A Look at the Surface-Based Temperature Inversion on the Antarctic Plateau

Total Page:16

File Type:pdf, Size:1020Kb

Load more

1JUNE 2005 HUDSON AND BRANDT 1673 A Look at the Surface-Based Temperature Inversion on the Antarctic Plateau STEPHEN R. HUDSON AND RICHARD E. BRANDT Department of Atmospheric Sciences, University of Washington, Seattle, Washington (Manuscript received 25 June 2004, in final form 2 November 2004) ABSTRACT Data from radiosondes, towers, and a thermistor string are used to characterize the temperature inversion at two stations: the Amundsen-Scott Station at the South Pole, and the somewhat higher and colder Dome C Station at a lower latitude. Ten years of temperature data from a 22-m tower at the South Pole are analyzed. The data include 2- and 22-m temperatures for the entire period and 13-m temperatures for the last 2 yr. Statistics of the individual temperatures and the differences among the three levels are presented for summer (December and Janu- ary) and winter (April–September). The relationships of temperature and inversion strength in the lowest 22 m with wind speed and down- ward longwave flux are examined for the winter months. Two preferred regimes, one warming and one cooling, are found in the temperature versus longwave flux data, but the physical causes of these regimes have not been determined. The minimum temperatures and the maximum inversions tend to occur not with calm winds, but with winds of 3–5 m sϪ1, likely due to the inversion wind. This inversion wind also explains why the near-surface winds at South Pole blow almost exclusively from the northeast quadrant. Temperature data from the surface to 2 m above the surface from South Pole in the winter of 2001 are presented, showing that the steepest temperature gradient in the entire atmosphere is in the lowest 20 cm. The median difference between the temperatures at 2 m and the surface is over 1.0 K in winter; under clear skies this difference increases to about 1.3 K. Monthly mean temperature profiles of the lowest 30 km of the atmosphere over South Pole are presented, based on 10 yr of radiosonde data. These profiles show large variations in lower-stratospheric temperatures, and in the strength and depth of the surface-based inversion. The near-destruction of a strong inversion at South Pole during7hon8September 1992 is examined using a thermal-conductivity model of the snowpack, driven by the measured downward longwave flux. The downward flux increased when a cloud moved over the station, and it seems that this increase in radiation alone can explain the magnitude and timing of the warming near the surface. Temperature data from the 2003/04 and 2004/05 summers at Dome C Station are presented to show the effects of the diurnal cycle of solar elevation over the Antarctic Plateau. These data include surface temperature and 2- and 30-m air temperatures, as well as radiosonde air temperatures. They show that strong inversions, averaging 10 K between the surface and 30 m, develop quickly at night when the sun is low in the sky, but are destroyed during the middle of the day. The diurnal temperature range at the surface was 13 K, but only 3 K at 30 m. 1. Introduction radiation. A significant inversion exists at the surface of the Antarctic Plateau in every month but December It has been known for decades that a surface-based and January (e.g., Schwerdtfeger 1970a). temperature inversion exists over the Antarctic Plateau The inversion exists because the snow-surface emis- and that its existence is not only a major feature of this sivity is greater than the atmospheric emissivity. When region’s climate, but also a driver of some aspects of its the energy absorbed at the surface from solar radiation climate, including near-surface winds and atmospheric is small, this inequality in emissivities results in a tem- perature inversion. Given that the sum of sensible, latent, and subsurface Corresponding author address: Stephen R. Hudson, Depart- ment of Atmospheric Sciences, University of Washington, Box heat fluxes provides only about 10%–15% of the en- 351640, Seattle, WA 98195-1640. ergy the surface emits in winter (Schlatter 1972; Carroll E-mail: [email protected] 1982) and that the surface temperature is nearly con- © 2005 American Meteorological Society JCLI3360 1674 JOURNAL OF CLIMATE VOLUME 18 stant during the 6-month winter (Schwerdtfeger 1984), with height in these inversions (Schwerdtfeger 1984) we can see that the upward longwave emission by the these radiosondes may not adequately capture the de- surface must be nearly balanced by the downward long- tails of the inversion near the surface (Mahesh et al. wave radiation reaching the surface from the atmo- 1997). sphere. This implies that, in winter, More recently, Connolley (1996) compared the cli- matology produced by Phillpot and Zillman with that ␧ ␴ 4 Ϸ ␧ ␴ 4 ͑ ͒ 0.85 s T s a T a, 1 produced by the Met Office Unified