The Chick Embryo Amnion As an in Vitro Culture System for Ivf and Nt Embryos

Total Page:16

File Type:pdf, Size:1020Kb

The Chick Embryo Amnion As an in Vitro Culture System for Ivf and Nt Embryos Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2004 The chick mbre yo amnion as an in vitro culture system for IVF and NT embryos Tonya Renea Davidson Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Animal Sciences Commons Recommended Citation Davidson, Tonya Renea, "The chick mbre yo amnion as an in vitro culture system for IVF and NT embryos" (2004). LSU Doctoral Dissertations. 1280. https://digitalcommons.lsu.edu/gradschool_dissertations/1280 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE CHICK EMBRYO AMNION AS AN IN VITRO CULTURE SYSTEM FOR IVF AND NT EMBRYOS A Dissertation Submitted to the Graduate Faculty of Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the Requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Animal and Dairy Sciences by Tonya Renea Davidson B.S., Oklahoma State University, 1997 M.S., Oklahoma State University, 2000 December 2004 ACKNOWLEDGEMENTS I would like to begin by dedicating this dissertation to my mom, Linda Millspaugh. Mom, you have always been my role model, my support system and my foundation. You taught me that I could be whatever I wanted to be, and you had faith in me even when I didn’t have faith in myself. I am so proud to be your daughter. I would also like to dedicate this dissertation to my brother, Casey Millspaugh. Thank you Casey, for always believing in me and looking up to me. That has been more encouragement than you will ever know. I would like to express me sincere gratitude to my major professor, Dr. Robert Godke. Thank you for allowing me to pursue my Ph.D. at LSU. You have provided me with a firm scientific background, but more importantly, you have encouraged me to stand up for that which I believe. You have been a wonderful mentor and I appreciate all that you have done for me. To Dr. Leibo, Dr. Lynn and Dr. Williams. Thank you so much for serving on my committee, and for all of the assistance you have provided to make my time at LSU such a success. It has been a great pleasure working with all of you. I have learned so much from each of you and I am a better scientist for having known you. To Trey Chapman, Kyle Hebert, Laurie Henderson, Andrea Huval, Angela “Beanie” Klumpp, Luke Lenard, Alison Mosian, Kyle Hebert, Dr. Masao Murakami and James “Par” Sterling. Thank you for all that you have done for me. You have each touched my life in a very special way and I will always remember you. To Kristy Bruce. Thank you for saying “Hello” that first day of class. Since that time, you have been a wonderful source of entertainment and support, but more importantly, you have been an exceptional friend. I am so much better for having known you. And finally, to Edward Ferguson. My words can not adequately express how I truly feel for you. You are my best friend and the love of my life. You have never left my side, no matter how hard things got, and for that I will always love you. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................. ii LIST OF TABLES..............................................................................................................vi LIST OF FIGURES..........................................................................................................viii ABBREVIATIONS USED IN THE DISSERTATION..........................................................xi ABSTRACT......................................................................................................................xii CHAPTER I. INTRODUCTION .................................................................................... 1 CHAPTER II. LITERATURE REVIEW .......................................................................... 3 In Vitro Production of Embryos.............................................................................. 3 Production of Bovine Embryos by In Vitro Fertilization........................... 3 Production of Bovine Embryos by Nuclear Transfer............................... 4 In Vitro Embryo Culture .......................................................................... 6 Influence of In Vitro Production on Embryo Development................................... 11 Embryo Development Rates................................................................. 11 Embryo Morphology ............................................................................. 12 Pregnancy and Calving Rates .............................................................. 14 Large Offspring Syndrome and Associated Disorders.......................... 16 Apoptosis ............................................................................................. 18 Chick Embryo Co-Culture.................................................................................... 24 Biochemistry of the Avian Egg.............................................................. 24 Early Use of Chick Embryo Extracts in Mammalian Cell Culture ......... 25 In Vitro Culture of Chick Embryos ........................................................ 26 Chick Embryo Co-Culture..................................................................... 26 CHAPTER III. CULTURING IN VITRO PRODUCED BOVINE EMBRYOS IN THE AMNIOTIC CAVITY OF THE DEVELOPING CHICKEN EMBYRO...... 28 Introduction.......................................................................................................... 28 Materials and Methods........................................................................................ 29 Experimental Design ............................................................................ 29 Experimental Methods.......................................................................... 31 Statistical Analysis................................................................................ 36 Results ................................................................................................................ 36 Discussion........................................................................................................... 41 CHAPTER IV. USE OF THE AMNIOTIC CAVITY OF THE DEVELOPING CHICK EMBRYO FOR CULTURING BOVINE 8-CELL EMBRYOS DERIVED FROM SOMATIC CELL NUCLEAR TRANSFER ................................. 