Forestry & Plant Ecology

Total Page:16

File Type:pdf, Size:1020Kb

Forestry & Plant Ecology MANITOBA ENVIROTHON FOREST & PLANT ECOLOGY PROVINCIAL RESOURCES 1 ACKNOWLEDGEMENTS We would like to thank: Olwyn Friesen (PhD Ecology) for writing, compiling, and editing this document. Subject Experts and Editors: Barbara Fuller (Project Editor, Chair of Test Writing and Education Committee) Lindsey Andronak (Soils, Research Technician, Agriculture and Agri-Food Canada) Jennifer Corvino (Wildlife Ecology, Senior Park Interpreter, Spruce Woods Provincial Park) Cary Hamel (Plant Ecology, Director of Conservation, Nature Conservancy Canada) Lee Hrenchuk (Aquatic Ecology, Biologist, IISD Experimental Lakes Area) Justin Reid (Integrated Watershed Management, Manager, La Salle Redboine Conservation District) Jacqueline Monteith (Climate Change in the North, Science Consultant, Frontier School Division) SPONSORS 2 “Earh laughs in flowers” Ralp Waldo Emerson 3 Fundamentals of Plant Biology .......................................................................7 What is a plant? ........................................................................................................7 Taxonomy and terminology ......................................................................................................7 Vascular whole-plant structure ....................................................................................9 Internal structure of a vascular stem ........................................................................................11 External structures of woody plants .........................................................................................12 Internal structure of a leaf ......................................................................................................12 Types of Plants ........................................................................................................14 Non-vascular Plants................................................................................................................ 15 Vascular Plants ......................................................................................................................16 Gymnosperms .......................................................................................................................16 Angiosperms .........................................................................................................................17 Functional Plant Groups .........................................................................................................19 Photosynthesis ........................................................................................................20 Location of plant photosynthesis .............................................................................................21 Process of Photosynthesis .......................................................................................................22 Variation in Photosynthesis .....................................................................................................23 Diversity, form, and function ....................................................................................23 Leaves ..................................................................................................................................23 Stems ....................................................................................................................................25 Roots ....................................................................................................................................26 Wood ...................................................................................................................................26 Nutrition ...............................................................................................................................27 Plant growth, development, and reproduction ...........................................................27 Root Growth .........................................................................................................................28 Seed-free plants..................................................................................................................... 28 Vegetative reproduction .........................................................................................................29 Flowers .................................................................................................................................30 Seed Germination ..................................................................................................................31 Introductory Ecology ....................................................................................33 Adaptation and Acclimation ...................................................................................................33 Ecosystem Constituents and Trophic Ecology .............................................................34 Producers and Consumers ......................................................................................................34 Decomposers ........................................................................................................................36 Nutrient Cycling ....................................................................................................................36 4 Plant Associations ...................................................................................................38 Mycorrhizae .........................................................................................................................38 Soils .....................................................................................................................................39 Pollinators .............................................................................................................................39 Seed Dispersal ......................................................................................................................41 Habitats .................................................................................................................42 Ecoregions .............................................................................................................42 Plant Communities ........................................................................................45 Stratification and Structure .......................................................................................45 Vertical stratification ..............................................................................................................45 Slopes and Elevation .............................................................................................................46 Habitat types ..........................................................................................................47 Grasslands ............................................................................................................................47 Shrubland .............................................................................................................................50 Deserts.................................................................................................................................. 