Model, a global climate model. Connolley’s results are similar to those ␧ Ϸ ␧ where s 1.0 is the snow-surface emissivity, a is the of Phillpot and Zillman, but show a dependence of in- effective emissivity of the atmosphere, ␴ ϭ 5.6696 ϫ version strength on terrain slope, which was not in- Ϫ8 Ϫ2 Ϫ4 10 Wm K is the Stefan–Boltzmann constant, Ts cluded by Phillpot and Zillman. This approach is useful is the surface temperature, and Ta is the effective tem- in that it can help to fill in the many data voids that exist perature of the atmosphere (i.e., at levels where most of over large portions of Antarctica. On the other hand, the emission originates); the factor 0.85 comes from the we are a long way from being able to replace observa- fact that about 15% of the energy emitted by the sur- tions with model results. face is replenished by nonradiative mechanisms. There- Towers have been used to study the inversion as well; Ϸ ␧ 0.25 fore, in winter, (Ts /Ta) ( a/0.85) , so the surface these have the benefit of allowing for more accurate temperature will have to be lower than the air tempera- measurements to be made in the lowest portion of the ture so long as the emissivity of the atmosphere is less atmosphere, where the inversion is most pronounced. than 0.85, a criterion violated only under optically thick Perhaps the best-known tower-based study of the Ant- ϭ clouds. For a typical wintertime inversion, with Ts arctic Plateau boundary layer was conducted at Plateau ϭ ␧ Ϸ 213 K and Ta 233 K, Eq. (1) implies a 0.6. Station, where temperatures and winds were measured The inversion is of interest to researchers in a variety at numerous levels on a 32-m tower (Riordan 1977). of fields. Waddington and Morse (1994) and Van Lipzig Dalrymple et al. (1966) also presented data collected on et al. (2002) showed that the inversion can affect ice- an 8-m tower at South Pole in 1958. core records, and therefore must be considered for This paper presents data collected at South Pole from proper retrieval of paleoclimate from ice cores. The radiosondes and from a 22-m tower over a 10-yr period. ability of inversion layers to resist vertical mixing af- For most of the period the ground-based data include fects atmospheric boundary layer chemistry and snow only 2- and 22-m temperatures, along with 10-m wind chemistry (Harder et al. 2000; Davis et al. 2001). One of and downward infrared flux, but some interesting fea- the rapidly growing fields of research on the Antarctic tures of the inversion can still be examined with this Plateau is ground-based astronomy, which can benefit limited dataset. Data from a string of thermistors be- from the high elevation and cold, dry atmosphere. tween the surface and 2 m that was operated during the However, Marks (2002) and Travouillon et al. (2003) winter of 2001 are used to examine the inversion very showed that the presence of strong temperature gradi- near the surface at South Pole. The larger-scale char- ents in the inversion layer can hinder atmospheric “see- acteristics of the inversion are captured in the radio- ing,” while its shallow depth allows for good use of sonde data. Additionally, some comparisons are made adaptive optics. Significant temperature gradients in to tower-based and radiosonde data collected in the the lowest2moftheatmosphere associated with the summers of 2003/04 and 2004/05 at Dome C, where a inversion mean that satellite retrievals of surface tem- significant diurnal cycle is observed. perature in Antarctica will be lower than the “surface” The aim of this paper is to present an overview of the air temperature measured at a station, which is usually temperature profile over the Antarctic Plateau at dif- measured around 2 m above the surface. ferent scales, with particular focus on the structure of Many studies of the inversion have tried to examine the surface-based temperature inversion and on some it through radiosonde data. Among others, these have of the factors that influence this inversion. The use of 10 resulted in an analysis of the relationship between near- yr of both radiosonde and tower-based data from South surface winds and the inversion by Dalrymple et al. Pole allows for analyses of the temperature profile that (1966) and Lettau and Schwerdtfeger (1967) and in a come closer to an actual climatology than previous climatology of inversion strength across the continent works. The longer period of record also allows for more by Phillpot and Zillman (1970), which showed that in- robust analyses of the relationships between the inver- versions over South Pole average about 20 K in winter, sion and the winds and downward longwave radiation, and those over the highest parts of the plateau average which are believed to influence the inversion.
Recommended publications
  • Surface Characterisation of the Dome Concordia Area (Antarctica) As a Potential Satellite Calibration Site, Using Spot 4/Vegetation Instrument

