Mitochondrial Genomes of Acrodont Lizards: Timing of Gene Rearrangements and Phylogenetic and Biogeographic Implications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reptile Family Tree
Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus -
Tiago Rodrigues Simões
Diapsid Phylogeny and the Origin and Early Evolution of Squamates by Tiago Rodrigues Simões A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in SYSTEMATICS AND EVOLUTION Department of Biological Sciences University of Alberta © Tiago Rodrigues Simões, 2018 ABSTRACT Squamate reptiles comprise over 10,000 living species and hundreds of fossil species of lizards, snakes and amphisbaenians, with their origins dating back at least as far back as the Middle Jurassic. Despite this enormous diversity and a long evolutionary history, numerous fundamental questions remain to be answered regarding the early evolution and origin of this major clade of tetrapods. Such long-standing issues include identifying the oldest fossil squamate, when exactly did squamates originate, and why morphological and molecular analyses of squamate evolution have strong disagreements on fundamental aspects of the squamate tree of life. Additionally, despite much debate, there is no existing consensus over the composition of the Lepidosauromorpha (the clade that includes squamates and their sister taxon, the Rhynchocephalia), making the squamate origin problem part of a broader and more complex reptile phylogeny issue. In this thesis, I provide a series of taxonomic, phylogenetic, biogeographic and morpho-functional contributions to shed light on these problems. I describe a new taxon that overwhelms previous hypothesis of iguanian biogeography and evolution in Gondwana (Gueragama sulamericana). I re-describe and assess the functional morphology of some of the oldest known articulated lizards in the world (Eichstaettisaurus schroederi and Ardeosaurus digitatellus), providing clues to the ancestry of geckoes, and the early evolution of their scansorial behaviour. -
Final Copy 2019 10 01 Herrera
This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. -
1174361616812219141410851
18 LIFE CHINA DAILY TUESDAY MARCH 20, 2007 Homo sapiens 100,000 years older than Dragon tales once believed LONDON: Modern humans were living Researchers say the legend of the fl ying dragon in northern Africa far earlier than pre- viously thought, according to scientists. was actually based on a lizard that used a membrane A new analysis of a 160,000-year-old fossilized jawbone from Morocco shows between its ribs to glide, reports Wu Chong that the homo sapiens in the area had started having long childhoods, one of the hallmarks of humans living today. It is known that the species homo sapiens emerged in Africa 200,000 years ago, but the oldest fossils that resemble modern humans come from sites in Europe dated to around 20,000 to 30,000 years ago. The latest fi nd shows that the key time in the development of a complex human society came much earlier than previously thought. The longer people had to learn and develop their brains as children, the more sophisticated their society could become. The new study pushes the date that modern humans emerged back by more than 100,000 years. “When you look across primates as a whole or mammals you see things that tend to grow fast and reproduce young, they don’t tend to be as socially complex as things like great apes and humans,” said Tanya Smith of the Max Planck Institute for Evolutionary Anthropology in Leipzig. “That has social implications. You can imagine being parents and hav- ing your kids grow up at 10 or 12 versus Scientists try to describe 16 or 18, it has a lot of implications for graphically the features of your social structure.” Xianglong Zhaoi which lived By looking at the teeth of a 160,000- 130 million years ago. -
A Gliding Lizard from the Early Cretaceous of China