51 Tundra ..................................................................................................................................52 Forests ..................................................................................................................................53 Competition ............................................................................................................57 Succession of plant communities ...............................................................................58 Community stability and equilibrium .........................................................................59 Disturbance-dependent ecosystems .........................................................................................60 Ecotones and Edge effects .......................................................................................63 Plants and their Environment .......................................................................64 Winter Adaptations .................................................................................................64 Shedding Leaves ...................................................................................................................64 Plant Growth and Shape ........................................................................................................65 Freezing Resistance ...............................................................................................................65 Wind Adaptations ...................................................................................................66 Stems and Leaves ..................................................................................................................66 Seed Dispersal ......................................................................................................................66 Size and Clustering ...............................................................................................................66 Plant Adaptations to Extreme Environments ................................................66 Ecological groups of plants: hydrophyte, xerophyte, mesophyte, halophyte ................67 Hydrophytes ...........................................................................................................67
Recommended publications
  • Evolutionary Ecology of Pollination and Reproduction of Tropical Plants
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. V - Evolutionary Ecology af Pollination and Reproduction of Tropical Plants - M. Quesada, F. Rosas, Y. Herrerias-Diego, R. Aguliar, J.A. Lobo and G. Sanchez-Montoya EVOLUTIONARY ECOLOGY OF POLLINATION AND REPRODUCTION OF TROPICAL PLANTS M. Quesada and F. Rosas Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, México. Y. Herrerias-Diego Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México. R. Aguilar IMBIV - UNC - CONICET, C.C. 495,(5000) Córdoba, Argentina J.A. Lobo Escuela de Biología, Universidad de Costa Rica G. Sanchez-Montoya Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, México. Keywords: Pollination, tropical plants, diversity, mating systems, gender, conservation. Contents 1. Introduction 1.1. The Life Cycle of Angiosperms 1.2. Overview of Angiosperm Diversity 2. Degree of specificity of pollination system 3. Diversity of pollination systems 3.1. Beetle Pollination (Cantharophily) 3.2. Lepidoptera 3.2.1. Butterfly Pollination (Psychophily) 3.2.2. Moth Pollination (Phalaenophily) 3.3. Hymenoptera 3.3.1. Bee PollinationUNESCO (Melittophily) – EOLSS 3.3.2. Wasps 3.4. Fly Pollination (Myophily and Sapromyophily) 3.5. Bird Pollination (Ornitophily) 3.6. Bat PollinationSAMPLE (Chiropterophily) CHAPTERS 3.7. Pollination by No-Flying Mammals 3.8. Wind Pollination (Anemophily) 3.9. Water Pollination (Hydrophily) 4. Reproductive systems of angiosperms 4.1. Strategies that Reduce Selfing and/or Promote Cross-Pollination. 4.2. Self Incompatibility Systems 4.2.1. Incidence of Self Incompatibility in Tropical Forest 4.3. The Evolution of Separated Sexes from Hermaphroditism 4.3.1. From Distyly to Dioecy ©Encyclopedia Of. Life Support Systems (EOLSS) TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol.
    [Show full text]
  • The Synergistic Effects of Sodium and Potassium on the Xerophyte
    Plant Physiology and Biochemistry xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Plant Physiology and Biochemistry journal homepage: www.elsevier.com/locate/plaphy Research article The synergistic effects of sodium and potassium on the xerophyte Apocynum venetum in response to drought stress ∗ Yan-Nong Cuia,1, Zeng-Run Xiaa,b,1, Qing Maa, Wen-Ying Wanga, Wei-Wei Chaia, Suo-Min Wanga, a State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China b Ankang R&D Center of Se-enriched Products, Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture, Ankang, Shaanxi, 725000, PR China ARTICLE INFO ABSTRACT Keywords: Apocynum venetum is an eco-economic plant species with high adaptability to saline and arid environments. Our Apocynum venetum previous work has found that A. venetum could absorb large amount of Na+ and maintain high K+ level under Potassium efficiency saline conditions. To investigate whether K+ and Na+ could simultaneously enhance drought resistance in A. Osmotic stress venetum, seedlings were exposed to osmotic stress (−0.2 MPa) in the presence or absence of additional 25 mM Sodium NaCl under low (0.01 mM) and normal (2.5 mM) K+ supplying conditions, respectively. The results showed that Osmotic adjustment A. venetum should be considered as a typical K+-efficient species since its growth was unimpaired and possessed Photosynthesis a strong K+ uptake and prominent K+ utilization efficiency under K+ deficiency condition. Leaf K+ con- centration remained stable or was even significantly increased under osmotic stress in the presence or absence of NaCl, compared with that under control condition, regardless of whether the K+ supply was sufficient or not, and the contribution of K+ to leaf osmotic potential consistently exceeded 37%, indicating K+ is the uppermost contributor to osmotic adjustment of A.