    Surface Characterisation of the Dome Concordia Area (Antarctica) As a Potential Satellite Calibration Site, Using Spot 4/Vegetation Instrument

    Remote Sensing of Environment 89 (2004) 83–94 www.elsevier.com/locate/rse Surface characterisation of the Dome Concordia area (Antarctica) as a potential satellite calibration site, using Spot 4/Vegetation instrument Delphine Sixa, Michel Filya,*,Se´verine Alvainb, Patrice Henryc, Jean-Pierre Benoista a Laboratoire de Glaciologie et Ge´ophysique de l’Environnemlent, CNRS/UJF, 54 rue Molie`re, BP 96, 38 402 Saint Martin d’He`res Cedex, France b Laboratoire des Sciences du Climat et de l’Environnement, CEA/CNRS, L’Orme des Merisiers, CE Saclay, Bat. 709, 91 191 Gif-sur-Yvette, France c Centre National d’Etudes Spatiales, Division Qualite´ et Traitement de l’Imagerie Spatiale, Capteurs Grands Champs, 18 Avenue Edouard Belin, 33 401 Toulouse Cedex 4, France Received 7 July 2003; received in revised form 10 October 2003; accepted 14 October 2003 Abstract A good calibration of satellite sensors is necessary to derive reliable quantitative measurements of the surface parameters or to compare data obtained from different sensors. In this study, the snow surface of the high plateau of the East Antarctic ice sheet, particularly the Dome C area (75jS, 123jE), is used first to test the quality of this site as a ground calibration target and then to determine the inter-annual drift in the sensitivity of the VEGETATION sensor, onboard the SPOT4 satellite. Dome C area has many good calibration site characteristics: The site is very flat and extremely homogeneous (only snow), there is little wind and a very small snow accumulation rate and therefore a small temporal variability, the elevation is 3200 m and the atmosphere is very clear most of the time.
  • Summary and Highlights of the 10Th International Symposium on Antarctic Earth Sciences

    Summary and Highlights of the 10Th International Symposium on Antarctic Earth Sciences

    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Related Publications from ANDRILL Affiliates Antarctic Drilling Program 2007 Summary and Highlights of the 10th International Symposium on Antarctic Earth Sciences T. J. Wilson Ohio State University, [email protected] R. E. Bell Columbia University P. Fitzgerald Syracuse University S. B. Mukasa University of Michigan - Ann Arbor, [email protected] R. D. Powell Northern Illinois University, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/andrillaffiliates Part of the Environmental Indicators and Impact Assessment Commons Wilson, T. J.; Bell, R. E.; Fitzgerald, P.; Mukasa, S. B.; Powell, R. D.; and Finn, C., "Summary and Highlights of the 10th International Symposium on Antarctic Earth Sciences" (2007). Related Publications from ANDRILL Affiliates. 22. https://digitalcommons.unl.edu/andrillaffiliates/22 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Related Publications from ANDRILL Affiliates by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors T. J. Wilson, R. E. Bell, P. Fitzgerald, S. B. Mukasa, R. D. Powell, and C. Finn This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ andrillaffiliates/22 Cooper, A. K., P. J. Barrett, H. Stagg, B. Storey, E. Stump, W. Wise, and the 10th ISAES editorial team, eds. (2008). Antarctica: A Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. Washington, DC: The National Academies Press.
  • Site Testing for Submillimetre Astronomy at Dome C, Antarctica

