Management of Spontaneous Rupture of the Amnion with an Intact Chorion Jenny A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PRG2 and AQPEP Are Misexpressed in Fetal Membranes in Placenta Previa and Percreta Elisa T. Zhang1, Roberta L. Hannibal1,6, Keyl
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.14.248807; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 PRG2 and AQPEP are misexpressed in fetal membranes in placenta previa and percreta 2 3 Elisa T. Zhang1, Roberta L. Hannibal1,6, Keyla M. Badillo Rivera1,7, Janet H.T. Song1,8, Kelly 4 McGowan1, Xiaowei Zhu1,2, Gudrun Meinhardt3, Martin Knöfler3, Jürgen Pollheimer3, Alexander 5 E. Urban1,2, Ann K. Folkins4, Deirdre J. Lyell5, Julie C. Baker1,5* 6 7 1DepartMent of Genetics, Stanford University School of Medicine, Stanford, California, United 8 States of AMerica. 9 2DepartMent of Psychiatry and Behavioral Sciences, Stanford University School of 10 Medicine, Stanford, California, United States of AMerica. 11 3DepartMent of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of 12 Vienna, Vienna, Austria. 13 4DepartMent of Pathology, Stanford University School of Medicine, Stanford, California, United 14 States of AMerica. 15 5DepartMent of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, 16 California, United States of AMerica. 17 6Present address: Second GenoMe, Inc., Brisbane, California, United States of AMerica. 18 7Present address: Eversana Consulting, South San Francisco, California, United States of 19 AMerica. 20 8Present address: Division of Genetics and GenoMics, Boston Children’s Hospital, Harvard 21 Medical School, Boston, Massachusetts, United States of AMerica. 22 23 *Correspondence: [email protected] 24 300 Pasteur Dr. -
Self-Organized Amniogenesis by Human Pluripotent Stem Cells in a Biomimetic Implantation-Like Niche
LETTERS PUBLISHED ONLINE: 12 DECEMBER 2016 | DOI: 10.1038/NMAT4829 Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche Yue Shao1†, Kenichiro Taniguchi2†, Katherine Gurdziel3, Ryan F. Townshend2, Xufeng Xue1, Koh Meng Aw Yong1, Jianming Sang1, Jason R. Spence2, Deborah L. Gumucio2* and Jianping Fu1,2,4* Amniogenesis—the development of amnion—is a critical factors seen in the in vivo amniogenic niche: a three-dimensional developmental milestone for early human embryogenesis (3D) extracellular matrix (ECM) that is provided by the basement and successful pregnancy1,2. However, human amniogenesis membrane surrounding the epiblast during implantation11; and a is poorly understood due to limited accessibility to peri- soft tissue bed provided by the uterine wall and trophoblast to implantation embryos and a lack of in vitro models. Here support the developing amnion (Fig. 1a,b). Since amniogenesis ini- we report an ecient biomaterial system to generate human tiates from the expanding pluripotent epiblast, we utilized mTeSR1 amnion-like tissue in vitro through self-organized development medium and basement membrane matrix (Geltrex) to render the of human pluripotent stem cells (hPSCs) in a bioengineered culture permissive for pluripotency maintenance. niche mimicking the in vivo implantation environment. We In this culture system, H9 human embryonic stem cells (hESCs) show that biophysical niche factors act as a switch to toggle were plated as single cells at 30,000 cells cm−2 onto a thick, hPSC self-renewal versus amniogenesis under self-renewal- soft gel bed of Geltrex (with thickness ≥100 µm, bulk Young's permissive biochemical conditions. We identify a unique modulus ∼900 Pa, coated on a glass coverslip), in mTeSR1 medium molecular signature of hPSC-derived amnion-like cells and supplemented with the ROCK inhibitor Y27632 (Fig. -
BMP-Treated Human Embryonic Stem Cells Transcriptionally Resemble Amnion Cells in the Monkey Embryo
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.21.427650; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. BMP-treated human embryonic stem cells transcriptionally resemble amnion cells in the monkey embryo Sapna Chhabra1,2,3, Aryeh Warmflash2,4* 1Systems Synthetic and Physical Biology graduate program, 2Department of Biosciences, 4Department of Bioengineering, Rice University, Houston, TX 77005 3Present address: Developmental Biology Unit, EMBL Heidelberg. *Correspondence to AW: [email protected] Abstract Human embryonic stem cells (hESCs) possess an immense potential to generate clinically relevant cell types and unveil mechanisms underlying early human development. However, using