    [Show full text]
  • Selection on Floral Morphology and Environmental Determinants of Fecundity in a Hawk Moth-Pollinated Violet'
    Ecoiog~calMonographs, 63(3), 1993. pp. 25 1-275 LC 1993 by the Ecological Society of America SELECTION ON FLORAL MORPHOLOGY AND ENVIRONMENTAL DETERMINANTS OF FECUNDITY IN A HAWK MOTH-POLLINATED VIOLET' CARLOSM. HERRERA Estacidn Bioldgica de Dofiana, Apartado 1056, E-41080 SeviNa, Spain Abstract. This paper presents the results of a 5-yr field study on the determinants of individual variation in maternal fecundity (seed production) in the narrowly endemic violet Viola cazorlensis (Violaceae), at a southeastern Spanish locality. Flowers of this species are characterized by a very long, thin spur and broad morphological variability, and are pol- linated by a single species of day-flying hawk moth (Macroglossum stellatarum; Lepidop- tera, Sphingidae). The primary aim of this investigation was to answer the question, What are the relative importances, as explanations of individual differences in fecundity, of variability in floral traits and of other fecundity determinants that are of an extrinsic nature, such as microhabitat type and interactions with herbivores? The floral morphology of individual V. cazorlensis plants was characterized by means of both "conventional," linear measurements of the size of flower parts (petals, spur, peduncle), and shape analysis of corolla outline (using thin-plate splines relative warps analysis). Spatial (among substrate types) and temporal (among years) patterns of variation in flower, fruit, and seed production by V. cazorlensis plants are described, with particular emphasis on the comparative effects of floral morphology, herbivory (by mammalian ungulates and two species of lepidopteran larvae), and substrate type (rock cliffs, bare rocks at ground level, and sandy soils), on cumulative seed production at the individual plant level.
    [Show full text]
  • Punam Jaiswal PG-IV XEROPHYTES(Morphology).Pdf
    Environmental Biology Prof.(Dr.) Punam Jeswal Head M.Sc semester IV Botany Department XEROPHYTES A xerophyte (Gr. Xeros, dry; phyton, plant) is a plant which is able to survive in an environment with low availability of water or moisture, such as desert, ice or snow covered region. Xerophytes defined as "plants of dry habitats". Xerophytes are plants adopted in order to survive or grow in dry habitats (xeric condition) where the availability of water is very less. Daubenmire (1959) defined xerophytes as "plants which grow on substrate that usually become depleted of water to a depth of at least two decimeters during normal growth season". Xerophytes are plants of relatively dry habitats - dry in soil and most often also climatically. Xerophytes plants live in condition of water scarcity i.e. in xeric condition (habitat). Xeric habitats are of two types - 1) Physically dry habitat :- Water retaining capacity of the soil very low and climate is dry. Water cannot retained like desert or rock surface. 2) Physiologically dry :- Water is present in excess, but not in absorbable conditions or the plants cannot absorb it. e.g. high salt water, high acidic water and high cold water, water in snow form. Adaptation Strategies of Xerophytes :- Xerophytes adopt various features according to their climate, geography and requirements. Xerophytes plants aim at the following adaptation strategies :- 1) Absorb more water from the surrounding. 2) Retain water in their organs. 3) Reduce the water loss by transpiration to minimise. 4) Reduce utilisation of water ( Prevent high consumption of water) Types Of Xerophytes On the basis of morphology, physiology and life cycle patterns, xerophytes are classified into three categories :- 1) Ephemeral Annuals ( Drought Evaders or Drought Escapers) * They are also called as 'drought evaders' or 'drought escapers' common in arid zones.