    Site Testing for Submillimetre Astronomy at Dome C, Antarctica

    A&A 535, A112 (2011) Astronomy DOI: 10.1051/0004-6361/201117345 & c ESO 2011 Astrophysics Site testing for submillimetre astronomy at Dome C, Antarctica P. Tremblin1, V. Minier1, N. Schneider1, G. Al. Durand1,M.C.B.Ashley2,J.S.Lawrence2, D. M. Luong-Van2, J. W. V. Storey2,G.An.Durand3,Y.Reinert3, C. Veyssiere3,C.Walter3,P.Ade4,P.G.Calisse4, Z. Challita5,6, E. Fossat6,L.Sabbatini5,7, A. Pellegrini8, P. Ricaud9, and J. Urban10 1 Laboratoire AIM Paris-Saclay (CEA/Irfu, Univ. Paris Diderot, CNRS/INSU), Centre d’études de Saclay, 91191 Gif-Sur-Yvette, France e-mail: [pascal.tremblin;vincent.minier]@cea.fr 2 University of New South Wales, 2052 Sydney, Australia 3 Service d’ingénierie des systèmes, CEA/Irfu, Centre d’études de Saclay, 91191 Gif-Sur-Yvette, France 4 School of Physics & Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA, UK 5 Concordia Station, Dome C, Antarctica 6 Laboratoire Fizeau (Obs. Côte d’Azur, Univ. Nice Sophia Antipolis, CNRS/INSU), Parc Valrose, 06108 Nice, France 7 Departement of Physics, University of Roma Tre, Italy 8 Programma Nazionale Ricerche in Antartide, ENEA, Rome Italy 9 Laboratoire d’Aérologie, UMR 5560 CNRS, Université Paul-Sabatier, 31400 Toulouse, France 10 Chalmers University of Technology, Department of Earth and Space Sciences, 41296 Göteborg, Sweden Received 25 May 2011 / Accepted 17 October 2011 ABSTRACT Aims. Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnantor area in Chile.
  • Site Characteristics of the High Antarctic Plateau

    Site Characteristics of the High Antarctic Plateau

    Astrophysics from Antarctica Proceedings IAU Symposium No. 288, 2012 c International Astronomical Union 2013 M. G. Burton, X. Cui & N. F. H. Tothill, eds. doi:10.1017/S1743921312016614 Site characteristics of the high Antarctic plateau Michael C. B. Ashley School of Physics, University of New South Wales, Sydney NSW 2052, Australia email: [email protected] Abstract. A brief review is given of the major results from the last twenty years of astronomical site-testing in Antarctica. Suggestions are made for how to resolve some outstanding questions, such as the infrared sky background at Antarctic sites other than South Pole station. Keywords. site testing, atmospheric effects, techniques: photometric 1. Introduction The last twenty years has seen observational confirmation that the unique atmospheric conditions over Antarctica hold many benefits for astronomy. This brief review does not attempt to be all-encompassing. I have concentrated on a few site characteristics, and with a bias towards those relevant for optical, infrared, and terahertz astronomy. For each site characteristic I also briefly comment on what measurements remain to be made. In the early 1990s it was realised that there were clear theoretical reasons for Antarctica to be an excellent observatory site. For example, the cold atmosphere, low precipitable water vapor, low aerosol concentration, and relatively high altitude of the Antarctic plateau, should lead to very low infrared and sub-mm backgrounds, and high sky trans- parency. There were also some not-so-obvious advantages, such as a predicted “cosmological window” at 2.27–2.45 μm resulting from a natural gap in airglow emission (Lubin 1988, Harper 1989), and the possibility of “superseeing” following from the unique Antarctic atmospheric conditions (Gillingham 1993).
  • Smithsonian at the Poles Contributions to International Polar Year Science

