of equivalent responsibility. Subpart BÐDefinitions Battery means a device consisting of one or more electrically connected § 260.10 Definitions. electrochemical cells which is designed When used in parts 260 through 273 of to receive, store, and deliver electric this chapter, the following terms have energy. An electrochemical cell is a the meanings given below: system consisting of an anode, cathode, Above ground tank means a device and an electrolyte, plus such connec- meeting the definition of ``tank'' in tions (electrical and mechanical) as § 260.10 and that is situated in such a may be needed to allow the cell to de- way that the entire surface area of the liver or receive electrical energy. The tank is completely above the plane of term battery also includes an intact, the adjacent surrounding surface and unbroken battery from which the elec- the entire surface area of the tank (in- trolyte has been removed. 6 VerDate 31<AUG>2000 14:46 Aug 31, 2000 Jkt 190153 PO 00000 Frm 00006 Fmt 8010 Sfmt 8010 \CFRS\BUGS\190153T.XXX APPS27 PsN: 190153T Environmental Protection Agency § 260.10 Boiler means an enclosed device using Closed portion means that portion of a controlled flame combustion and hav- facility which an owner or operator has ing the following characteristics: closed in accordance with the approved (1)(i) The unit must have physical facility closure plan and all applicable provisions for recovering and exporting closure requirements. (See also ``active thermal energy in the form of steam, portion'' and ``inactive portion''.) heated fluids, or heated gases; and Component means either the tank or (ii) The unit's combustion chamber ancillary equipment of a tank system. and primary energy recovery sec- Confined aquifer means an aquifer tions(s) must be of integral design. To bounded above and below by imper- be of integral design, the combustion meable beds or by beds of distinctly chamber and the primary energy recov- lower permeability than that of the aq- ery section(s) (such as waterwalls and uifer itself; an aquifer containing con- superheaters) must be physically fined ground water. formed into one manufactured or as- Container means any portable device sembled unit. A unit in which the com- in which a material is stored, trans- bustion chamber and the primary en- ported, treated, disposed of, or other- ergy recovery section(s) are joined only wise handled. by ducts or connections carrying flue Containment building means a haz- gas is not integrally designed; however, ardous waste management unit that is secondary energy recovery equipment used to store or treat hazardous waste (such as economizers or air preheaters) under the provisions of subpart DD of need not be physically formed into the parts 264 or 265 of this chapter.
Recommended publications
  • Disinfection and Disposal WHO 2015.Docx.Docx
    Disinfection and Disposal fact sheet Pre-cleaning equipment Disinfectants will not work effectively if equipment has organic materials stuck to it (e.g. mud, fecal material, dried blood, feathers, hair). Therefore, it is important to pre-clean all equipment to remove organic materials. This can be done with a stiff brush and liquid detergent or (because some disinfectants are inactivated by detergents), pre-cleaning may be done with the same agent that will be used in the disinfection step. Check the label of the disinfectant you plan to use for guidance on pre-cleaning. Disinfecting equipment The appropriate disinfectant to use when cleaning equipment is determined by the biological agent potentially involved. Below are a few examples: 1. Influenza A viruses (e.g. Highly pathogenic avian influenza – HPAI) a. Liquid detergent, 10% bleach solution, Virkon®, Roccal D Plus® b. http://www.epa.gov/pesticides/factsheets/avian_flu_products.htm c. http://www.aphis.usda.gov/animal_health/emergency_management/downloads/fad_epa_disinfectants.pdf 2. Prion diseases (e.g. Chronic wasting disease – CWD) a. Few effective decontamination techniques have been published, and no disinfectants or sterilants are registered by EPA for reducing the infectivity of prions. However, EPA has issued quarantine exemptions to several states for use of Environ™ LpH™ (a mixture of three phenolic active ingredients) for treatment of surfaces in commercial, government, and veterinary laboratories to reduce the infectivity of prions. Surfaces should be treated for more than 1 hour at 20°C (68°F). Overnight disinfection is recommended for equipment. http://www.cfsph.iastate.edu/pdf/fad-prep-nahems-guidelines-cleaning-and-disinfection see page 31.