A gliding lizard from the Early Cretaceous of China Pi-Peng Li*, Ke-Qin Gao†, Lian-Hai Hou*‡, and Xing Xu*‡§ *Shenyang Normal University, Shenyang 110034, People’s Republic of China; †Peking University, School of Earth and Space Sciences, Beijing 100871, People’s Republic of China; and ‡Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People’s Republic of China Edited by David B. Wake, University of California, Berkeley, CA, and approved February 7, 2007 (received for review October 27, 2006) Gliding is an energetically efficient mode of locomotion that has the absence of ossified carpals and poorly ossified tarsals. It is evolved independently, and in different ways, in several tetrapod 155 mm long, including an extremely slender 95-mm-long tail groups. Here, we report on an acrodontan lizard from the Early (Fig. 1). The entire body including the skull is covered with small Cretaceous Jehol Group of China showing an array of morpholog- granular scales, which show little size variation (Fig. 2 A–D). No ical traits associated with gliding. It represents the only known osteoderms are visible. The most striking feature of the speci- occurrence of this specialization in a fossil lizard and provides men is its superbly preserved membranous patagium, which is in evidence of an Early Cretaceous ecological diversification into an a half-open position, probably reflecting a postmortem relaxing aerial niche by crown-group squamates. The lizard has a dorsal-rib- of the folded ‘‘wing.’’ The patagium is internally supported by supported patagium, a structure independently evolved in the Late eight greatly elongated dorsal ribs. -
U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017
A Product of the Water Availability and Use Science Program Prepared in cooperation with the Department of Geological Sciences at the University of Texas at San Antonio and hosted by the Student Geological Society and student chapters of the Association of Petroleum Geologists and the Association of Engineering Geologists U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017 Edited By Eve L. Kuniansky and Lawrence E. Spangler Scientific Investigations Report 2017–5023 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN ZINKE, Secretary U.S. Geological Survey William Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Kuniansky, E.L., and Spangler, L.E., eds., 2017, U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017: U.S. Geological Survey Scientific Investigations Report 2017–5023, 245 p., https://doi.org/10.3133/sir20175023. -
1 a New Lepidosaur Clade
A new lepidosaur clade: the Tritosauria DAVID PETERS Independent researcher, 311 Collinsville Avenue, Collinsville, Illinois 62234 U.S.A. [email protected] RH: PETERS—TRITOSAURIA 1 ABSTRACT—Several lizard-like taxa do not nest well within the Squamata or the Rhynchocephalia. Their anatomical differences separate them from established clades. In similar fashion, macrocnemids and cosesaurids share few traits with putative sisters among the prolacertiformes. Pterosaurs are not at all like traditional archosauriforms. Frustrated with this situation, workers have claimed that pterosaurs appeared without obvious antecedent in the fossil record. All these morphological ‘misfits’ have befuddled researchers seeking to shoehorn them into established clades using traditional restricted datasets. Here a large phylogenetic analysis of 413 taxa and 228 characters resolves these issues by opening up the possibilities, providing more opportunities for enigma taxa to nest more parsimoniously with similar sisters. Remarkably, all these ‘misfits’ nest together in a newly recovered and previously unrecognized clade of lepidosaurs, the Tritosauria or ‘third lizards,’ between the Rhynchocephalia and the Squamata. Tritosaurs range from small lizard-like forms to giant marine predators and volant monsters. Some tritosaurs were bipeds. Others had chameleon-like appendages. With origins in the Late Permian, the Tritosauria became extinct at the K–T boundary. Overall, the new tree topology sheds light on this clade and several other ‘dark corners’ in the family tree of the Amniota. Now pterosaurs have more than a dozen antecedents in the fossil record documenting a gradual accumulation of pterosaurian traits. INTRODUCTION The Lepidosauria was erected by Romer (1956) to include diapsids lacking archosaur characters. Later, with the advent of computer-assisted phylogenetic analyses, 2 many of Romer’s ‘lepidosaurs’ (Protorosauria/Prolacertiformes, Trilophosauria, and Rhynchosauria) were transferred to the Archosauromorpha (Benton, 1985; Gauthier, 1986). -