    Smithsonian at the Poles Contributions to International Polar Year Science

    A Selection from Smithsonian at the Poles Contributions to International Polar Year Science Igor Krupnik, Michael A. Lang, and Scott E. Miller Editors A Smithsonian Contribution to Knowledge WASHINGTON, D.C. 2009 This proceedings volume of the Smithsonian at the Poles symposium, sponsored by and convened at the Smithsonian Institution on 3–4 May 2007, is published as part of the International Polar Year 2007–2008, which is sponsored by the International Council for Science (ICSU) and the World Meteorological Organization (WMO). Published by Smithsonian Institution Scholarly Press P.O. Box 37012 MRC 957 Washington, D.C. 20013-7012 www.scholarlypress.si.edu Text and images in this publication may be protected by copyright and other restrictions or owned by individuals and entities other than, and in addition to, the Smithsonian Institution. Fair use of copyrighted material includes the use of protected materials for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify content, and must comply with all other terms or restrictions that may be applicable. Cover design: Piper F. Wallis Cover images: (top left) Wave-sculpted iceberg in Svalbard, Norway (Photo by Laurie M. Penland); (top right) Smithsonian Scientifi c Diving Offi cer Michael A. Lang prepares to exit from ice dive (Photo by Adam G. Marsh); (main) Kongsfjorden, Svalbard, Norway (Photo by Laurie M. Penland). Library of Congress Cataloging-in-Publication Data Smithsonian at the poles : contributions to International Polar Year science / Igor Krupnik, Michael A. Lang, and Scott E. Miller, editors. p. cm. ISBN 978-0-9788460-1-5 (pbk.
  • Antarctic Climate Variability at Regional and Continental Scales Over the Last 2,000 Years Barbara Stenni1,2, Mark A

    Antarctic Climate Variability at Regional and Continental Scales Over the Last 2,000 Years Barbara Stenni1,2, Mark A

    Clim. Past Discuss., doi:10.5194/cp-2017-40, 2017 Manuscript under review for journal Clim. Past Discussion started: 22 March 2017 c Author(s) 2017. CC-BY 3.0 License. Antarctic climate variability at regional and continental scales over the last 2,000 years Barbara Stenni1,2, Mark A. J. Curran3,4, Nerilie J. Abram5,6, Anais Orsi7, Sentia Goursaud7,8, Valerie Masson-Delmotte7, Raphael Neukom9, Hugues Goosse10, Dmitry Divine11,12, Tas van Ommen3,4, Eric J. 5 Steig13, Daniel A. Dixon14, Elizabeth R. Thomas15, Nancy A. N. Bertler16,17, Elisabeth Isaksson11, Alexey Ekaykin18,19, Massimo Frezzotti20, Martin Werner21 1Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Italy 10 2 Institute for the Dynamics of Environmental Processes, CNR, Venice, Italy 3 Australian Antarctic Division, 203 Channel Highway, Kingston Tasmania 7050, Australia 4 Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart 7001, Australia 5 Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia. 6ARC Centre of Excellence for Climate System Science, Australian National University, Canberra ACT 2601, Australia 15 7 Laboratoire des Sciences du Climat et de l’Environnement (IPSL/CEA-CNRS-UVSQ UMR 8212), CEA Saclay, 91191 Gif- sur-Yvette cédex, France 8 Université Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), 38041 Grenoble, France 9 University of Bern, Oeschger Centre for Climate Change Research & Institute of Geography,
  • Record Low Surface Air Temperature at Vostok Station, Antarctica

    Record Low Surface Air Temperature at Vostok Station, Antarctica

    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, D24102, doi:10.1029/2009JD012104, 2009 Record low surface air temperature at Vostok station, Antarctica John Turner,1 Phil Anderson,1 Tom Lachlan-Cope,1 Steve Colwell,1 Tony Phillips,1 Ame´lie Kirchgaessner,1 Gareth J. Marshall,1 John C. King,1 Tom Bracegirdle,1 David G. Vaughan,2 Victor Lagun,3 and Andrew Orr1 Received 20 March 2009; revised 16 July 2009; accepted 11 September 2009; published 16 December 2009. [1] The lowest recorded air temperature at the surface of the Earth was a measurement of À89.2°C made at Vostok station, Antarctica, at 0245 UT on 21 July 1983. Here we present the first detailed analysis of this event using meteorological reanalysis fields, in situ observations and satellite imagery. Surface temperatures at Vostok station in winter are highly variable on daily to interannual timescales as a result of the great sensitivity to intrusions of maritime air masses as Rossby wave activity changes around the continent. The record low temperature was measured following a near-linear cooling of over 30 K over a 10 day period from close to mean July temperatures. The event occurred because of five specific conditions that arose: (1) the temperature at the core of the midtropospheric vortex was at a near-record low value; (2) the center of the vortex moved close to the station; (3) an almost circular flow regime persisted around the station for a week resulting in very little warm air advection from lower latitudes; (4) surface wind speeds were low for the location; and (5) no cloud or diamond dust was reported above the station for a week, promoting the loss of heat to space via the emission of longwave radiation.
  • Environmental Contamination in Antarctic Ecosystems