    [Show full text]
  • I8-M15 Medical Incinerator the I8-M15 Is Our Smallest , Plug and Play Medical Incinerator
    i8-M15 Medical Incinerator The i8-M15 is our smallest , plug and play medical incinerator. Developed for use in smaller health clinics, laboratories and regional hospitals. It is well suited for use as a mobile incinerator due to its small footprint and simple setup. 3mm 850°C EASY SETUP CORETEX TEMP PLUG ‘N’ PLAY IN 5 SMIN INSULATION GAUGESTEEL AS STANDARD 2 SECOND RETENTION Plug ’n’ Play Setup & Operation Industry Leading Insulation Long Lasting Construction Designed to excel This model boasts the quickest Coretex© insulation is a specially The i8-M15 internal frame is Each of our incinerators has been setup time of any of our models. formulated substrate containing constructed from British made tested to exacting standards Simply remove from packaging, various levels of material that high quality 3mm mild steel ensuring they meet our strict connect electricity and add some ensure almost all of the heat plate. They are fully welded for guidelines. fuel to the tank - Making this generated within our incinerators maximum strength by our time- an ideal model to have trailer stays inside them - increasing served coded welders and now This machine can reach in mounted so you can relocate your performance and efficiency to fully clad in steel. Meaning you get excess of 850°C in the secondary incinerator to where it is needed another level. years of trouble-free operation. chamber and also retains the most week by week. gases for the 2 seconds required. Designed to burn Type I - IV pathological waste and infectious and contaminated “red bag,” surgical dressings, plastic test devices and other wastes.
    [Show full text]
  • Code of Practice for Small Incinerators
    Code of Practice for Small Incinerators September 2005 made under the Environmental Protection and Enhancement Act © Published by Alberta Queen’s Printer Queen’s Printer Bookstore 5th Floor, Park Plaza 10611-98 Avenue Edmonton, AB T5K 2P7 Phone: 780-427-4952 Fax: 780-452-0668 Email: [email protected] Shop on-line at www.qp.alberta.ca 1 ALBERTA ENVIRONMENT CODE OF PRACTICE FOR SMALL INCINERATORS (made under the Environmental Protection and Enhancement Act, RSA 2000, c.E-12, as amended and Waste Control Regulation (AR 192/96), as amended) Table of Contents 1. Definitions 2. General Requirements 3. Analytical Requirements 4. Registration Application/Administration Requirements 5. Design Requirements 6. Operational and Emission Requirements 7. Monitoring Requirements 8. Closure Requirements 9. Reporting Requirements 10. Record Keeping Requirements 11. Code of Practice Administration Schedule 1 Registration Information for Small Incinerators 2 Section 1: Definitions 1.1 All definitions in the Act and the regulations under the Act apply except where expressly defined in this Code of Practice. 1.2 In this Code of Practice: (a) “Act” means the Environmental Protection and Enhancement Act, RSA 2000, c.E-12, as amended; (b) “auxiliary burner” means a burner that fires auxiliary fuel in a small incinerator for the purpose of: (i) preheating, (ii) drying and igniting solid waste, or (iii) maintaining adequate operating temperatures; (c) “ISO 17025” means the international standard, developed and published by International Organization for Standardization
    [Show full text]
  • Ocean Incineration: Its Role in Managing Hazardous Waste (Part 9
    Chapter 7 Comparison of Land-Based and Ocean Incineration Technologies Contents Page Composition of Incineration Products . .. ....119 Plume Gases . ...119 Residual Parent Compounds and Products of Incomplete Combustion (PICs) . ........119 Metals and Particulate. .1’20 Solid Residues . ............121 Comparison of ’Technical and Regulatory Requirements. ........122 Waste Analysis and Waste Limitations. ..122 Performance Standards . , . .......123 Operating Conditions . , . 125 Air Pollution Control Technology . ..............127 Sampling and Monitoring Requirements and Procedures . .. ...128 .Additional Provisions Not Required of Land-Based Incineration . ..129 Chapter 7 References . ..129 Table Table No. Page 12. Performance Standards Applicable to Land-Based and Ocean Incineration. .124 Chapter 7 Comparison of Land-Based and Ocean Incineration Technologies Although liquid organic wastes are currently This chapter describes the nature of the combus- managed in various ways, ocean incineration’s pri- tion products arising from both land-based and mary competition and closest analog is land-based ocean incineration and compares and contrasts their incineration. Therefore, it is important to compare respective technical and regulatory requirements. and contrast their technical features, the nature and extent of their regulation, and their relative risks of environmental release and adverse impacts. COMPOSITION OF INCINERATION PRODUCTS The products resulting from incineration of haz- waste incineration may contribute significantly to ardous waste, whether on land or at sea, can re- the risks posed by hazardous air pollutants. sult from complete or partial thermal oxidation of waste components. The products can be grouped Residual Parent Compounds and Products as follows: plume gases, residual parent com- pounds, products of incomplete combustion (PICs), of Incomplete Combustion (PICs) metals and particulate, and solid residues.