46 Introduction ......................................................................................................... 46 Materials and Methods........................................................................................ 47 Experimental Design ............................................................................ 47 Experimental Methods.......................................................................... 49 iii Statistical Analysis................................................................................ 53 Results ................................................................................................................ 53 Discussion........................................................................................................... 54 CHAPTER V. THE EFFECT OF ALTERATIONS IN THE NORMAL ANGIOGENIC PATTERN OF THE CHICK CHORIOALLANTOIC MEMBRANE ON BOVINE EMBRYO DEVELOPMENT AFTER CHICK EMBRYO CO-CULTURE...................................................................................... 60 Introduction ..................................................................................................... 60 Materials and Methods .................................................................................... 61 Experimental Design ............................................................................ 61 Experimental Methods.......................................................................... 63 Statistical Analysis................................................................................ 69 Results............................................................................................................ 69 Discussion....................................................................................................... 78 CHAPTER VI. DEVELOPMENT OF 8-CELL BOVINE EMBRYOS IN CULTURE MEDIUM SUPPLEMENTED WITH CHICK AMNIOTIC FLUID (CAF).. 80 Introduction...................................................................................................... 80 Materials and Methods.................................................................................... 81 Experimental Design ............................................................................ 81 Experimental Methods.......................................................................... 81 Statistical Analysis................................................................................ 85 Results ............................................................................................................ 86 Discussion....................................................................................................... 86 CHAPTER VII. ESTABLISHMENT AND CULTURE OF CELLS DERIVED FROM DAY-6 CHICK EMBRYOS.................................................................... 93 Introduction.........................................................................................................
Recommended publications
  • PRG2 and AQPEP Are Misexpressed in Fetal Membranes in Placenta Previa and Percreta Elisa T. Zhang1, Roberta L. Hannibal1,6, Keyl
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.14.248807; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 PRG2 and AQPEP are misexpressed in fetal membranes in placenta previa and percreta 2 3 Elisa T. Zhang1, Roberta L. Hannibal1,6, Keyla M. Badillo Rivera1,7, Janet H.T. Song1,8, Kelly 4 McGowan1, Xiaowei Zhu1,2, Gudrun Meinhardt3, Martin Knöfler3, Jürgen Pollheimer3, Alexander 5 E. Urban1,2, Ann K. Folkins4, Deirdre J. Lyell5, Julie C. Baker1,5* 6 7 1DepartMent of Genetics, Stanford University School of Medicine, Stanford, California, United 8 States of AMerica. 9 2DepartMent of Psychiatry and Behavioral Sciences, Stanford University School of 10 Medicine, Stanford, California, United States of AMerica. 11 3DepartMent of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of 12 Vienna, Vienna, Austria. 13 4DepartMent of Pathology, Stanford University School of Medicine, Stanford, California, United 14 States of AMerica. 15 5DepartMent of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, 16 California, United States of AMerica. 17 6Present address: Second GenoMe, Inc., Brisbane, California, United States of AMerica. 18 7Present address: Eversana Consulting, South San Francisco, California, United States of 19 AMerica. 20 8Present address: Division of Genetics and GenoMics, Boston Children’s Hospital, Harvard 21 Medical School, Boston, Massachusetts, United States of AMerica. 22 23 *Correspondence: [email protected] 24 300 Pasteur Dr.
    [Show full text]
  • Human Pluripotent Stem Cells As a Model of Trophoblast Differentiation in Both Normal Development and Disease
    Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease Mariko Horiia,b,1, Yingchun Lia,b,1, Anna K. Wakelanda,b,1, Donald P. Pizzoa, Katharine K. Nelsona,b, Karen Sabatinib,c, Louise Chang Laurentb,c, Ying Liud,e,f, and Mana M. Parasta,b,2 aDepartment of Pathology, University of California, San Diego, La Jolla, CA 92093; bSanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093; cDepartment of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093; dDepartment of Neurosurgery, Center for Stem Cell and Regenerative Medicine, University of Texas Health Sciences Center, Houston, TX 77030; eThe Senator Lloyd and B. A. Bentsen Center for Stroke Research, University of Texas Health Sciences Center, Houston, TX 77030; and fThe Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Sciences Center, Houston, TX 77030 Edited by R. Michael Roberts, University of Missouri–Columbia, Columbia, MO, and approved May 25, 2016 (received for review March 24, 2016) Trophoblast is the primary epithelial cell type in the placenta, a Elf5 (Ets domain transcription factor) and Eomes (Eomeso- transient organ required for proper fetal growth and develop- dermin), also have been shown to be required for maintenance of ment. Different trophoblast subtypes are responsible for gas/nutrient the TSC fate in the mouse (8, 9). exchange (syncytiotrophoblasts, STBs) and invasion and maternal Significantly less is known about TE specification and the TSC vascular remodeling (extravillous trophoblasts, EVTs). Studies of niche in the human embryo (10, 11).