    Environmental Contamination in Antarctic Ecosystems

    SCIENCE OF THE TOTAL ENVIRONMENT 400 (2008) 212– 226 available at www.sciencedirect.com www.elsevier.com/locate/scitotenv Environmental contamination in Antarctic ecosystems R. Bargagli⁎ University of Siena, Department of Environmental Sciences, Via P.A. Mattioli, 4; 53100 Siena (Italy) ARTICLE INFO ABSTRACT Article history: Although the remote continent of Antarctica is perceived as the symbol of the last great Received 9 April 2008 wilderness, the human presence in the Southern Ocean and the continent began in the early Received in revised form 1900s for hunting, fishing and exploration, and many invasive plant and animal species 27 June 2008 have been deliberately introduced in several sub-Antarctic islands. Over the last 50 years, Accepted 27 June 2008 the development of research and tourism have locally affected terrestrial and marine Available online 2 September 2008 coastal ecosystems through fuel combustion (for transportation and energy production), accidental oil spills, waste incineration and sewage. Although natural “barriers” such as Keywords: oceanic and atmospheric circulation protect Antarctica from lower latitude water and air Antarctica masses, available data on concentrations of metals, pesticides and other persistent Southern Ocean pollutants in air, snow, mosses, lichens and marine organisms show that most persistent Trace metals contaminants in the Antarctic environment are transported from other continents in the POPs Southern Hemisphere. At present, levels of most contaminants in Antarctic organisms are Pathways lower than those in related species from other remote regions, except for the natural Deposition trends accumulation of Cd and Hg in several marine organisms and especially in albatrosses and petrels. The concentrations of organic pollutants in the eggs of an opportunistic top predator such as the south polar skua are close to those that may cause adverse health effects.
  • Meteorology Department Amundsen-Scott South Pole

    Meteorology Department Amundsen-Scott South Pole

    METEOROLOGY DEPARTMENT AMUNDSEN-SCOTT SOUTH POLE STATION, ANTARCTICA The Meteorology staff’s primary function is year-round collection and distribution of meteorological data. Temperature, wind, and pressure data from both the surface and the upper levels of the atmosphere are used to support scientific research based at Amundsen-Scott South Pole Station as well as various international research projects. Researchers investigating issues of global climate change routinely use the climatological database, which spans almost fifty years. During the austral summer season (October-February), the South Pole staff also supports aircraft operations of the U.S. Antarctic Program. Hourly observations and twice-daily upper air soundings are transmitted via e-mail and over high frequency radio to McMurdo Station, where they are used to produce Terminal Aerodrome Forecasts (TAF’s) for the various landing sites on the continent. In addition, observational data from the South Pole are used to initialize computer forecast models twice daily. The McMurdo Weather department receives the observations and transmits them to the World Meteorological Organization (WMO) for dissemination to the global meteorological community. Since the Southern Hemisphere is relatively data-sparse, Antarctic observations and upper air reports are especially valuable for the initialization of computer forecast models worldwide. Meteorology Coordinator: Kathie Hill [email protected] (720) 568-2344 kh 8-05 90° South While the Arctic is a frozen ocean surrounded by land, Antarctica is a continent surrounded by oceans. Over 97% of Antarctica is covered with ice—an estimated 90% of Earth’s supply of fresh water. South Pole Station lies on the continent’s interior plateau at an elevation of 2,836 meters/9,306 feet above sea level (ASL).
  • Representative Surface Snow Density on the East Antarctic Plateau