    [Show full text]
  • Disposal of Bulk Quantities of Obsolete Pesticides in Developing Countries 1
    The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechani- cal, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. © FAO 1996 iii Foreword These guidelines have been prepared jointly by the Food and Agriculture Organiza- tion of the United Nations (FAO), the United Nations Environment Programme (UNEP) and the World Health Organization (WHO). The technical information and recommendations presented in these guidelines have been approved by a panel of experts nominated by the three organizations. The guidelines are published by FAO under project GCP/INT/572/NET: “Prevention and Disposal of Unwanted Pesticide Stocks in Africa and the Near East”, funded by the government of the Netherlands. The guidelines are considered generally applicable and of interest to many countries, aid agencies and the pesticide industry. New disposal methods are continually being developed. The intention is to revise these guidelines or to issue addenda when important new disposal methods become available that can be used safely in developing countries and are cost-effective.
    [Show full text]
  • INCINER8 Waste Incineration Mobile Incinerators
    INCINER8 Waste Incineration Mobile Incinerators Animal & Waste Incinerators We can now offer our range of incinerators exclusively throughout Europe and the rest of the world through our dealer network. Our range of units are fully CE certified, ensuring that we meet the highest standards in safety and construction. The mobile incinerator range of are ideal for shared facilities or remote places. Mobile Incinerators Our latest range of mobile units lend themselves to a variety of uses, whether it is for shared facilities, camps, farms or even for disease control (Avian Influenza) in remote areas. One of the unique features of this range is the natural secondary burn characteristics of the primary chamber. The design of this model ensures extra air is drawn into the main chamber aiding primary combustion to ensure the efficient disposal of waste or carcasses at minimum cost. These units are the highest standards for waste disposal, and benefit from being extremely durable for a long working life. Mobile A850 KEY FEATURES Ease of Use • Galvanised twin axle trailer with ramp Auto ignition. No pilots to light. Set the • Integral fuel tank timer and walk away. • Diesel generator set Built-in skid facilitates placement • Low running and maintenance costs • Fully Automatic and simple to operate Fuel Efficiency control panel Rapid incineration means low fuel • Incineration Temperatures in Excess of consumption. 1300 degrees C Higher burn rate than smaller models. • Dense Refractory Concrete Lining Rated Thick refractory lining in main chamber to 1600 degrees C retains heat, increasing efficiency. • Solid Hearth to Allow Maximum Burnout • Top Opening Lid For Easy Loading Quality Built to Last • Stainless Steel Flue as standard Heat resistant 5mm steel.
    [Show full text]
  • What's in Our Gasoline Is Killing Us Mobile Source Air Toxics (Msats)
    ETHYLBENZENE What’s in our gasoline is killing us Mobile Source Air Toxics (MSATs) and the Threat to Public Health A Fact Book from In cooperation with DEAR READER: Today’s gasoline additives share the same storyline and shameless history of deceit with lead (i.e., a now banned additive to gasoline1), tobacco and #Dieselgate. This Fact Book, What’s in Our Gasoline is Killing Us: Mobile Source Air Toxics (MSATs) and the Threat to Public Health, is intended to educate and inform the reader that the public has been victim to 25 years of exposure to mobile source air toxics (MSATs) since the phase out of lead in gasoline, only to be replaced by even more dangerous additives. We cannot allow the tobacco/lead/gasoline history to continue without toxic and carcinogenic aromatic compounds being properly regulated. Popular petroleum-based additives used to increase octane include benzene, toluene, xylene and several derivatives of benzene referred to as BTX or BTEX. These comprise almost half the aromatic compounds in gasoline and are classified as known, probable or possible carcinogens. These various forms of benzene are present both in volume in the fuels as well as being created through the combustion of all aromatics. We believe there is a demonstrated history of private interest manipulating government responsibility to protect the public interest–with personal health left hanging in the balance. The American Petroleum Institute (API) stated in 1948 that “it is generally “There is no safe exposure level to considered that the only absolutely safe concentration for benzene is zero.”3 benzene; even tiny amounts can Despite the clear and present danger of benzene, it was not until the 1990 Clean Air Act cause harm.