    [Show full text]
  • Self-Organized Amniogenesis by Human Pluripotent Stem Cells in a Biomimetic Implantation-Like Niche
    LETTERS PUBLISHED ONLINE: 12 DECEMBER 2016 | DOI: 10.1038/NMAT4829 Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche Yue Shao1†, Kenichiro Taniguchi2†, Katherine Gurdziel3, Ryan F. Townshend2, Xufeng Xue1, Koh Meng Aw Yong1, Jianming Sang1, Jason R. Spence2, Deborah L. Gumucio2* and Jianping Fu1,2,4* Amniogenesis—the development of amnion—is a critical factors seen in the in vivo amniogenic niche: a three-dimensional developmental milestone for early human embryogenesis (3D) extracellular matrix (ECM) that is provided by the basement and successful pregnancy1,2. However, human amniogenesis membrane surrounding the epiblast during implantation11; and a is poorly understood due to limited accessibility to peri- soft tissue bed provided by the uterine wall and trophoblast to implantation embryos and a lack of in vitro models. Here support the developing amnion (Fig. 1a,b). Since amniogenesis ini- we report an ecient biomaterial system to generate human tiates from the expanding pluripotent epiblast, we utilized mTeSR1 amnion-like tissue in vitro through self-organized development medium and basement membrane matrix (Geltrex) to render the of human pluripotent stem cells (hPSCs) in a bioengineered culture permissive for pluripotency maintenance. niche mimicking the in vivo implantation environment. We In this culture system, H9 human embryonic stem cells (hESCs) show that biophysical niche factors act as a switch to toggle were plated as single cells at 30,000 cells cm−2 onto a thick, hPSC self-renewal versus amniogenesis under self-renewal- soft gel bed of Geltrex (with thickness ≥100 µm, bulk Young's permissive biochemical conditions. We identify a unique modulus ∼900 Pa, coated on a glass coverslip), in mTeSR1 medium molecular signature of hPSC-derived amnion-like cells and supplemented with the ROCK inhibitor Y27632 (Fig.
    [Show full text]
  • BMP-Treated Human Embryonic Stem Cells Transcriptionally Resemble Amnion Cells in the Monkey Embryo
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.21.427650; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. BMP-treated human embryonic stem cells transcriptionally resemble amnion cells in the monkey embryo Sapna Chhabra1,2,3, Aryeh Warmflash2,4* 1Systems Synthetic and Physical Biology graduate program, 2Department of Biosciences, 4Department of Bioengineering, Rice University, Houston, TX 77005 3Present address: Developmental Biology Unit, EMBL Heidelberg. *Correspondence to AW: [email protected] Abstract Human embryonic stem cells (hESCs) possess an immense potential to generate clinically relevant cell types and unveil mechanisms underlying early human development. However, using hESCs for discovery or translation requires accurately identifying differentiated cell types through comparison with their in vivo counterparts. Here, we set out to determine the identity of much debated BMP-treated hESCs by comparing their transcriptome to the recently published single cell transcriptomes of early human embryos in the study Xiang et al 2019. Our analyses reveal several discrepancies in the published human embryo dataset, including misclassification of putative amnion, intermediate and inner cell mass cells. These misclassifications primarily resulted from similarities in pseudogene expression, highlighting the need to carefully consider gene lists when making comparisons between cell types. In the absence of a relevant human dataset, we utilized the recently published single cell transcriptome of the early post implantation monkey embryo to discern the identity of BMP-treated hESCs.