    [Show full text]
  • (2) How Plants Manage Water Deficit and Why It Matters
    Plant-Water Relations (2) How plants manage water deficit and why it matters Photo credits: Mel Oliver; William M. Ciesla, Forest Health Management International; R.L. Croissant Bugwood.org © 2014 American Society of Plant Biologists Outline 1. Water scarcity is a growing problem 2. Desiccation-tolerant plants and xerophytes 3. Plant responses to water deficit Perception and signaling Transcriptional responses Effects on photosynthesis Effects on growth and development 4. Towards water-optimized and drought-tolerant agriculture Optimizing irrigation Monitoring water stress 5. Breeding for drought-tolerance Classical approaches Candidate gene approaches © 2014 American Society of Plant Biologists Key definitions and concepts Desiccation: Extreme water loss, equilibration to the water potential of the air which is generally low Desiccation tolerance: The ability to withstand and recover from desiccation Dehydration: The process of water loss from a cell or system Water deficit: Sub-optimal water status from the perspective of plant function Drought: Lack of rainfall or water supply leading to water deficit Drought tolerance: The ability to withstand suboptimal water availability through adaptations or acclimations (not the same as desiccation tolerance) Xerophyte: A plant adapted to live in a low-water environment Mesophyte: A plant without specialized adaptions to low-water or high- water environments Adaptation: Long-term evolutionary process by which an organism becomes suited to its environment Acclimation: Short-term physiological process
    [Show full text]
  • Ecology: Definition, Scope and Relationship with Other Sciences
    Ecology: Definition, Scope and Relationship with other sciences By Shalinder Kaur Department of Botany P.G.G.C.G. – 11 Chandigarh The word "ecology" ("oekologie") (coined by German scientist Ernst Haeckel,1866) was derived from the Greek ―oikos” meaning "household" and logos meaning "science:" the "study of the household of nature." Ecology is not synonymous with environment, environmentalism, or environmental science. Ecology is closely related to physiology, evolutionary biology, genetics and ethology. An understanding of how biodiversity affects ecological function is an important focus area in ecological studies. Ecology: branch of science that deals with interaction between living organisms with each other and their surroundings. Ecological systems are studied at several different levels from individuals and populations to ecosystems and biosphere level. Ecology is a multi-disciplinary science, drawing on many other branches of science. Applied ecology is the practice of employing ecological principles and understanding to solve real world problems. E.g. calculating fish population, measuring environmental impact from construction or logging, building a case for the conservation of a species, and determining the most effective way to protect a species. In a broader sense, ecology can also mean: Natural environment: using the principles and methods of ecology. Human Ecology: looks at humans and their interactions with the natural environment. Scope of Ecology Ecology can be studied at several levels, from proteins and nucleic acids (in biochemistry and molecular biology), cells (in cellular biology), organisms (in botany, zoology, and other similar disciplines), and finally at the level of populations, communities, and ecosystems — which are the subjects of ecology. Because of its focus on the broadest level of life and on the interrelations between living beings and their environment, ecology draws heavily on other branches of science, such as geology and geography, meteorology, pedology, chemistry, and physics.
    [Show full text]
  • Urban Plant Ecophysiology
    4 Urban Plant Ecophysiology Nancy Falxa Sonti* USDA Forest Service, Baltimore, Maryland Introduction understanding and managing the fluxes of heat, water, gases and nutrients that underlie Plants have long been cultivated to improve urban ecosystem science and that help make quality of life in dense human settlements, cities both liveable and sustainable (Alberti, mitigating the environmental stresses of ur- 2005). The past few decades have seen a rise ban living. Urban landscape elements include in research on plant community ecology, but gardens, trees and lawns designed to provide ecophysiological studies have lagged behind, aesthetic and functional benefits to local resi- possibly due to methodological challenges, or dents, as well as urban natural areas that re- due to the recent popularity of other topics in flect the native biome vegetation. Different plant biology (Beyschlag and Ryel, 2007). types of informal green space are typically A systematic approach to urban plant found in interstitial urban areas wherever ecophysiology that is tied to decision making plants find space, light, water and nutrients to can support efforts to improve both liveabil- grow (Rupprecht and Byrne, 2014). A grow- ity and sustainability of cities via plant physi- ing body of literature evaluates the health and ological function. Plants are the foundation of well- being benefits of these diverse types of most nature- based solutions to environmental, intentional and unintentional urban nature, social and economic challenges, and physi- and advocates for their inclusion in sustain- ological function is the engine that drives the able urban design (Konijnendijk et al., 2013; provision of associated ecosystem services. Kowarik, 2018; Threlfall and Kendal, 2018).