    Representative Surface Snow Density on the East Antarctic Plateau

    The Cryosphere, 14, 3663–3685, 2020 https://doi.org/10.5194/tc-14-3663-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Representative surface snow density on the East Antarctic Plateau Alexander H. Weinhart1, Johannes Freitag1, Maria Hörhold1, Sepp Kipfstuhl1,2, and Olaf Eisen1,3 1Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany 2Physics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 3Fachbereich Geowissenschaften, Universität Bremen, Bremen, Germany Correspondence: Alexander H. Weinhart ([email protected]) Received: 10 January 2020 – Discussion started: 2 March 2020 Revised: 4 September 2020 – Accepted: 21 September 2020 – Published: 5 November 2020 Abstract. Surface mass balances of polar ice sheets are es- snow density parameterizations for regions with low accu- sential to estimate the contribution of ice sheets to sea level mulation and low temperatures like the EAP. rise. Uncertain snow and firn densities lead to significant uncertainties in surface mass balances, especially in the in- terior regions of the ice sheets, such as the East Antarctic Plateau (EAP). Robust field measurements of surface snow 1 Introduction density are sparse and challenging due to local noise. Here, we present a snow density dataset from an overland traverse Various future scenarios of a warming climate as well as cur- in austral summer 2016/17 on the Dronning Maud Land rent observations in ice sheet mass balance indicate a change plateau. The sampling strategy using 1 m carbon fiber tubes in surface mass balance (SMB) of the Greenland and Antarc- covered various spatial scales, as well as a high-resolution tic ice sheets (IPCC, 2019).
  • Astronomy in Antarctica

    Astronomy in Antarctica

    The Astronomy and Astrophysics Review (2011) DOI 10.1007/s00159-010-0032-2 REVIEWARTICLE Michael G. Burton Astronomy in Antarctica Received: 3 May 2010 c Springer-Verlag 2010 Abstract Antarctica provides a unique environment for astronomers to practice their trade. The cold, dry and stable air found above the high Antarctic plateau, as well as the pure ice below, offers new opportunities for the conduct of obser- vational astronomy across both the photon and the particle spectrum. The sum- mits of the Antarctic plateau provide the best seeing conditions, the darkest skies and the most transparent atmosphere of any earth-based observing site. Astro- nomical activities are now underway at four plateau sites: the Amundsen-Scott South Pole Station, Concordia Station at Dome C, Kunlun Station at Dome A and Fuji Station at Dome F, in addition to long duration ballooning from the coastal station of McMurdo, at stations run by the USA, France/Italy, China, Japan and the USA, respectively. The astronomy conducted from Antarctica includes op- tical, infrared, terahertz and sub-millimetre astronomy, measurements of cosmic microwave background anisotropies, solar astronomy, as well as high energy as- trophysics involving the measurement of cosmic rays, gamma rays and neutrinos. Antarctica is also the richest source of meteorites on our planet. An extensive range of site testing measurements have been made over the high plateau sites. In this article, we summarise the facets of Antarctica that are driving developments in astronomy there, and review the results of the site testing experiments undertaken to quantify those characteristics of the Antarctic plateau relevant for astronomical observation.
  • United States Antarctic Activities 2001-2002

    United States Antarctic Activities 2001-2002

    United States Antarctic Activities 2001-2002 This site fulfills the annual obligation of the United States of America as an Antarctic Treaty signatory to report its activities taking place in Antarctica. This portion details planned activities for July 2001 through June 2002. Modifications to these plans will be published elsewhere on this site upon conclusion of the 2001-2002 season. National Science Foundation Arlington, Virginia 22230 November 30, 2001 Information Exchange Under United States Antarctic Activities Articles III and VII(5) of the ANTARCTIC TREATY Introduction Organization and content of this site respond to articles III(1) and VII(5) of the Antarctic Treaty. Format is as prescribed in the Annex to Antarctic Treaty Recommendation VIII-6, as amended by Recommendation XIII-3. The National Science Foundation, an agency of the U.S. Government, manages and funds the United States Antarctic Program. This program comprises almost the totality of publicly supported U.S. antarctic activities—performed mainly by scientists (often in collaboration with scientists from other Antarctic Treaty nations) based at U.S. universities and other Federal agencies; operations performed by firms under contract to the Foundation; and military logistics by units of the Department of Defense. Activities such as tourism sponsored by private U.S. groups or individuals are included. In the past, some private U.S. groups have arranged their activities with groups in another Treaty nation; to the extent that these activities are known to NSF, they are included. Visits to U.S. Antarctic stations by non-governmental groups are described in Section XVI. This document is intended primarily for use as a Web-based file, but can be printed using the PDF option.