    [Show full text]
  • Vertac Dioxin Waste Disposal Options
    VERTAC DIOXIN WASTE DISPOSAL OPTIONS Site History The Vertac Chemical Corporation, Jacksonville, Arkansas, plant has been the continuing object of EPA scrutiny since dioxin-contaminated wastes were found there in 1979. Because of the extremely toxic nature of these wastes, a suit was filed by the United States and the Arkansas Department of Pollution Control and Ecology against Vertac and its predecessor. Hercules, Incorporated, for injunctive relief to clean up the facility. One of the problems at the facility involved the disposal of approximately 4,000 drums containing 2,4,5-T wastes. These wastes were highly contaminated with tetrachlorodibenzo-p-dioxin (TCDD), one of the most toxic man-made substances known. In 1982 a Consent Decree was entered in the Vertac case. Part of this Consent Decree required Vertac to submit and implement a waste management C\J plan to dispose of the containerized waste on site. r<^ 0 Prior to entry of the Consent Decree, EPA was concerned that these wastes^ might be disposed of in an unregulated land disposal facility. As a result, a^ rule was promulgated under Section 6(a) of the Toxic Substances Control Act. This so called "Vertac Rule" prohibited off-site disposal of the 2,4,5-T waste or other dioxin contaminated waste. Vertac was required to store the waste until an acceptable disposal method could be found. The acceptable method for dioxin disposal was promulgated on January 14, 1985, as part of the new Dioxin Listing Rule, a regulation under the Resource Conservation and Recovery Act (RCRA). This rule allows disposal of some dioxin only at facilities with a RCRA permit, or by incineration or thermal treatment at facilities which have interim status under RCRA and have received, a special certification to dispose of dioxin waste from EPA.
    [Show full text]
  • Re: Final Record of Decision OU1 Former Nebraska Ordnance Plant Site
    2023291 Final Record of Decision Operable Unit 1 Former Nebraska Ordnance Plant Site Mead, Nebraska U.S. Environmental Protection Agency Region VII Kansas City, Kansas Department of the Army U.S. Army Engineer District Kansas City Corps of Engineers Kansas City, Missouri oo August 1995 •-* cL i" OU 1 Record of Decision/Responsiveness Summary Fanner Nebraska Ordnance Plant TABLE OF CONTENTS Chapter Page 1.0 DECLARATION ...................................... 1 2.0 DECISION SUMMARY .................................. 5 2.1 SITE NAME, LOCATION, AND DESCRIPTION ............. 5 2.2 SITE HISTORY AND PREVIOUS INVESTIGATIONS .......... 6 2.2.1 Site History ............................... 6 2.2.2 Previous Investigations ......................... 7 2.2.3 Summary of OU 1 RI Results .................... 8 2.3 COMMUNITY PARTICIPATION ....................... 9 2.4 SCOPE AND ROLE OF OPERABLE UNIT 1 REMEDIAL ACTION WITHIN SITE STRATEGY .......................... 11 2.5 SUMMARY OF SITE CHARACTERISTICS ............... 12 2.6 REMOVAL ACTIONS ............................. 12 2.7 SUMMARY OF SITE RISKS ......................... 13 2.7.1 Potential Human Health Risks ................... 13 2.7.2 Potential Environmental Risks ................... 18 2.8 SUMMARY OF ALTERNATIVES ...................... 18 2.8.1 Alternative 1 - No Action ...................... 19 2.8.2 Alternative 2 - Biological Treatment ............... 19 2.8.3 Alternative 3 - Rotary Kiln Incineration ............. 20 2.8.4 Alternative 4 - On-Site Landfill .................. 21 2.8.5 Alternative 5 - Off-Site Landfill .................. 21 2.9 TREATABILITY STUDIES .......................... 22 2.10 SUMMARY OF COMPARATIVE ANALYSIS OF ALTERNATIVES 22 2.10.1 Introduction .............................. 22 2.10.2 Comparison of Alternatives ..................... 23 2.10.3 Summary ................................ 27 2.11 THE SELECTED REMEDIAL ACTION .................. 28 2.12 STATUTORY DETERMINATIONS ..................... 28 2.12.1 Protection of Human Health and the Environment ......