hESCs for discovery or translation requires accurately identifying differentiated cell types through comparison with their in vivo counterparts. Here, we set out to determine the identity of much debated BMP-treated hESCs by comparing their transcriptome to the recently published single cell transcriptomes of early human embryos in the study Xiang et al 2019. Our analyses reveal several discrepancies in the published human embryo dataset, including misclassification of putative amnion, intermediate and inner cell mass cells. These misclassifications primarily resulted from similarities in pseudogene expression, highlighting the need to carefully consider gene lists when making comparisons between cell types. In the absence of a relevant human dataset, we utilized the recently published single cell transcriptome of the early post implantation monkey embryo to discern the identity of BMP-treated hESCs. -
The Science of Amnioexcite™ Three Layer Placental Membrane Allograft
The Science of AmnioExcite™ Three Layer Placental Membrane Allograft REV. 10-2020 The Science of AmnioExcite™ Placental Membrane Allograft AmnioExcite™ is a full-thickness decellularized placental membrane. AmnioExcite™ is a lyophilized, full-thickness placental membrane allograft decellularized with LifeNet Health’s proprietary Matracell® process and patent pending technology and intended for homologous use as a barrier membrane.(1) Inclusion of the intact amniotic and chorionic membranes, as well as the trophoblast layer, makes it thicker than most available amniotic-only or amniotic-chorionic allografts, and provides a robust protective covering while also delivering superior handling. AmnioExcite™ retains the placental membrane’s naturally occurring growth factors, cytokines, protease inhibitors, and extracellular matrix components, such as proteoglycans, collagen and fibronectin(2) In vitro studies have shown that these endogenous factors are capable of inducing cellular proliferation and migration, mitigating inflammation, and inhibiting protein degradation(3-5) STRUCTURE OF THE THREE LAYER PLACENTAL MEMBRANE AMNIOTIC MEMBRANE CHORIONIC MEMBRANE TROPHOBLAST LAYER The placental membrane is comprised of the amnion and chorion (6). The amnion, also called amniotic membrane (AM) has five layers, including the epithelium, basement membrane, compact layer, fibroblast layer, and the spongy layer(6), which provide important extracellular membrane components, as well as a wide variety of growth factors, cytokines, and other proteins.(7) While these characteristics are important, the AM by itself lacks substantial structure for providing a protective covering and contains only a small portion of the biological factors found in the full-thickness placental membrane. AM-only grafts can also be difficult to apply and may migrate away from the intended site of application.(8) The chorion is comprised of four layers, including the cellular layer, reticular layer, the pseudobasement membrane and the trophoblast layer (TL) (6). -
Mid-Trimester Preterm Premature Rupture of Membranes (PPROM): Etiology, Diagnosis, Classification, International Recommendations of Treatment Options and Outcome
J. Perinat. Med. 2018; 46(5): 465–488 Review article Open Access Michael Tchirikov*, Natalia Schlabritz-Loutsevitch, James Maher, Jörg Buchmann, Yuri Naberezhnev, Andreas S. Winarno and Gregor Seliger Mid-trimester preterm premature rupture of membranes (PPROM): etiology, diagnosis, classification, international recommendations of treatment options and outcome DOI 10.1515/jpm-2017-0027 neonates delivered without antecedent PPROM. The “high Received January 23, 2017. Accepted May 19, 2017. Previously pub- PPROM” syndrome is defined as a defect of the chorio- lished online July 15, 2017. amniotic membranes, which is not located over the inter- nal cervical os. It may be associated with either a normal Abstract: Mid-trimester preterm premature rupture of mem- or reduced amount of amniotic fluid. It may explain why branes (PPROM), defined as rupture of fetal membranes sensitive biochemical tests such as the Amniosure (PAMG-1) prior to 28 weeks of gestation, complicates approximately or IGFBP-1/alpha fetoprotein test can have a positive result 0.4%–0.7% of all pregnancies. This condition is associ- without other signs of overt ROM such as fluid leakage with ated with a very high neonatal mortality rate as well as an Valsalva. The membrane defect following fetoscopy also increased risk of long- and short-term severe neonatal mor- fulfils the criteria for “high PPROM” syndrome. In some bidity. The causes of the mid-trimester PPROM are multi- cases, the rupture of only one membrane – either the cho- factorial. Altered membrane morphology including marked rionic or amniotic membrane, resulting in “pre-PPROM” swelling and disruption of the collagen network which is could precede “classic PPROM” or “high PPROM”. -