    [Show full text]
  • The Science of Amnioexcite™ Three Layer Placental Membrane Allograft
    The Science of AmnioExcite™ Three Layer Placental Membrane Allograft REV. 10-2020 The Science of AmnioExcite™ Placental Membrane Allograft AmnioExcite™ is a full-thickness decellularized placental membrane. AmnioExcite™ is a lyophilized, full-thickness placental membrane allograft decellularized with LifeNet Health’s proprietary Matracell® process and patent pending technology and intended for homologous use as a barrier membrane.(1) Inclusion of the intact amniotic and chorionic membranes, as well as the trophoblast layer, makes it thicker than most available amniotic-only or amniotic-chorionic allografts, and provides a robust protective covering while also delivering superior handling. AmnioExcite™ retains the placental membrane’s naturally occurring growth factors, cytokines, protease inhibitors, and extracellular matrix components, such as proteoglycans, collagen and fibronectin(2) In vitro studies have shown that these endogenous factors are capable of inducing cellular proliferation and migration, mitigating inflammation, and inhibiting protein degradation(3-5) STRUCTURE OF THE THREE LAYER PLACENTAL MEMBRANE AMNIOTIC MEMBRANE CHORIONIC MEMBRANE TROPHOBLAST LAYER The placental membrane is comprised of the amnion and chorion (6). The amnion, also called amniotic membrane (AM) has five layers, including the epithelium, basement membrane, compact layer, fibroblast layer, and the spongy layer(6), which provide important extracellular membrane components, as well as a wide variety of growth factors, cytokines, and other proteins.(7) While these characteristics are important, the AM by itself lacks substantial structure for providing a protective covering and contains only a small portion of the biological factors found in the full-thickness placental membrane. AM-only grafts can also be difficult to apply and may migrate away from the intended site of application.(8) The chorion is comprised of four layers, including the cellular layer, reticular layer, the pseudobasement membrane and the trophoblast layer (TL) (6).
    [Show full text]
  • NUMB and Syncytiotrophoblast Development and Function: Investigation Using Bewo Choriocarcinoma Cells by Julie Carey This Thesis
    NUMB and Syncytiotrophoblast Development and Function: Investigation Using BeWo Choriocarcinoma Cells By Julie Carey This thesis is submitted as a partial fulfillment of the M.Sc. program in Cellular and Molecular Medicine Faculty of Medicine, University of Ottawa May, 2012 © Julie Carey, Ottawa, Canada, 2012 ABSTRACT The role of NUMB, a protein important for cellular differentiation and endocytosis in non-placental cells, was investigated in syncytiotrophoblast development and function in the human placenta. The BeWo choriocarcinoma cell line was used as a model for villous cytotrophoblast cells and syncytiotrophoblast to investigate NUMB’s involvement in differentiation and epidermal growth factor receptor (EGFR) endocytosis. NUMB isoforms 1 and 3 were found to be the predominant isoforms and were upregulated following forskolin-induced differentiation. Overexpression of NUMB isoforms 1 and 3 did not mediate differentiation or EGFR signaling. Immunofluorescence analysis revealed that NUMB colocalized with EGFR at perinuclear late endosomes and lysosomes following EGF stimulation. We have demonstrated for the first time that NUMB isoforms 1 and 3 are expressed in BeWo cells, are upregulated in forskolin- differentiated BeWo cells and are involved in ligand-dependent EGFR endocytosis in BeWo cells. ii TABLE OF CONTENTS ABSTRACT …………………………………………………………………………….. ii LIST OF TABLES ……………………………………………………………………... v LIST OF FIGURES ………………………………………………………………...…. vi LIST OF ABBREVIATIONS ………………………………………………...……… vii ACKNOWLEDGEMENTS ……………………………………………...…..……….
    [Show full text]
  • From Trophoblast to Human Placenta
    From Trophoblast to Human Placenta (from The Encyclopedia of Reproduction) Harvey J. Kliman, M.D., Ph.D. Yale University School of Medicine I. Introduction II. Formation of the placenta III. Structure and function of the placenta IV. Complications of pregnancy related to trophoblasts and the placenta Glossary amnion the inner layer of the external membranes in direct contact with the amnionic fluid. chorion the outer layer of the external membranes composed of trophoblasts and extracellular matrix in direct contact with the uterus. chorionic plate the connective tissue that separates the amnionic fluid from the maternal blood on the fetal surface of the placenta. chorionic villous the final ramification of the fetal circulation within the placenta. cytotrophoblast a mononuclear cell which is the precursor cell of all other trophoblasts. decidua the transformed endometrium of pregnancy intervillous space the space in between the chorionic villi where the maternal blood circulates within the placenta invasive trophoblast the population of trophoblasts that leave the placenta, infiltrates the endo– and myometrium and penetrates the maternal spiral arteries, transforming them into low capacitance blood channels. Sunday, October 29, 2006 Page 1 of 19 From Trophoblasts to Human Placenta Harvey Kliman junctional trophoblast the specialized trophoblast that keep the placenta and external membranes attached to the uterus. spiral arteries the maternal arteries that travel through the myo– and endometrium which deliver blood to the placenta. syncytiotrophoblast the multinucleated trophoblast that forms the outer layer of the chorionic villi responsible for nutrient exchange and hormone production. I. Introduction The precursor cells of the human placenta—the trophoblasts—first appear four days after fertilization as the outer layer of cells of the blastocyst.