    [Show full text]
  • Plant Classification and Seeds
    Ashley Pearson – Plant Classification and Seeds ● Green and Gorgeous Oxfordshire ● Cut flowers ● Small amounts of veg still grown and sold locally Different Classification Systems Classification by Life Cycle : Ephemeral (6-8 wks) Annual Biennial Perennial Classification by Ecology: Mesophyte, Xerophyte, Hydrophyte, Halophyte, Cryophyte Raunkiaers Life Form System: based on the resting stage Raunkiaers Life Form System Classification contd. Classification by Plant Growth Patterns Monocots vs. Dicots (NB. only applies to flowering plants - angiosperms) Binomial nomenclature e.g., Beetroot = Beta vulgaris Plantae, Angiosperms, Eudicots, Caryophyllales, Amaranthaceae, Betoideae, Beta, Beta vulgaris After morphological characters, scientists used enzymes and proteins to classify plants and hence to determine how related they were via evolution (phylogeny) Present day we use genetic data (DNA, RNA, mDNA, even chloroplast DNA) to produce phylogenetic trees Plant part modifications ● Brassica genus ● ● Roots (swede, turnips) ● Stems (kohl rabi) ● Leaves (cabbages, Brussels Sprouts-buds) ● Flowers (cauliflower, broccoli) ● Seeds (mustards, oil seed rape) Plant hormones / PGR's / phytohormones ● Chemicals present in very low concentrations that promote and influence the growth, development, and differentiation of cells and tissues. ● NB. differences to animal hormones! (no glands, no nervous system, no circulatory system, no specific mode of action) ● Not all plant cells respond to hormones, but those that do are programmed to respond at specific points in their growth cycle ● Five main classes of PGR's ● Abscisic acid (ABA) ● Role in abscission, winter bud dormancy (dormin) ● ABA-mediated signalling also plays an important part in plant responses to environmental stress and plant pathogens ● ABA is also produced in the roots in response to decreased water potential.
    [Show full text]
  • Characterization of the Transcriptome of the Xerophyte Ammopiptanthus Mongolicus Leaves Under Drought Stress by 454 Pyrosequencing
    RESEARCH ARTICLE Characterization of the Transcriptome of the Xerophyte Ammopiptanthus mongolicus Leaves under Drought Stress by 454 Pyrosequencing Tao Pang1☯, Lili Guo1,2☯, Donghwan Shim3,4☯, Nathaniel Cannon3, Sha Tang1, Jinhuan Chen1, Xinli Xia1*, Weilun Yin1*, John E. Carlson3* 1 National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Key Laboratory for Silviculture and Conservation, Beijing Forestry University, Beijing, People’s Republic of China, 2 College of Agricultural, Henan University of Science and Technology, Luoyang, People’s Republic of China, 3 The Schatz Center for Tree Molecular Genetics, Department Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, United States of America, 4 Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441–350, Korea ☯ These authors contributed equally to this work. * [email protected] (XX); [email protected] (WY); [email protected] (JEC) OPEN ACCESS Abstract Citation: Pang T, Guo L, Shim D, Cannon N, Tang S, Chen J, et al. (2015) Characterization of the Transcriptome of the Xerophyte Ammopiptanthus Background mongolicus Leaves under Drought Stress by 454 Pyrosequencing. PLoS ONE 10(8): e0136495. Ammopiptanthus mongolicus (Maxim. Ex Kom.) Cheng f., an endangered ancient legume doi:10.1371/journal.pone.0136495 species, endemic to the Gobi desert in north-western China. As the only evergreen broad- Editor: Mukesh Jain, National Institute of Plant leaf shrub in this area, A. mongolicus plays an important role in the region’s ecological-envi- Genome Research, INDIA ronmental stability. Despite the strong potential of A. mongolicus in providing new insights Received: February 17, 2015 on drought tolerance, sequence information on the species in public databases remains Accepted: August 4, 2015 scarce.