Chapter 12 Vaginal Breech Delivery
FOURTH EDITION OF THE ALARM INTERNATIONAL PROGRAM CHAPTER 12 VAGINAL BREECH DELIVERY Learning Objectives By the end of this chapter, the participant will: 1. List the selection criteria for an anticipated vaginal breech delivery. 2. Recall the appropriate steps and techniques for vaginal breech delivery. 3. Summarize the indications for and describe the procedure of external cephalic version (ECV). Definition When the buttocks or feet of the fetus enter the maternal pelvis before the head, the presentation is termed a breech presentation. Incidence Breech presentation affects 3% to 4% of all pregnant women reaching term; the earlier the gestation the higher the percentage of breech fetuses. Types of Breech Presentations Figure 1 - Frank breech Figure 2 - Complete breech Figure 3 - Footling breech In the frank breech, the legs may be extended against the trunk and the feet lying against the face. When the feet are alongside the buttocks in front of the abdomen, this is referred to as a complete breech. In the footling breech, one or both feet or knees may be prolapsed into the maternal vagina. Significance Breech presentation is associated with an increased frequency of perinatal mortality and morbidity due to prematurity, congenital anomalies (which occur in 6% of all breech presentations), and birth trauma and/or asphyxia. Vaginal Breech Delivery Chapter 12 – Page 1 FOURTH EDITION OF THE ALARM INTERNATIONAL PROGRAM External Cephalic Version External cephalic version (ECV) is a procedure in which a fetus is turned in utero by manipulation of the maternal abdomen from a non-cephalic to cephalic presentation. Diagnosis of non-vertex presentation Performing Leopold’s manoeuvres during each third trimester prenatal visit should enable the health care provider to make diagnosis in the majority of cases. -
Amnioinfusion in the Etiological Diagnosis and Therapeutics Of
14th World Congress in Fetal Medicine Amnioinfusion in the etiological diagnosis and therapeutics of oligohydramnios: 17 years of experience Borges-Costa S, Bernardo A, Santos A Prenatal Diagnosis Center, Hospital Garcia de Orta, Almada, Portugal Objective To review the maternal and fetal outcomes of all amnioinfusions performed for the diagnosis and treatment of oligohydramnios during pregnancy (excluding labor). Methods This is a retrospective study of 31 singleton pregnancies with oligohydramnios in the second and third trimesters which underwent transabdominal amnioinfusion between December/1997 and December/2014 in the Prenatal Diagnosis Center at the Hospital Garcia de Orta. The gestational age ranged from 15 weeks and 5 days to 32 weeks and 2 days (average 22 weeks). The initial amniotic fluid index ranged from 0 to 6, 5 cm. The procedure was done only by trained professionals. Under ultrasound guidance, isotonic fluid, such as normal saline or Ringer's lactate, is infused into the amniotic cavity via a 20 G needle inserted through the uterine wall. The volume infused ranged from 100 to 800cc (average 380cc). A genetic study was conducted in 29 cases (93, 5%), performed after amniocentesis (26 cases) or cordocentesis (3 cases). In all cases, there was an exhaustive study of the fetal anatomy after the amnioinfusion. In this study the following parameters were evaluated: maternal characteristics (age, personal and obstetrical history), evolution of pregnancy, perinatal mortality and maternal complications. Histopathological examinations -
Computerized Fetal Heart Rate Analysis, Doppler Ultrasound and Biophysical Profile Score in the Prediction of Acid–Base Status of Growth-Restricted Fetuses