    [Show full text]
  • Abundant Expression of Parathyroid Hormone-Related Protein in Human Amnion and Its Association with Labor (Pregnancy/Myometrium/Decidua/Placenta/Amniotic Fluid) J
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 8384-8388, September 1992 Physiology Abundant expression of parathyroid hormone-related protein in human amnion and its association with labor (pregnancy/myometrium/decidua/placenta/amniotic fluid) J. E. FERGUSON II*, JANET V. GORMAN*, DAVID E. BRUNS*, ELEANOR C. WEIRt, WILLIAM J. BURTISt, T. J. MARTINt, AND M. ELIZABETH BRUNS*§ *Departments of Obstetrics & Gynecology and Pathology, University of Virginia Medical School, Charlottesville, VA 22908; tDepartments of Medicine and Comparative Medicine, Yale University Medical School, New Haven, CT 06510; and tDepartment of Medicine, University of Melbourne, Melbourne 3065 Australia Communicated by Robert H. Wasserman, June 1, 1992 (receivedfor review December 12, 1991) ABSTRACT In animal models, parathyroid hormone- and reaches a peak 48 hr prior to parturition (4). A peak in related protein (PTHrP) increases placental calcium transport peptide content has also been demonstrated by biological and and inhibits contraction ofuterine smooth muscle. The present immunological assays. As PTHrP and PTH have been shown studies were undertaken to characterize the expression of to be vasodilators and to relax smooth muscles, including PTHrP in human uteroplacental tissues. PTHrP mRNA was uterine smooth muscle (7-9), PTHrP may play a role in (i) identified by Northern analysis as a single species (:1.8 vasodilation in the uteroplacental unit, (ii) expansion of the kilobases) in human amnion, chorion, placenta, decidua, and uterus to accommodate fetal growth, (iii) maintenance ofthe myometrium. The most abundant signal was seen in amnion, pregnant uterus in a quiescent, relaxed state prior to the onset where it was 10-400 times that in the other uteroplacental of labor, and/or (iv) relaxation of the uterine cervix to allow tissues.
    [Show full text]
  • Management of Spontaneous Rupture of the Amnion with an Intact Chorion Jenny A
    Jacob et al. Obstet Gynecol cases Rev 2015, 2:5 ISSN: 2377-9004 Obstetrics and Gynaecology Cases - Reviews Case Report: Open Access Management of Spontaneous Rupture of the Amnion with an Intact Chorion Jenny A. Jacob1, Norman A. Ginsberg2, Lee P. Shulman2* and Leeber Cohen2 1Albert-Ludwigs-University School of Medicine, Germany 2Northwestern Feinberg School of Medicine, USA *Corresponding author: Prof. Lee P. Shulman MD, 250 E. Superior Street, Prentice Women’s Hospital, Room 05- 2174, Chicago, IL, USA 60611, Tel: 1.312.730.8694, Email: [email protected] weeks‘gestation with an AFI of 1cm. The patient reported no history Abstract of vaginal amniotic fluid leakage. Speculum examination showed Idiopathic severe preterm oligohydamnios as a result of spontaneous no evidence of vaginal pooling. The fetal kidneys were visualized at rupture of the amnion with an intact chorion is a rare event with a the time of the ultrasound and were considered functioning since scarcity of reports found in the literature. We evaluated the impact the fetal bladder was visualized at the time of ultrasound. Chorionic of serial amnioinfusions on this unusual occurrence. This is a follow- villus sampling (CVS) was performed after the 18-week scan and up of a 37-year-old woman with idiopathic severe oligohydramnios diagnosed at 18 weeks of gestation. We performed five serial showed a normal 46,XX complement. amnioinfusions with the purpose of improving fetal lung maturity The patient was informed of the complications accompanied and to prevent Potter anomalad. At 31 weeks‘gestation the patient with oligohydramnios and was offered pregnancy termination.