    [Show full text]
  • Numerical Investigation of a Portable Incinerator: a Parametric Study
    processes Article Numerical Investigation of a Portable Incinerator: A Parametric Study Mohsen Saffari Pour 1,2 , Ali Hakkaki-Fard 1,* and Bahar Firoozabadi 1 1 Department of Mechanical Engineering, Sharif University of Technology, Tehran 79417, Iran; [email protected] (M.S.P.); fi[email protected] (B.F.) 2 KTH Royal Institute of Technology, 114 28 Stockholm, Sweden * Correspondence: [email protected]; Tel.: +98-216-616-5525 Received: 18 June 2020; Accepted: 21 July 2020; Published: 2 August 2020 Abstract: The application of incinerators for the municipal solid waste (MSW) is growing due to the ability of such instruments to produce energy and, more specifically, reduce waste volume. In this paper, a numerical simulation of the combustion process with the help of the computational fluid dynamics (CFD) inside a portable (mobile) incinerator has been proposed. Such work is done to investigate the most critical parameters for a reliable design of a domestic portable incinerator, which is suitable for the Iranian food and waste culture. An old design of a simple incinerator has been used to apply the natural gas (NG), one of the available cheap fossil fuels in Iran. After that, the waste height, place of the primary burner, and the flow rate of the cooling air inside the incinerator, as the main parameters of the design, are investigated. A validation is also performed for the mesh quality test and the occurrence of the chemical reactions near the burner of the incinerator. Results proved that the numerical results have less than 5% error compared to the previous experimental and numerical approaches.
    [Show full text]
  • Report: 1973-06-30 (Part 2) Study Of
    Study of Abatement Methods and Meteorological Conditions for Optimum Dispersion of Particulates from Field Burning of Rice Straw Rice Straw Incinerator Evaluation ARB Project 1-102-1 University of California Davis, California Principal Investigators George E. Miller, Jr. John R. Goss June 30, 1973 Abstract The project was initiated in December, 1970, to determine the potentials of mobile incineration as a practical means of reducing particulate emissions from combustive disposal of rice field residues. Previous studies on inciner­ ators indicated improved combustion is possible under controlled conditions. Capacity, mobility, durability, economics, wild fire control and other pro­ blems existed. However, information on the state of the art was needed under California rice field conditions because of the continuing need to reduce all contributions to the statewide air pollution problem. An experimental mobile field sanitizer (incinerator} was transported from Oregon to California. Test runs and modifications were made on the unit for use on rice field residues in California in the fall of 1971 and spring of 1972. Tests were also conducted in barley fields during the spring and summer of 1972 on a mobile straw burner prototype developed by an inventor in California. Results of the tests of both units indicate that the state of the art is not sufficiently developed for use in rice field residue disposal. Projected overall costs of operation are not within the limits of economic feasibility at this time. Under reasonably good climatic conditions in California, well managed open field burns will have less particulate emissions than the incin­ erator tested. Under poor climatic conditions, the mobile incinerator cannot be operated in rice fields.
    [Show full text]
  • Emergency Carcass Management Desk Reference Guide (DRG)
    EMERGENCY CARCASS MANAGEMENT DESK REFERENCE GUIDE JUNE 2017 Contents Applicability Statement ..................................................................................................................................................I Acknowledgements .........................................................................................................................................................II USDA Response Process ................................................................................................................................................III SECTION 1: RESPONSE PROCESS Operations Procedures .............................................................................................................................................1-1 SECTION 2: DECISION TOOL Information Needed for Carcass Management Decisions ..............................................................................2-1 Definitions ...................................................................................................................................................................2-2 HPAI Carcass Management Decision Tool..........................................................................................................2-4 Carcass Management Decision Cycle ..................................................................................................................2-7 Carcass Management Options Checklist ............................................................................................................2-8
    [Show full text]