Ultrasound Obstet Gynecol 2007; 30: 750–756 Published online 10 August 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/uog.4101 Computerized fetal heart rate analysis, Doppler ultrasound and biophysical profile score in the prediction of acid–base status of growth-restricted fetuses S. TURAN*†, O. M. TURAN*†, C. BERG‡, D. MOYANO†, A. BHIDE§, S. BOWER†, B. THILAGANATHAN§, U. GEMBRUCH‡, K. NICOLAIDES†, C. HARMAN* and A. A. BASCHAT* *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, MD, USA, †Harris Birthright Research Centre for Fetal Medicine, King’s College Hospital and §Fetal Medicine Unit, St George’s Hospital Medical School, London, UK and ‡Department of Obstetrics and Prenatal Medicine, Friedrich-Wilhelm University, Bonn, Germany KEYWORDS: arterial Doppler; biophysical profile scoring; computerized CTG; cord pH; fetal growth restriction; non-stress test; venous Doppler ABSTRACT patients with an equivocal or normal BPS. Abnormal DV Doppler correctly identified false positives among Objective To investigate the performance of non-stress patients with an abnormal BPS. cCTG reduced the rate test (NST), computerized fetal heart rate analysis (cCTG), of an equivocal BPS from 16% to 7.1% when substituted biophysical profile scoring (BPS) and arterial and venous for the traditional NST. Elevated DV Doppler index and Doppler ultrasound investigation in the prediction of umbilical venous pulsations predicted a low pH with 73% acid–base status in fetal growth restriction. sensitivity and 90% specificity (P = 0.008). Methods Growth-restricted fetuses, defined by abdomi- Conclusion In fetal growth restriction with placental nal circumference < 5th percentile and umbilical artery insufficiency, venous Doppler investigation provides the (UA) pulsatility index > 95th percentile, were tested by best prediction of acid–base status. -
Coding for the OB/GYN Practice Coding Principals
12/4/2013 Coding for the OB/GYN Practice NAMAS 5th Annual Auditing Conference Atlanta, GA December 10, 2013 Peggy Y. Green, CMA(AAMA), CPC, CPMA, CPC‐I Coding Principals • Correct coding implies the selection is – What are we doing? Procedures – Why are we doing it? Diagnosis – Supported by documentation – Consistent with coding guidelines 1 12/4/2013 Coding Principals • Reporting Services – IS there physician work or practice expense? – Can it be supported by an ICD‐9 code? – Is it independent of other procedures/services? – Is there documentation of the service? Billing “Rule” • “Not documented” means “Not done” – “Not documented” “Not billable” • Documentation must support type and level of extent of service reported Code Sets • Key Code sets – HCPCS (includes CPT‐4) – ICD‐9‐CM/ICD‐10‐CM • HCPCS dibdescribes “ht”“what” • ICD‐9 CM describes “why” 2 12/4/2013 Who can bill as a Provider? • Change have been made throughout the CPT manual to clarify who may provide certain services with the addition of the phrase “other qualified healthcare professionals”. • Some codes define that a service is limited to professionals or limited to other entities such as hospitals or home health agencies. Providers • CPT defines a “Physician or other qualified health care professional” as an individual who is qualified by education, training, licensure/regulation (when applicable), and facility privileging (when applicable), who performs a professional services within his/her scope of practice and independently reports that professional service. • This is distinct from clinical staff 3 12/4/2013 Providers • Clinical staff members are people who work under the supervision of a physician or other qualified health care professional and who is allowed by law, regulation, and facility policy to perform or assist in the performance of a specified professional service, but who does not individually report that professional service. -
Therapeutic Amnioinfusion in Oligohydramnios During Pregnancy (Excluding Labor)
International Journal of Reproduction, Contraception, Obstetrics and Gynecology Qazi M et al. Int J Reprod Contracept Obstet Gynecol. 2017 Oct;6(10):4577-4582 www.ijrcog.org pISSN 2320-1770 | eISSN 2320-1789 DOI: http://dx.doi.org/10.18203/2320-1770.ijrcog20174445 Original Research Article Therapeutic amnioinfusion in oligohydramnios during pregnancy (excluding labor) Mahvish Qazi1, Najmus Saqib2*, Abida Ahmed1, Imran Wagay3 1Department of Obstetrics and Gynecology, SKIMS Soura Srinagar Kashmir, India 2Department of Paediatrics and Neonatology, Government Medical College Jammu, Jammu and Kashmir, India 3Department of Radiodiagnosis, Govt. Medical College Srinagar, Jammu and Kashmir, India Received: 05 August 2017 Accepted: 04 September 2017 *Correspondence: Dr. Najmus Saqib, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: Oligohydramnios is a serious complication of pregnancy that is associated with a poor perinatal outcome and complicates 1-5% of pregnancies. The purpose of this study was to evaluate the role of antepartum transabdominal amnioinfusion on amniotic fluid volume/latency period in pregnancies with oligohydramnios. Methods: This study was conducted in the Department of Obstetrics and Gynaecology at Sher-i-Kashmir Institute of Medical Sciences Soura Srinagar. In this study, a total of 54 pregnant women with ultrasonographically diagnosed oligohydramnios i.e. AFI < 5 cm and gestational age of >24 weeks were taken for therapeutic amnioinfusion and its effects on amniotic fluid volume were studied. -