The First Iguanian Lizard from the Mesozoic of Africa Sebastián Apesteguía, Juan D
The first iguanian lizard from the Mesozoic of Africa Sebastián Apesteguía, Juan D. Daza, Tiago R. Simões, Jean Claude Rage To cite this version: Sebastián Apesteguía, Juan D. Daza, Tiago R. Simões, Jean Claude Rage. The first iguanian lizard from the Mesozoic of Africa. Royal Society Open Science, The Royal Society, 2016, 3 (9), pp.160462. 10.1098/rsos.160462. hal-01426066 HAL Id: hal-01426066 https://hal.sorbonne-universite.fr/hal-01426066 Submitted on 4 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Downloaded from http://rsos.royalsocietypublishing.org/ on January 4, 2017 The first iguanian lizard from the Mesozoic of Africa rsos.royalsocietypublishing.org Sebastián Apesteguía1,JuanD.Daza2, Tiago R. Simões3 and Jean Claude Rage4 Research 1CEBBAD (CONICET), Fundación de Historia Natural ‘Félix de Azara’, Universidad Maimónides, Hidalgo 775, 7°p (1405), Buenos Aires, Argentina Cite this article: Apesteguía S, Daza JD, 2Department of Biological Sciences, Sam Houston State University, 1900 Avenue I Lee Simões TR, Rage JC. 2016 The first iguanian Drain Building Suite 300, Huntsville, TX 77341-2116, USA lizard from the Mesozoic of Africa. -
Download/4084574/Burrow Young1999.Pdf 1262 Burrow, C
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882829; this version posted December 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 1aCC-BY-ND 4.0 International license. Recalibrating the transcriptomic timetree of jawed vertebrates 1 David Marjanović 2 Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, 3 Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, 4 Germany 5 Correspondence: 6 David Marjanović 7 [email protected] 8 Keywords: timetree, calibration, divergence date, Gnathostomata, Vertebrata 9 Abstract 10 Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in 11 inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the 12 fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular 13 evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of 14 the sites the fossils were found in. Paleontologists have therefore tried to help by publishing 15 compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record 16 have made heavy use of such works. Using a recent example of a large timetree inferred from 17 molecular data, I demonstrate that calibration dates cannot be taken from published compendia 18 without risking strong distortions to the results, because compendia become outdated faster than they 19 are published. The present work cannot serve as such a compendium either; in the slightly longer 20 term, it can only highlight known and overlooked problems. -
Reptile Family Tree Peters 2021 1909 Taxa, 235 Characters
Turinia Enoplus Chondrichtyes Jagorina Gemuendina Manta Chordata Loganellia Ginglymostoma Rhincodon Branchiostoma Tristychius Pikaia Tetronarce = Torpedo Palaeospondylus Craniata Aquilolamna Tamiobatis Myxine Sphyrna Metaspriggina Squalus Arandaspis Pristis Poraspis Rhinobatos Drepanaspis Cladoselache Pteromyzon adult Promissum Chlamydoselachus Pteromyzon hatchling Aetobatus Jamoytius Squatina Birkenia Heterodontus Euphanerops Iniopteryx Drepanolepis Helodus Callorhinchus Haikouichthys Scaporhynchus Belantsea Squaloraja Hemicyclaspis Chimaera Dunyu CMNH 9280 Mitsukurina Rhinochimaera Tanyrhinichthys Isurus Debeerius Thelodus GLAHM–V8304 Polyodon hatchling Cetorhinus Acipenser Yanosteus Oxynotus Bandringa PF8442 Pseudoscaphirhynchus Isistius Polyodon adult Daliatus Bandringa PF5686 Gnathostomata Megachasma Xenacanthus Dracopristis Akmonistion Ferromirum Strongylosteus Ozarcus Falcatus Reptile Family Tree Chondrosteus Hybodus fraasi Hybodus basanus Pucapampella Osteichthyes Orodus Peters 2021 1943 taxa, 235 characters Gregorius Harpagofututor Leptolepis Edestus Prohalecites Gymnothorax funebris Doliodus Gymnothorax afer Malacosteus Eurypharynx Amblyopsis Lepidogalaxias Typhlichthys Anableps Kryptoglanis Phractolaemus Homalacanthus Acanthodes Electrophorus Cromeria Triazeugacanthus Gymnotus Gorgasia Pholidophorus Calamopleurus Chauliodus Bonnerichthys Dactylopterus Chiasmodon Osteoglossum Sauropsis Synodus Ohmdenia Amia Trachinocephalus BRSLI M1332 Watsonulus Anoplogaster Pachycormus Parasemionotus Aenigmachanna Protosphyraena Channa Aspidorhynchus -