    [Show full text]
  • The Placenta: Transcriptional, Epigenetic, and Physiological Integration During Development
    The placenta: transcriptional, epigenetic, and physiological integration during development Emin Maltepe, … , Anna I. Bakardjiev, Susan J. Fisher J Clin Invest. 2010;120(4):1016-1025. https://doi.org/10.1172/JCI41211. Review Series The placenta provides critical transport functions between the maternal and fetal circulations during intrauterine development. Formation of this interface relies on coordinated interactions among transcriptional, epigenetic, and environmental factors. Here we describe these mechanisms in the context of the differentiation of placental cells (trophoblasts) and synthesize current knowledge about how they interact to generate a functional placenta. Developing an understanding of these pathways contributes to an improvement of our models for studying trophoblast biology and sheds light on the etiology of pregnancy complications and the in utero programming of adult diseases. Find the latest version: https://jci.me/41211/pdf Review series The placenta: transcriptional, epigenetic, and physiological integration during development Emin Maltepe,1,2,3,4 Anna I. Bakardjiev,1,2,5 and Susan J. Fisher2,3,4,6,7 1Department of Pediatrics, 2Biomedical Sciences Program, 3Center for Reproductive Sciences and the Department of Obstetrics, Gynecology and Reproductive Sciences, 4Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, 5Program in Microbial Pathogenesis and Host Defense, 6Department of Anatomy, and 7Human Embryonic Stem Cell Program, University of California, San Francisco. The placenta provides critical transport functions between the maternal and fetal circulations during intrauterine development. Formation of this interface relies on coordinated interactions among transcriptional, epigenetic, and environmental factors. Here we describe these mechanisms in the context of the differentiation of placental cells (tro- phoblasts) and synthesize current knowledge about how they interact to generate a functional placenta.
    [Show full text]
  • Intrauterine Vertical Transmission of SARS‐Cov‐2
    Intrauterine vertical transmission of SARS-CoV-2: what we know so far Chen Wang1, Yi-Hua Zhou2*, Hui-Xia Yang1*, Liona C. Poon3 1Department of Obstetrics and Gynaecology of Peking University First Hospital, Beijing, China; 2Department of Laboratory Medicine and Infectious Diseases, Nanjing Drum Tower Hospital, China; 3Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR * Joint corresponding authors Correspondence to: Article Hui-Xia Yang: Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China (e-mail: [email protected]) Yi-Hua Zhou: Department of Laboratory Medicine and Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing 210008, China (e-mail: [email protected]) Short title: Vertical transmission of SARS-CoV-2 Keywords: COVID-19, SARS-CoV-2, vertical transmission, intrauterine infection, congenital infection Accepted This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/uog.22045 This article is protected by copyright. All rights reserved. The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been rapidly spreading worldwide and is now a global pandemic. One of the major concerns is whether SARS-CoV-2 can be vertically transmitted to fetuses, thus causing congenital infection. The most convincing evidence of intrauterine transmission of COVID-19 would be to confirm the replication of SARS-CoV-2 in fetal pulmonary tissues, which is technically almost infeasible.
    [Show full text]
  • Mechanisms of Human Embryo Development: from Cell Fate to Tissue Shape and Back Marta N
    © 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev190629. doi:10.1242/dev.190629 REVIEW Mechanisms of human embryo development: from cell fate to tissue shape and back Marta N. Shahbazi* ABSTRACT activated ion channels (Coste et al., 2010), mechanosensitive Gene regulatory networks and tissue morphogenetic events drive the transcription factors (Dupont et al., 2011) or directly by the nucleus emergence of shape and function: the pillars of embryo development. (Kirby and Lammerding, 2018). Once sensed, mechanical cues – Although model systems offer a window into the molecular biology of are transduced into biochemical signals a process known as cell fate and tissue shape, mechanistic studies of our own mechanotransduction (Chan et al., 2017). The conversion of development have so far been technically and ethically challenging. mechanical cues into biochemical signals leads to changes in However, recent technical developments provide the tools to gene expression and protein activity that control cell behaviour, cell describe, manipulate and mimic human embryos in a dish, thus fate specification and tissue patterning. opening a new avenue to exploring human development. Here, I Current consensus focuses on two main ideas to explain the discuss the evidence that supports a role for the crosstalk between emergence of tissue patterns in response to morphogen (see Glossary, ‘ ’ cell fate and tissue shape during early human embryogenesis. This is Box1)signals.Inthe positional information model (Wolpert, a critical developmental period, when the body plan is laid out and 1969), the concentration of a morphogen serves as a coordinate of the many pregnancies fail. Dissecting the basic mechanisms that position of a cell within a tissue.
    [Show full text]