    [Show full text]
  • BIO 1500: Plant Physiological Ecology (Previously Known As Plant Ecology)
    BIO 1500: Plant Physiological Ecology (previously known as Plant Ecology) Lectures: Tuesdays and Thursdays, 9 – 10:20am (H hour), Smith-Buonanno Hall rm 207 Laboratory: Labs will be held on Thursdays in the Environmental Science Center (greenhouses). One or two lab sections will be available (TBD) Instructor: Prof. Erika Edwards Office: 303 Walter Hall Phone: 863-2081 Email: [email protected] Office hours: Wednesday, 1-3 pm Teaching assistant: Matt Ogburn, [email protected], office hours TBD Course Overview This is an advanced botany course, preferably for students that have taken either BIO43 or BIO44 in addition to BIO20; otherwise permission must be obtained from the instructor. A keen interest in plants is a must. Aims and objectives: The primary aim of BIO 1500 is to examine the role of the environment in shaping the anatomical, physiological, and ecological diversity of vascular plants. Lectures will provide an overview of plant-environment interactions, focusing on anatomical and physiological adaptations of leaves, stems, and roots to different habitats. A comparative, phylogenetic approach will be emphasized. This is a hybrid lecture/seminar course, where classes will consist of both chalkboard lectures by the professor as well as discussions of articles from the primary literature. In addition, BIO 1500 is designed to be a hands-on course, and lectures are viewed mostly as supplements to the semester-long greenhouse project that will provide students with first-hand experience in measuring and interpreting plant functional traits. Students will work on a set of group projects that are designed to test long-standing assumptions about the evolution and adaptive nature of certain plant traits.
    [Show full text]
  • Isotopic Approaches to Quantify Root Water Uptake and Redistribution
    Isotopic approaches to quantify root water uptake and redistribution: a review and comparison of methods Youri Rothfuss1, Mathieu Javaux1,2,3 1Institute of Bio- and Geosciences, IBG-3 Agrosphere, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany 5 2Earth and Life Institute, Environnemental Sciences, Université catholique de Louvain (UCL), Louvain-la-Neuve, 1348, Belgium 3Department of Land, Air and Water Resources, University of California Davis, Davis, California, 95616, USA. Correspondence to: Youri Rothfuss ([email protected]) Abstract. Plant root water uptake (RWU) and release (i.e., hydraulic redistribution – HR, and its particular case hydraulic 10 lift – HL) have been documented for the past five decades from water stable isotopic analysis. By comparing the (hydrogen or oxygen) stable isotopic composition of plant xylem water to those of potential contributive water sources (e.g., water from different soil layers, groundwater, water from recent precipitation or from a nearby stream) studies could determine the relative contributions of these water sources to RWU. Other studies have confirmed the existence of HR and HL from the isotopic analysis of the plant xylem water following a labelling pulse. 15 In this paper, the different methods used for locating / quantifying relative contributions of water sources to RWU (i.e., graphical inference, statistical (e.g., Bayesian) multi-source linear mixing models) are reviewed with emphasis on their respective advantages and drawbacks. The graphical and statistical methods are tested against a physically based analytical RWU model during a series of virtual experiments differing in the depth of the groundwater table, the soil surface water status, and the plant transpiration rate value.
    [Show full text]
  • Bio 345 Field Botany Fall 2013 Professor Mark Davis Macalester College (Office: Rice 104; 696-6102) Office Hours - M: 1:30-3:00 P.M
    Bio 345 Field Botany Fall 2013 Professor Mark Davis Macalester College (Office: Rice 104; 696-6102) Office Hours - M: 1:30-3:00 p.m. Wed: 1:30-3:00 p.m. GENERAL INFORMATION Biology 345-01 (02): (Field Botany) is a course in plant taxonomy, plant geography, and plant ecology. Students will learn the principles of plant classification and, through first hand experience, the techniques of plant identification, collection, and preservation. Students also will be introduced to the fields of plant geography and plant ecology. Particular attention will be given to the taxonomy, geography, and ecology of plants growing in the North Central United States. Weekly field trips to nearby habitats will enable students to become familiar with many local species. This is a course for anyone who enjoys plants and wants to learn to identify them and learn more about them, as well as for students with a scientific interest in plant taxonomy and ecology. Note: this syllabus and other course materials can also be found on Moodle. READINGS: Readings from Barbour and Billings (2000), North American Terrestrial Vegetation, Cambridge U Press (in Bio Student Lounge); Judd et al. (2008), Plant Systematics: A Phylogenetic Approach, Sinauer Associates (in Bio Student Lounge); & readings to be assigned. LECTURES: MWF 10:50 - 11:50 a.m. in OR284. Please come to class on time!!!! LABORATORY/FIELD TRIPS/DISCUSSIONS: Thurs: 8:00 - 11:10 a.m. During September, and October we will usually take field trips during the weekly laboratory time. These will be local botanizing trips and will provide students with the opportunity to develop and practice their identification skills in the field.
    [Show full text]