THE AERODYNAMICS of the BRITISH LATE TRIASSIC KUEHNEOSAURIDAE by KOEN STEIN* , COLIN PALMER , PAMELA G
[Palaeontology, Vol. 51, Part 4, 2008, pp. 967–981] THE AERODYNAMICS OF THE BRITISH LATE TRIASSIC KUEHNEOSAURIDAE by KOEN STEIN* , COLIN PALMER , PAMELA G. GILL and MICHAEL J. BENTON *Institut fu¨r Pala¨ontologie, Nußallee 8, 53115 Bonn, Germany; e-mail: [email protected] Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK; e-mail: [email protected] Typescript received 5 April 2007; accepted in revised form 17 September 2007 Abstract: The Kuehneosauridae (Late Triassic, Britain, probably present to enhance pitch control. Kuehneosuchus USA) had remarkable adaptations, most notably their elon- was capable of gliding at angles (h) between 13 and 16 gate mid-dorsal ribs that were presumably covered with a degrees, at speeds between 7 and 9 m ⁄ s, and was probably skin membrane in life. These lateral ‘wings’ have always been very manoeuvrable when airborne. Kuehneosaurus was capa- linked with some form of gliding adaptation, but quantita- ble of parachuting (h > 45 degrees) at speeds between 10 tive studies have been limited. Here, we provide a thorough and 12 m ⁄ s. It is unclear whether the British kuehneosaurid aerodynamic analysis of both genera of British kuehneosaur- material represents two genera, as assumed here, two species ids based on theory and on experiments with life-sized mod- of one genus, or sexual dimorphs of a single species, where els in a wind tunnel. Of the two genera, Kuehneosuchus, with the gliding Kuehneosuchus was the male, which used its glid- elongate ‘wings’, was a glider, and Kuehneosaurus, with much ing and perhaps highly coloured ‘wings’ to display to the shorter ‘wings’, was a parachutist. -
An Early Kuehneosaurid Reptile (Reptilia: Diapsida) from the Early Trias− Sic of Poland
AN EARLY KUEHNEOSAURID REPTILE FROM THE EARLY TRIASSIC OF POLAND SUSAN E. EVANS Evans, S.E. 2009. An early kuehneosaurid reptile (Reptilia: Diapsida) from the Early Trias− sic of Poland. Palaeontologia Polonica 65, 145–178. The Early Triassic locality of Czatkowice, Poland has yielded fish, amphibians, and a series of small reptiles including procolophonians, lepidosauromorphs and archosauromorphs. The lepidosauromorphs are amongst the smallest and rarest components of the assemblage and constitute two new taxa, one of which is described and named here. Pamelina polonica shares skull and vertebral characters with the kuehneosaurs, a group of specialised long− ribbed gliders, previously known only from the Late Triassic of Britain and North America. The relationship is confirmed by cladistic analysis. Pamelina is the earliest known kuehneo− saur and provides new information about the history of this clade. It is less derived post− cranially than any of the Late Triassic taxa, but probably had at least rudimentary gliding or parachuting abilities. Key words: Reptilia, Kuehneosauridae, Triassic, Poland, gliding, Czatkowice. Susan E. Evans [[email protected]], Department of Cell and Developmental Biology, UCL, University College London, Gower Street, London, WC1E 6BT, UK. Received 1 May 2006, accepted 15 August 2007 146 SUSAN E. EVANS INTRODUCTION The Neodiapsida of Benton (1985) encompasses a wide range of diapsid lineages, most of which can be assigned to either Archosauromorpha or Lepidosauromorpha (Gauthier et al. 1988). Archosauromorpha encompasses a large and successful crown clade (Archosauria) and a series of distinctive stem lineages (e.g., protorosaurs, tanystropheiids, Prolacerta, Rhynchosauria, Trilophosauria, Evans 1988; Gauthier et al. 1988; Müller 2002, 2004; Modesto and Sues 2004).