From Trophoblast to Human Placenta
From Trophoblast to Human Placenta (from The Encyclopedia of Reproduction) Harvey J. Kliman, M.D., Ph.D. Yale University School of Medicine I. Introduction II. Formation of the placenta III. Structure and function of the placenta IV. Complications of pregnancy related to trophoblasts and the placenta Glossary amnion the inner layer of the external membranes in direct contact with the amnionic fluid. chorion the outer layer of the external membranes composed of trophoblasts and extracellular matrix in direct contact with the uterus. chorionic plate the connective tissue that separates the amnionic fluid from the maternal blood on the fetal surface of the placenta. chorionic villous the final ramification of the fetal circulation within the placenta. cytotrophoblast a mononuclear cell which is the precursor cell of all other trophoblasts. decidua the transformed endometrium of pregnancy intervillous space the space in between the chorionic villi where the maternal blood circulates within the placenta invasive trophoblast the population of trophoblasts that leave the placenta, infiltrates the endo– and myometrium and penetrates the maternal spiral arteries, transforming them into low capacitance blood channels. Sunday, October 29, 2006 Page 1 of 19 From Trophoblasts to Human Placenta Harvey Kliman junctional trophoblast the specialized trophoblast that keep the placenta and external membranes attached to the uterus. spiral arteries the maternal arteries that travel through the myo– and endometrium which deliver blood to the placenta. syncytiotrophoblast the multinucleated trophoblast that forms the outer layer of the chorionic villi responsible for nutrient exchange and hormone production. I. Introduction The precursor cells of the human placenta—the trophoblasts—first appear four days after fertilization as the outer layer of cells of the blastocyst. -
Abundant Expression of Parathyroid Hormone-Related Protein in Human Amnion and Its Association with Labor (Pregnancy/Myometrium/Decidua/Placenta/Amniotic Fluid) J
Proc. Nati. Acad. Sci. USA Vol. 89, pp. 8384-8388, September 1992 Physiology Abundant expression of parathyroid hormone-related protein in human amnion and its association with labor (pregnancy/myometrium/decidua/placenta/amniotic fluid) J. E. FERGUSON II*, JANET V. GORMAN*, DAVID E. BRUNS*, ELEANOR C. WEIRt, WILLIAM J. BURTISt, T. J. MARTINt, AND M. ELIZABETH BRUNS*§ *Departments of Obstetrics & Gynecology and Pathology, University of Virginia Medical School, Charlottesville, VA 22908; tDepartments of Medicine and Comparative Medicine, Yale University Medical School, New Haven, CT 06510; and tDepartment of Medicine, University of Melbourne, Melbourne 3065 Australia Communicated by Robert H. Wasserman, June 1, 1992 (receivedfor review December 12, 1991) ABSTRACT In animal models, parathyroid hormone- and reaches a peak 48 hr prior to parturition (4). A peak in related protein (PTHrP) increases placental calcium transport peptide content has also been demonstrated by biological and and inhibits contraction ofuterine smooth muscle. The present immunological assays. As PTHrP and PTH have been shown studies were undertaken to characterize the expression of to be vasodilators and to relax smooth muscles, including PTHrP in human uteroplacental tissues. PTHrP mRNA was uterine smooth muscle (7-9), PTHrP may play a role in (i) identified by Northern analysis as a single species (:1.8 vasodilation in the uteroplacental unit, (ii) expansion of the kilobases) in human amnion, chorion, placenta, decidua, and uterus to accommodate fetal growth, (iii) maintenance ofthe myometrium. The most abundant signal was seen in amnion, pregnant uterus in a quiescent, relaxed state prior to the onset where it was 10-400 times that in the other uteroplacental of labor, and/or (iv) relaxation of the uterine cervix to allow tissues.